JPH0798672B2 - Strontium aluminosilicate glass substrate for flat panel display - Google Patents

Strontium aluminosilicate glass substrate for flat panel display

Info

Publication number
JPH0798672B2
JPH0798672B2 JP61239000A JP23900086A JPH0798672B2 JP H0798672 B2 JPH0798672 B2 JP H0798672B2 JP 61239000 A JP61239000 A JP 61239000A JP 23900086 A JP23900086 A JP 23900086A JP H0798672 B2 JPH0798672 B2 JP H0798672B2
Authority
JP
Japan
Prior art keywords
glass
sro
sio
aluminosilicate glass
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61239000A
Other languages
Japanese (ja)
Other versions
JPS62113735A (en
Inventor
ヘンリー ダンボー ジュニア ウィリアム
Original Assignee
コ−ニング グラス ワ−クス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コ−ニング グラス ワ−クス filed Critical コ−ニング グラス ワ−クス
Publication of JPS62113735A publication Critical patent/JPS62113735A/en
Publication of JPH0798672B2 publication Critical patent/JPH0798672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は平板ディスプレイ装置、およびそのためのスト
ロンチウムアルミノシリケートガラス基板に関する。
The present invention relates to a flat panel display device, and a strontium aluminosilicate glass substrate therefor.

(従来技術と発明が解決しようとする問題点) 2つの最近の技術的進歩は、平板ディスプレイ装置につ
いて明らかに実際的な次に示す可能性を大きくした。す
なわち、 (1) 改良された特性を示す液晶の調製;および (2) 微粒ポリシリコンの表面層の製造である。
PRIOR ART AND PROBLEMS TO BE SOLVED BY THE INVENTION Two recent technological advances have made the following possibilities obvious and practical for flat panel display devices. That is, (1) preparation of liquid crystals exhibiting improved properties; and (2) production of a surface layer of fine-grained polysilicon.

液晶の発達は、小型カラーテレビ受像機を液晶から製造
し、非常に大きな情報ディスプレイパネルが技術的に可
能な所まで進んだ。液晶は本来、電気信号に対して遅い
応答を示すので、能動マトリックスディスプレイを組立
てるためには電気的刺激に対して素早く応答する「スイ
ッチ」が必要である。薄膜トランジスタ(TFT)がこの
機能を果たす。
The development of liquid crystal has advanced to the point where it is technically possible to manufacture a very large information display panel by manufacturing a small color television receiver from liquid crystal. Since liquid crystals inherently exhibit a slow response to electrical signals, a "switch" that responds quickly to electrical stimuli is needed to build an active matrix display. Thin film transistors (TFTs) perform this function.

TFTが単結晶シリコンから製造できることは良く知られ
ているが、単結晶シリコンのその性質によって、それか
ら作られるTFTの大きさに制限がある。基板上に付着さ
せた微粒ポリシリコン層をレーザーのような熱源を用い
てスキャンすることにより、粗粒ポリシリコンに再結晶
させることができることが見出された。粗粒ポリシリコ
ンから調製されたTFTは、単結晶シリコンから作られたT
FTに比べ電気特性においてわずかな悪化しか示さず、ま
た液晶ディスプレイを多重送信する場合、極めて満足に
働くことが認められた。
It is well known that TFTs can be made from single crystal silicon, but the nature of single crystal silicon limits the size of TFTs made from it. It has been found that the fine-grained polysilicon layer deposited on the substrate can be recrystallized into coarse-grained polysilicon by scanning with a heat source such as a laser. TFTs made from coarse-grained polysilicon are T made from single-crystal silicon.
It was found that the electrical characteristics showed only a slight deterioration compared to FT, and that it works extremely well when multiplexing the liquid crystal display.

粗粒ポリシリコン能動マトリックスディスプレイは透明
で、平らで、なめらかで、不活性であり、熱膨張に関し
てシリコンと一致しており、また少なくとも850℃の処
理温度に耐えられる基板が必要である。従って、ガラス
はアルカリ金属イオンを含まなければこれらの要求を満
たし、ほぼ30〜40×10-7/℃の線熱膨張係数(25゜〜300
℃)と少なくとも850℃、好ましくは875℃以上のアニー
ル点を示す。米国特許第3,338,696号に記述されている
ガラス板の製造方法を用いるためには、ガラスは少なく
とも100,000ポアズ、好ましくは250,000ポアズ以上の液
相線粘度を示さなければならない。また、900℃付近の
アニール点を有する透明で均質なガラスを約1800℃以下
の温度の溶融バッチで得ることは非常に難しい。1800℃
は酸化雰囲気下で用いられる白金−ロジウムおよび多く
の耐火物と接触する溶融材料についての実際的な制限を
意味する。最後に、従来の装置と技術を用いて行うガラ
ス生成を可能にするために、約1400℃を越えない液相線
温度が非常に好ましい。
Coarse-grained polysilicon active matrix displays require a substrate that is transparent, flat, smooth, inert, consistent with silicon for thermal expansion, and capable of withstanding processing temperatures of at least 850 ° C. Therefore, the glass satisfies these requirements if it does not contain alkali metal ions, and has a linear thermal expansion coefficient (25 ° to 300 ° C) of about 30 to 40 × 10 -7 / ° C.
C.) and an annealing point of at least 850.degree. C., preferably 875.degree. In order to use the glass sheet manufacturing method described in US Pat. No. 3,338,696, the glass must exhibit a liquidus viscosity of at least 100,000 poise, preferably 250,000 poise or higher. Moreover, it is very difficult to obtain a transparent and homogeneous glass having an annealing point near 900 ° C. in a molten batch at a temperature of about 1800 ° C. or lower. 1800 ° C
Means a practical limit on the molten material used in contact with platinum-rhodium and many refractories used in oxidizing atmospheres. Lastly, a liquidus temperature of no more than about 1400 ° C. is highly preferred to allow glass production using conventional equipment and techniques.

従って、本発明の主な目的は約30〜40×10-7/℃の線熱
膨張係数(25゜〜300℃)、少なくとも850℃のアニール
点、約1400℃以下の液相線温度、少なくとも100,000ポ
アズの液相線粘度を示し、約1800℃を越えない温度で溶
融できる透明で均質なガラスを調製することである。
Therefore, the main object of the present invention is to obtain a linear thermal expansion coefficient (25 ° to 300 ° C.) of about 30 to 40 × 10 −7 / ° C., an annealing point of at least 850 ° C., a liquidus temperature of about 1400 ° C. or less, at least The purpose is to prepare a transparent, homogeneous glass exhibiting a liquidus viscosity of 100,000 poise and capable of melting at temperatures not exceeding about 1800 ° C.

(問題点を解決するための手段) 本発明の目的を満足するガラスは、酸化物を基礎とした
モルパーセントで表される約9〜12%のSrO、9〜12%
のAl2O3、および77〜82%のSiO2から本質的に成る組成
を有する三成分のSrO−Al2O3−SiO2系内に殆んどアルカ
リ金属酸化物を含まないガラスの制限された範囲から調
製できることを見出した。これらの組成割合の制限は、
極めて臨界的である。例証すると、SrOの水準が高すぎ
るとアニール点は所望の目標以下に下がり、線熱膨張係
数は満足できない高い値に上がる。逆にSrO含量が低す
ぎる場合、ガラスは溶融が非常に難しくなり、および/
または液相線温度が満足できない水準まで上がる。明記
したものより低いAl2O3濃度では、アニール点が低すぎ
てしまう。明記した以上のAl2O3含量は、望ましくない
高い液相線温度をもたらす。SiO2の分量が規定した最大
値をこえると、ガラスは溶融が非常に難しくなる。SiO2
水準が示した最小値以下の場合、アニール点が非常に低
くなるかまたは液相線温度が非常に高くなる。
Glass satisfying the objectives of the present invention have about 9-12% SrO, 9-12%, expressed in mole percent based on oxide.
Al 2 O 3, and restricted from 77 to 82% of SiO 2 glass containing no almost in three components of SrO-Al 2 O 3 -SiO 2 system with a composition consisting essentially of alkali metal oxide It was found that it can be prepared from the specified range. The limitation of these composition ratios is
It is extremely critical. Illustratively, if the SrO level is too high, the annealing point will drop below the desired target and the coefficient of linear thermal expansion will rise to an unsatisfactory high value. Conversely, if the SrO content is too low, the glass becomes very difficult to melt, and / or
Or the liquidus temperature rises to an unsatisfactory level. At lower Al 2 O 3 concentrations than specified, the annealing point is too low. Al 2 O 3 contents above those specified lead to undesirably high liquidus temperatures. When the amount of SiO 2 exceeds the specified maximum value, the glass becomes very difficult to melt. SiO 2
If the level is below the indicated minimum, the annealing point will be very low or the liquidus temperature will be very high.

モルパーセントで表示された組成範囲を重量パーセント
の範囲に正確に変換することはできないが、重量パーセ
ントで表された三成分系の近似値は約13〜18%のSrO、1
3〜18%のAl2O3、および66〜72%のSiO2である。
Although it is not possible to accurately convert the composition range expressed in mole percent to the range of weight percent, the approximation for a ternary system expressed in weight percent is about 13-18% SrO, 1
3-18% Al 2 O 3 and 66-72% SiO 2 .

三成分系中のSrOをMgO、CaO、ZnO、La2O3、およびMnOで
少量置換すると、ガラスの線膨張係数および/またはア
ニール点および/または液相線温度に望ましくない影響
を及ぼす。従って、所望のガラス特性を維持するには、
これらの物質を非常に少量だけ添加することが許され
る。アルカリ金属酸化物のような強力な融剤は、本質的
に存在しないことが望ましい。
Small substitutions of SrO in the ternary system with MgO, CaO, ZnO, La 2 O 3 , and MnO have an undesired effect on the linear expansion coefficient and / or annealing point and / or liquidus temperature of the glass. Therefore, to maintain the desired glass properties,
Only very small amounts of these substances can be added. It is desirable that a strong flux such as an alkali metal oxide be essentially absent.

SrOの一部をBaOで置換すると線膨張係数がわずかに上昇
し、またガラスの粘度に逆影響を及ぼさずにかなりの程
度まで液相線温度を非常に望ましく減らすことができ
る。従って、SrOの代りにBaOを用いてもアニール点は少
しも変わらない。このBaOの性能は、SrOとBaO濃度のバ
ランスによって熱膨張係数を変化させ、注意深く調節す
るのに実際的意義がある。SrOの代りに8モルパーセン
トまで好ましくは約6モルパーセントを超えないでBaO
を置換することができるが、1800℃の溶融温度を採用す
る場合、BaOの揮発が問題となる。SiOは1800℃で揮発を
受けにくい。
Substituting a portion of SrO with BaO slightly increases the linear expansion coefficient, and can also significantly reduce the liquidus temperature to a considerable extent without adversely affecting the viscosity of the glass. Therefore, even if BaO is used instead of SrO, the annealing point does not change at all. This BaO performance is of practical significance for changing the thermal expansion coefficient according to the balance of SrO and BaO concentrations and for careful adjustment. Instead of SrO up to 8 mole percent, preferably not exceeding about 6 mole percent BaO
However, when a melting temperature of 1800 ° C. is adopted, BaO volatilization becomes a problem. SiO does not easily volatilize at 1800 ° C.

さらに、ガラス溶融の観点からも一層重要であるが、大
量のBaOを含むとガラス中に気泡の発生をもたらす。例
えば、SrOをBaOですべて置換すると、1800℃を超えない
溶融温度で少しも気泡を含まないガラスを生成すること
は実質的に不可能である。これに対して、ラボ実験で
は、三成分系SrO−Al2O3−SiO2の上述した範囲のガラス
から殆ど気泡を含まないガラスが調製できた。従って、
BaOを混合するとガラスに有益な特性を与えるが、その
存在は、揮発物が環境を汚染し、またガラスを良い品質
に溶融することを一層困難にする。
Further, although more important from the viewpoint of glass melting, when a large amount of BaO is contained, bubbles are generated in the glass. For example, if all SrO is replaced by BaO, it is virtually impossible to produce a glass that is free of any bubbles at melting temperatures not exceeding 1800 ° C. On the other hand, in a laboratory experiment, a glass containing almost no bubbles could be prepared from the ternary SrO—Al 2 O 3 —SiO 2 glass in the above range. Therefore,
Mixing BaO provides the glass with beneficial properties, but its presence makes it more difficult for volatiles to pollute the environment and to melt the glass to good quality.

従来技術と本発明との比較 「酸化ストロンチウム−酸化アルミニウム−二酸化ケイ
素系におけるガラス形成の領域」(Kh.Sh.Iskhakov,Uz
b.Khim.Zh.15(1),10〜12(1971))には、モルパー
セントで25〜60%のSrO、5〜30%のAl2O3、および35〜
65%のSiO2から成るガラスを1500゜〜1550゜で1〜1.5
時間溶融することにより調製することが記述されてい
る。SrO含量は明らかに、本発明のものから全く離れて
いる。
Comparison of Prior Art with the Present Invention "Area of glass formation in strontium oxide-aluminum oxide-silicon dioxide system" (Kh. Sh. Iskhakov, Uz
b.Khim.Zh. 15 (1), 10-12 (1971)), 25-60% SrO, 5-30% Al 2 O 3 , and 35-
Glass consisting of 65% SiO 2 at 1500 ° -1550 ° for 1-1.5
Preparation by melting for a time is described. The SrO content is clearly far from that of the present invention.

「ストロンチア−アルミナ−シリカ系におけるガラスの
調製」(Kh.Sh.Iskhakov.Uzb.Khim.Zh.,15(2),79〜8
1(1971))には、上記参照文献の範囲内の組成を有す
るガラスに関し決定されたいくつかの物理的特性につい
て記述されている。ガラスは64〜97×10-7/℃の熱膨張
係数を示すことが認められた。SrO含量が増すと、熱膨
張係数が上がることが述べられている。
"Preparation of Glass in Strontia-Alumina-Silica System" (Kh. Sh. Iskhakov. Uzb. Khim. Zh., 15 (2), 79-8)
1 (1971)) describes some of the physical properties determined for glasses having compositions within the above references. The glass was found to have a coefficient of thermal expansion of 64 to 97 × 10 -7 / ℃. It is stated that as the SrO content increases, the coefficient of thermal expansion increases.

「ガラス」(G.I.Zhuravlavら、Glass,USSR SU 870,3
65,1984年1月7日)は、重量パーセントで25〜35%のS
rO、11〜20%のAl2O3、および41〜63%のSiO2を含み、
一層高い軟化点と特別な電気抵抗率を示すガラスの調製
を発表している。濃度を比較すると一般に、SrO水準は
本発明のガラスより高く、SiO2水準は低い。
"Glass" (GIZhuravlav et al., Glass, USSR SU 870,3
65, 7 January 1984) is 25-35% S by weight percent.
wherein and rO, 11 to 20% Al 2 O 3, and 41-63% of the SiO 2,
We have announced the preparation of glasses with higher softening points and special electrical resistivities. Comparing the concentrations, the SrO level is generally higher and the SiO 2 level is lower than the glasses of the invention.

「電気泳動デポジションによりニオブ基板上に二酸化ケ
イ素−酸化アルミニウム・酸化ストロンチウム系を分散
させたガラスの応用」(G.I.Zhuravlavら、Zh.Prikl.Kh
im.(Leningrad)54(7) 1601〜4(1981))は、上
記の参照文献に示された範囲内の組成を有するガラスの
電気泳動デポジションによる、保護電気絶縁コーティン
グの高圧ランプのニオブパーツへの応用について記述し
ている。
"Application of glass in which silicon dioxide-aluminum oxide / strontium oxide system is dispersed on niobium substrate by electrophoretic deposition" (GI Zhuravlav et al., Zh. Prikl. Kh)
im. (Leningrad) 54 (7) 1601-4 (1981)) is a niobium part of a high voltage lamp with a protective electrically insulating coating by electrophoretic deposition of glass having a composition within the ranges given in the above references. It describes the application to.

米国特許第4,180,618号は、基板上に付着させたケイ素
の薄膜から成る電子装置の製造について発表しており、
ここで基板は本質的に重量パーセントで55〜75%のSi
O2、5〜25%のAl2O3、および9〜15%のCaO、14〜20%
のSrO、および18〜26%のBaOの割合で示された群から選
ばれた少なくとも1種のアルカリ土類酸化物から成るガ
ラスで構成される。CaOとBaO含量は、本発明のガラスに
許容できるものより高い。SrO、Al2O3、およびSiO2の広
い範囲は本発明のガラスのものと重なるが、組成を本発
明の狭く制限した範囲内に確保することができるすぐれ
た特性のマトリックスは認められず、また本発明のガラ
スの制限内にある実施例も示されていない。
U.S. Pat.No. 4,180,618 discloses the manufacture of electronic devices consisting of a thin film of silicon deposited on a substrate,
Here the substrate is essentially 55-75% Si by weight.
O 2, 5 to 25% Al 2 O 3, and 9-15% of CaO, 14 to 20%
Of SrO and at least one alkaline earth oxide selected from the group shown in the proportion of 18-26% BaO. The CaO and BaO content is higher than is acceptable for the glasses of the invention. Although a wide range of SrO, Al 2 O 3 , and SiO 2 overlaps with that of the glasses of the present invention, no excellent matrix of properties is found that can ensure composition within the narrowly limited ranges of the present invention, Also, no examples are given which are within the limits of the glasses of the present invention.

(実 施 例) 表Iは、酸化物を基礎とするモルパーセントで表された
多数のガラス組成を示し、本発明のパラメーターを例示
する。実際のバッチ成分は共に溶融した時、適当な割合
で所望の酸化物に変化する酸化物または他の化合物の任
意の材料を含む。以下に示すラボ実験では、バッチ材料
は高純度砂、Al2O3、SrCO3、BaCO3、MgO、CaO、ZnO、Mn
O、およびLa2O3から成る。
Examples Table I shows a number of glass compositions expressed in mole percent based on oxide and illustrates the parameters of the present invention. The actual batch components include any material of oxides or other compounds that, when melted together, convert to the desired oxide in the proper proportions. In the lab experiments shown below, the batch materials were high-purity sand, Al 2 O 3 , SrCO 3 , BaCO 3 , MgO, CaO, ZnO, Mn.
It consists of O and La 2 O 3 .

バッチ材料を配合し、均一な溶融体になるようにボール
ミル粉砕し、白金または白金−ロジウムるつぼに詰め
た。77%のSiO2およびそれ以下を含むこれらのバッチを
電熱炉内にて1600〜1650℃で4〜16時間溶融した。SiO2
含量が一層高いバッチは、気体酸素点火炉にて1700゜〜
1800℃で16時間溶融した。それぞれの場合について、溶
融体を鉄の鋳型に流し込み、約30.5cm(12インチ)の直
径と約1.9cm(0.75インチ)の厚さの円形スラブを形成
し、これらのスラブをすぐに焼なまし器に移した。表IA
は表Iの組成を酸化物を基礎とする重量パーセントによ
り示した。
The batch materials were compounded, ball milled to a uniform melt and packed in platinum or platinum-rhodium crucibles. These batches containing 77% SiO 2 and below were melted in an electric furnace at 1600-1650 ° C. for 4-16 hours. SiO 2
Higher content batches start at 1700 ° in a gas oxygen ignition furnace
Melted at 1800 ° C. for 16 hours. In each case, the melt was cast into an iron mold to form circular slabs with a diameter of approximately 30.5 cm (12 inches) and a thickness of approximately 1.9 cm (0.75 inches), and these slabs were immediately annealed. I transferred it to a container. Table IA
Shows the composition of Table I in weight percent based on oxide.

表IIは、上記ガラスについて測定した若干の物理的特性
を示す。℃で表されたアニール点およびひずみ点は、AS
TMC 598に記述されているビーム曲り法に従って測定し
た。×10-7℃で表された25゜〜300℃の範囲の線熱膨張
係数は、溶融シリカ膨張計を用いるASTM E 228に従っ
て確認した。℃で表された内部液相線温度は、ガラスを
白金ボートに入れ、このボートを液相線温度また段々に
温度グラジエントする炉内に入れ、この炉内にボートを
24時間保持させることによって求めた。105ポアズで表
された液相線でのガラスの粘度は、ガラスを2℃/分で
冷却しながら回転粘度計を用いて求めた。オーム -cmで
表された直流抵抗率(250℃および350℃)、室温および
1KHzでの誘電率、室温および1KHzでの誘電正接は、ASTM
D 150、D 257、およびD 657に示されている方法に従
って求めた。また、5%HCl水溶液に24時間、5%NaOH
水溶液に6時間、および0.02NNa2CO3水溶液に6時間、
それぞれ浸漬し、各浸漬を95℃で行い、各減量をmg/cm2
で表した際の化学的耐久性は、視覚による外観と重量損
失によって、磨いたガラス板で確認した。外観に関し
て、変化なし、わずかなフロスト、およびわずかな曇り
の表示を用いて示した。
Table II shows some of the physical properties measured on the glasses. The annealing point and strain point expressed in ° C are AS
It was measured according to the beam bending method described in TMC 598. The coefficient of linear thermal expansion in the range of 25 ° to 300 ° C expressed as × 10 -7 ° C was confirmed according to ASTM E 228 using a fused silica dilatometer. The internal liquidus temperature, expressed in ° C, is obtained by placing glass in a platinum boat, placing the boat in a furnace with a liquidus temperature and a gradual temperature gradient, and placing the boat in the furnace.
Obtained by holding for 24 hours. The viscosity of the glass at the liquidus line expressed in 10 5 poise was determined using a rotational viscometer while cooling the glass at 2 ° C / min. Ohm - DC resistivity, expressed in cm (250 ° C. and 350 ° C.), at room temperature and
The dielectric constant at 1 KHz, the dielectric loss tangent at room temperature and 1 KHz is ASTM
Determined according to the method shown in D 150, D 257, and D 657. Also, 5% NaOH aqueous solution for 24 hours, 5% NaOH
6 hours for aqueous solution and 6 hours for 0.02N Na 2 CO 3 aqueous solution,
Immerse each, dip each at 95 ℃, and reduce each weight by mg / cm 2
The chemical durability when expressed by was confirmed by the visual appearance and the weight loss on the polished glass plate. Appearance was indicated with no change, slight frost, and slight cloudiness indication.

ガラス19〜28を電熱炉内にて1650℃で16時間溶融した。
ガラス25と26は透明で、粘性があり、気泡がなかった。
ガラス20,22および24は透明であるが気泡が入ってい
た。また他のガラスは、いくらかの気泡を含み、透明で
あった。例示的組成の残りのものは、気体酸素炉内にて
1800℃で16時間溶融した。81モルパーセントまでのSiO2
水準では、ガラスは透明で粘性があり、気泡がなかっ
た。82モルパーセントのSiO2濃度で、ガラスは透明で、
非常に粘性があり、また意外にも気泡がなかった。83モ
ルパーセントのSiO2含量で、ガラスは透明であったが、
わずかに動くほどの粘性があり、またいくらか気泡を含
んでいた。
Glasses 19 to 28 were melted in an electric furnace at 1650 ° C for 16 hours.
Glasses 25 and 26 were transparent, viscous and free of bubbles.
Glass 20, 22 and 24 were transparent but contained air bubbles. The other glasses were transparent with some air bubbles. The remainder of the exemplary composition is in a gas oxygen furnace.
Melted at 1800 ° C. for 16 hours. Up to 81 mole percent SiO 2
At the level, the glass was transparent, viscous and free of bubbles. With a SiO 2 concentration of 82 mole percent, the glass is transparent,
It was very viscous and surprisingly had no air bubbles. At a SiO 2 content of 83 mole percent, the glass was transparent,
It was slightly moving and viscous and contained some air bubbles.

表Iと表IIを共に検討すると、約1800℃以下の温度で溶
融でき、また少なくとも850℃のアニール点、25゜〜300
℃の温度範囲で約30〜40×10-7/℃の線熱膨張係数、約1
400℃を超えない液相線温度、および少なくとも100,000
ポアズの液相線粘度を示すガラスを調製するために、Sr
O、Al2O3、およびSiO2濃度を規定した三成分系の範囲内
に保つことの重要性をはっきりと示している。またこの
検討では、MgO、CaO、ZnO、La2O3および/またはMnOの
混入が上記特性に関して生成したガラスにもたらす一般
に好ましくない影響を示している。これに対し、BaOの
添加はガラスの粘度に重大な影響を及ぼさずに液相線温
度を下げるのに有効であるが、この添加の際には、BaO
の揮発とガラス中の気泡の発生に注意をはらわなければ
ならない。
Examining both Table I and Table II together, it can be melted at temperatures below about 1800 ° C and has an annealing point of at least 850 ° C, 25 ° -300
Linear thermal expansion coefficient of about 30-40 × 10 -7 / ℃ in the temperature range of ℃, about 1
Liquidus temperature not exceeding 400 ° C, and at least 100,000
To prepare a glass exhibiting Poise's liquidus viscosity, Sr
The importance of keeping the O, Al 2 O 3 , and SiO 2 concentrations within the defined ternary system is clearly demonstrated. This study also shows the generally unfavorable effect of the incorporation of MgO, CaO, ZnO, La 2 O 3 and / or MnO on the glass produced with respect to the above properties. On the other hand, the addition of BaO is effective in lowering the liquidus temperature without seriously affecting the viscosity of the glass.
Attention must be paid to the volatilization of and the generation of bubbles in the glass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも850℃のアニール点、25゜〜300
℃の温度範囲で約30〜40×10-7/℃の線熱膨張係数、140
0℃を超えない液相線温度、および少なくとも1×105
アズの液相線粘度を示す約1800℃以下の温度で溶融で
き、本質的にアルカリ金属酸化物を含まず、酸化物を基
礎とするモルパーセントで表した9〜12%のSrO、9〜1
2%のAl2O3、77〜82%のSiO2から本質的に成る明るい透
明なストロンチウムアルミノシリケートガラス。
1. An annealing point of at least 850 ° C., 25 ° to 300
Approximately 30-40 × 10 -7 / ℃ linear thermal expansion coefficient, 140 in the temperature range of ℃
It can be melted at a liquidus temperature not exceeding 0 ° C. and at a temperature below about 1800 ° C., which exhibits a liquidus viscosity of at least 1 × 10 5 poise, is essentially free of alkali metal oxides, and is based on oxides. 9-12% SrO, 9-1 expressed in mole percent
Bright transparent strontium aluminosilicate glass consisting essentially of 2% Al 2 O 3 and 77-82% SiO 2 .
【請求項2】SrOが8モルパーセントまでのBaOで置換さ
れている特許請求の範囲第1項記載のガラス。
2. A glass according to claim 1 in which SrO is replaced by up to 8 mole percent BaO.
JP61239000A 1985-10-23 1986-10-07 Strontium aluminosilicate glass substrate for flat panel display Expired - Lifetime JPH0798672B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US790369 1985-10-23
US06/790,369 US4634684A (en) 1985-10-23 1985-10-23 Strontium aluminosilicate glass substrates for flat panel display devices

Publications (2)

Publication Number Publication Date
JPS62113735A JPS62113735A (en) 1987-05-25
JPH0798672B2 true JPH0798672B2 (en) 1995-10-25

Family

ID=25150486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239000A Expired - Lifetime JPH0798672B2 (en) 1985-10-23 1986-10-07 Strontium aluminosilicate glass substrate for flat panel display

Country Status (8)

Country Link
US (1) US4634684A (en)
EP (1) EP0220818B1 (en)
JP (1) JPH0798672B2 (en)
KR (1) KR870003944A (en)
CA (1) CA1250324A (en)
DE (1) DE3685401D1 (en)
HK (1) HK100992A (en)
SG (1) SG102192G (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851363A (en) * 1986-07-11 1989-07-25 General Motors Corporation Fabrication of polysilicon fets on alkaline earth alumino-silicate glasses
US5106671A (en) * 1990-12-10 1992-04-21 Ford Motor Company Transparent anti-reflective coating
US5171414A (en) * 1990-12-10 1992-12-15 Ford Motor Company Method of making transparent anti-reflective coating
US5245468A (en) * 1990-12-14 1993-09-14 Ford Motor Company Anti-reflective transparent coating
US5234748A (en) * 1991-06-19 1993-08-10 Ford Motor Company Anti-reflective transparent coating with gradient zone
US5116789A (en) * 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
US5116787A (en) * 1991-08-12 1992-05-26 Corning Incorporated High alumina, alkaline earth borosilicate glasses for flat panel displays
US5116788A (en) * 1991-08-12 1992-05-26 Corning Incorporated Alkaline earth aluminoborosilicate glasses for flat panel displays
US5489558A (en) * 1994-03-14 1996-02-06 Corning Incorporated Glasses for flat panel display
US5508237A (en) 1994-03-14 1996-04-16 Corning Incorporated Flat panel display
DE19601922C2 (en) * 1996-01-13 2001-05-17 Schott Glas Tin and zirconium oxide-containing, alkali-free alkaline earth aluminum-borosilicate glasses and their use
GB2310314A (en) * 1996-02-14 1997-08-20 Gec Alsthom Ltd Glass or glass ceramic substrates
US6060168A (en) * 1996-12-17 2000-05-09 Corning Incorporated Glasses for display panels and photovoltaic devices
TWI318198B (en) * 2002-03-11 2009-12-11 Tosoh Corp Highly durable silica glass, process for producing same, member comprised thereof, and apparatus provided therewith
US7285508B2 (en) 2003-08-29 2007-10-23 Nippon Sheet Glass Company, Limited Glass flake
EP1699742B1 (en) * 2003-12-30 2019-01-16 Corning Incorporated High strain point glasses
WO2005066087A2 (en) * 2003-12-31 2005-07-21 Corning Incorporated Aluminum silicophosphate glasses
JP4853817B2 (en) * 2004-07-15 2012-01-11 日本電気硝子株式会社 Glass substrate for flat panel display
WO2007021503A1 (en) * 2005-08-17 2007-02-22 Corning Incorporated High strain point glasses
US8007913B2 (en) * 2006-02-10 2011-08-30 Corning Incorporated Laminated glass articles and methods of making thereof
CN103121796B (en) 2006-02-10 2017-03-29 康宁股份有限公司 Glass composition with high heat stability and chemical stability and preparation method thereof
US8713967B2 (en) * 2008-11-21 2014-05-06 Corning Incorporated Stable glass sheet and method for making same
CN102471134B (en) 2009-07-02 2015-04-15 旭硝子株式会社 Alkali-free glass and method for producing same
JP2011063464A (en) * 2009-09-16 2011-03-31 Nippon Electric Glass Co Ltd Glass plate for plasma display
EP2650262A1 (en) 2010-12-07 2013-10-16 Asahi Glass Company, Limited Alkali free glass and method for producing alkali free glass
US8541327B1 (en) * 2011-10-21 2013-09-24 U.S. Department Of Energy Barium oxide, calcium oxide, magnesia, and alkali oxide free glass
CN103987666B (en) 2011-12-06 2016-05-25 旭硝子株式会社 The manufacture method of alkali-free glass
CN104136383B (en) 2012-02-27 2016-09-28 旭硝子株式会社 The manufacture method of alkali-free glass
WO2013161903A1 (en) 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
CN104271526B (en) 2012-04-27 2016-12-07 旭硝子株式会社 Alkali-free glass and manufacture method thereof
CN104302590B (en) 2012-05-16 2016-08-31 旭硝子株式会社 The manufacture method of plate glass
KR102047015B1 (en) 2012-05-31 2019-11-20 에이지씨 가부시키가이샤 Alkali-free glass substrate and method for reducing thickness of alkali-free glass substrate
KR20150029632A (en) 2012-06-05 2015-03-18 아사히 가라스 가부시키가이샤 Alkali-free glass and method for producing same
CN105103352B (en) 2013-03-29 2018-04-06 圣戈本陶瓷及塑料股份有限公司 Sanbornite base glass-ceramic seal for high temperature application
JP2017114685A (en) 2014-04-28 2017-06-29 旭硝子株式会社 Alkali-free glass
JP2017534555A (en) * 2014-10-01 2017-11-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for forming a glass composition
US10577277B2 (en) 2015-04-03 2020-03-03 Nippon Electric Glass Co., Ltd. Glass
KR20170136495A (en) * 2015-04-03 2017-12-11 니폰 덴키 가라스 가부시키가이샤 Glass
US20210380468A1 (en) * 2018-10-05 2021-12-09 Nippon Electric Glass Co., Ltd. Alkali-free glass plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR6804453D0 (en) * 1967-12-26 1973-01-30 Gen Electric HIGH TEMPERATURE GLASS
JPS5228546B2 (en) * 1972-09-11 1977-07-27
US3962117A (en) * 1974-05-17 1976-06-08 Corning Glass Works Cathodoluminescent glasses activated by manganese
US4180618A (en) * 1977-07-27 1979-12-25 Corning Glass Works Thin silicon film electronic device
JPS60155550A (en) * 1984-01-24 1985-08-15 Ngk Spark Plug Co Ltd Glaze composition for ceramic substrate

Also Published As

Publication number Publication date
KR870003944A (en) 1987-05-06
JPS62113735A (en) 1987-05-25
SG102192G (en) 1992-12-04
EP0220818A2 (en) 1987-05-06
HK100992A (en) 1992-12-24
EP0220818B1 (en) 1992-05-20
US4634684A (en) 1987-01-06
CA1250324A (en) 1989-02-21
DE3685401D1 (en) 1992-06-25
EP0220818A3 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
JPH0798672B2 (en) Strontium aluminosilicate glass substrate for flat panel display
JP7177412B2 (en) Alkali-free glass substrate
EP0220829B1 (en) Barium and/or strontium aluminosilicate crystal-containing glasses for flat panel display devices
KR101951085B1 (en) Glass substrate for flat panel displays and method for manufacturing same
KR101523832B1 (en) Glass substrate for flat panel display
KR100527227B1 (en) Arsenic-free glasses
JP2655224B2 (en) Flat panel display device and glass for base thereof
US4994415A (en) SiO2 -Al2 O3 -BaO glass substrates with improved chemical resistance for use in display panels and others having thin films
CN1676484B (en) Glass-ceramic and method for its production
JPH05232458A (en) Flat panel display device
CN107406303A (en) Glass
KR20140086915A (en) Glass substrate for display and method for manufacturing the same
JPH1036133A (en) Alkali-free aluminoborosilicate glass and its use
JPH1059741A (en) Non-alkali glass and its production
JPH10139467A (en) Alkali-free glass and flat display panel
JPH10130034A (en) Alkali-free glass and its production
KR20210070295A (en) Alkali-free glass plate
US4666868A (en) Strontium aluminosilicate glass substrates for flat panel display devices
JPH09110460A (en) Alkali-free glass
US4666869A (en) Barium and/or strontium aluminosilicate crystal-containing glasses for flat panel display devices
JPH11100226A (en) Substrate glass for display device
JP2001261369A (en) Low melting point glass composition
JP4132119B2 (en) Heat resistant glass
JPH09202641A (en) Substrate glass for display device and its production
JP2005330181A (en) Method for producing substrate glass for display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term