JP2001261369A - Low melting point glass composition - Google Patents
Low melting point glass compositionInfo
- Publication number
- JP2001261369A JP2001261369A JP2000079632A JP2000079632A JP2001261369A JP 2001261369 A JP2001261369 A JP 2001261369A JP 2000079632 A JP2000079632 A JP 2000079632A JP 2000079632 A JP2000079632 A JP 2000079632A JP 2001261369 A JP2001261369 A JP 2001261369A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- substrate
- thermal expansion
- glass composition
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/08—Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基板表面を直に被
覆し、又は基板に配した導電体、半導体パターンを絶縁
被覆し、又は基板と他の部材を接着するためのリン酸亜
鉛系で実質的にPbO、Bi2O3、およびアルカリ金属酸化物
を含まない低融点ガラスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc phosphate system for directly covering the surface of a substrate, insulatingly covering conductors and semiconductor patterns disposed on the substrate, or bonding the substrate and other members. It relates to a low-melting glass substantially free of PbO, Bi 2 O 3 and alkali metal oxides.
【0002】[0002]
【従来の技術】従来低融点ガラス、例えば基板被覆用低
融点ガラスには鉛系のガラスが採用されてきた。鉛成分
はガラスを低融点とするうえで重要な成分ではあるもの
の、人体や環境に与える弊害が大きく、近年その採用を
避ける趨勢にある。別に低融点ガラスを形成するうえ
で、ガラス中にアルカリ金属類やビスマス成分、テルル
成分等を導入することは知られるところであるが、アル
カリ金属類はガラス表面に浸出し易く、また電気絶縁性
を低下させるため、エレクトロニクス分野では敬遠され
る傾向にあり、ビスマス成分やテルル成分も鉛と同類の
重金属であることにおいて、環境に対する影響は否めな
い。2. Description of the Related Art Conventionally, lead-based glass has been adopted as low-melting glass, for example, low-melting glass for coating a substrate. Although the lead component is an important component for lowering the melting point of glass, it has a serious adverse effect on the human body and the environment, and has recently been tending to avoid its use. Separately, when forming a low-melting glass, it is known that alkali metals, bismuth components, tellurium components, etc. are introduced into the glass, but the alkali metals are easily leached on the glass surface, and the electrical insulation property is reduced. In the electronics field, it tends to be avoided because of its lowering. The fact that the bismuth component and the tellurium component are also heavy metals similar to lead has an undeniable effect on the environment.
【0003】公知技術についてみれば、例えば特開昭64
−87531号公報、特開平5−132339号公報、特開平8−1
83632号公報にはリン酸亜鉛系でアルカリ金属類を含む
低融点ガラスが開示されているが、前記したとおりアル
カリ金属類はガラス表面に浸出し易く、また電気絶縁性
を低下させるため、特にエレクトロニクス分野では敬遠
されている。[0003] With regard to the known art, for example,
-87531, JP-A-5-132339, JP-A-8-1
No. 83632 discloses a zinc phosphate-based low-melting glass containing an alkali metal, but as described above, the alkali metal is easily leached out of the glass surface, and also reduces the electrical insulation, so that particularly the electronics It is shunned in the field.
【0004】また、例えば特開平10−29835号公報に
は、無アルカリのリン酸亜鉛系低融点ガラスが開示され
ているが、酸化タングステンを必須とするものであり、
それは融点が高く、低融点のガラスを得るうえで効果的
な成分ではない。Further, for example, Japanese Patent Application Laid-Open No. 10-29835 discloses a non-alkali zinc phosphate-based low-melting glass, in which tungsten oxide is essential.
It has a high melting point and is not an effective component for obtaining a low melting point glass.
【0005】別に、特開平11−314936号公報には、リン
酸亜鉛系低融点ガラスで酸化錫(II)を必須とするもの
であるが、前記酸化錫(II)がガラス中に安定して存在
するためには不活性または還元性雰囲気でのガラス製造
および溶着が必要であり、実用上、産業利用上において
適当とはいえない。[0005] Separately, Japanese Patent Application Laid-Open No. 11-314936 discloses a zinc phosphate-based low-melting glass which requires tin oxide (II) as an essential component. Its presence requires glass production and deposition in an inert or reducing atmosphere, and is not practical or industrially appropriate.
【0006】これら従来技術の多くは、本発明における
ような酸化バリウム含有量が少なく、または含まない
が、酸化バリウムはガラス溶融を容易とし、ガラス粘度
を下げ、熱膨張係数を適度とし、また、アルカリ金属類
のようなガラスの耐水性を劣化したり、ガラス表面に浸
出したり、電気絶縁性を低下したりするようなことがな
い等種々の利点を有する有効な成分である。Many of these prior arts have low or no barium oxide content as in the present invention, but barium oxide facilitates glass melting, lowers glass viscosity, makes the thermal expansion coefficient moderate, and It is an effective component having various advantages, such as not deteriorating the water resistance of glass such as alkali metals, leaching on the glass surface, and lowering the electrical insulation.
【0007】本発明は、従来技術の不具合を解消し、基
板表面を直に被覆し、又は基板に配した導電体、半導体
パターンを絶縁被覆し、又は基板と他の部材を接着する
ためのリン酸亜鉛系で実質的にPbO、Bi2O3、およびアル
カリ金属酸化物を含まない低融点ガラスを提供すること
を目的とする。The present invention solves the disadvantages of the prior art, directly covers the surface of the substrate, or insulates a conductor or semiconductor pattern disposed on the substrate, or forms a phosphor for bonding the substrate and other members. An object of the present invention is to provide a low-melting glass which is zinc-acid-based and substantially does not contain PbO, Bi 2 O 3 and alkali metal oxides.
【0008】[0008]
【課題を解決するための手段】本発明は、ガラス組成が
重量%で、P2O5 45〜66、Al2O3 0〜10、B2O3 0〜10、
MgO 0〜5、CaO 0〜11、SrO 0〜18、BaO 0〜26、Zn
O 10〜30%、(Al2O3+B2O3)/P2O5重量比が0.05〜0.2
5の範囲であり、実質的に鉛成分、ビスマス成分、およ
びアルカリ金属類を含まない低融点ガラス組成物であ
る。According to the present invention, the glass composition is expressed by weight% of P 2 O 5 45-66, Al 2 O 3 0-10, B 2 O 3 0-10,
MgO 0-5, CaO 0-11, SrO 0-18, BaO 0-26, Zn
O 10-30%, (Al 2 O 3 + B 2 O 3 ) / P 2 O 5 weight ratio 0.05-0.2
The low melting point glass composition is substantially in a range of 5 and does not substantially contain a lead component, a bismuth component, and an alkali metal.
【0009】前記において、30〜300℃の熱膨張係数が6
0〜90×10-7/℃、熱膨張屈伏点が570℃以下とするもの
である。In the above, the coefficient of thermal expansion at 30 to 300 ° C. is 6
0 to 90 × 10 −7 / ° C., with a thermal expansion deformation point of 570 ° C. or less.
【0010】[0010]
【発明の実施の形態】本発明における基板としては透明
なガラス基板、特にソーダ石灰シリカ系ガラス又はそれ
に類似するガラス(高歪点ガラス)が一般的であり、その
熱膨張係数は30℃〜300℃においてほぼ70〜90×10-7/
℃であり、本発明の低融点ガラスもそれに近似させるこ
とにより、形成した被膜の剥離、基板の反り等の弊害を
防ぐものである。また前記ガラスからなる基板の熱膨張
屈伏点はほぼ620以上であるのに対し、本発明の低融点
ガラスのそれは570℃以下と充分低くすることにより、
焼付け温度も相応して低くすることができ、焼付けに際
する基板の軟化変形、熱収縮を抑制することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS As a substrate in the present invention, a transparent glass substrate, in particular, a soda-lime-silica glass or a glass similar thereto (high strain point glass) is generally used. Approx. 70-90 × 10 -7 /
° C, and the low-melting glass of the present invention is made to be close to that, thereby preventing adverse effects such as peeling of the formed film and warping of the substrate. Further, while the thermal expansion deformation point of the glass substrate is substantially 620 or more, that of the low-melting glass of the present invention is sufficiently low as 570 ° C. or less,
The baking temperature can be lowered accordingly, and the softening deformation and heat shrinkage of the substrate during baking can be suppressed.
【0011】本発明において、ガラス成分をリン酸亜鉛
系とすることにより、上記物性を満足し得、実質的にPb
O、Bi2O3を含まないことにより、人体や環境に与える影
響を皆無とすることができる。また、アルカリ金属酸化
物を含まないことにより、被膜は電気絶縁性に優れ、ガ
ラスからのアルカリ浸出による弊害も生じることもない
ので電子材料等に使用するうえで好適である。In the present invention, by making the glass component zinc-based, the above physical properties can be satisfied and Pb
By not including O and Bi 2 O 3 , there is no effect on the human body and the environment. Further, by not containing an alkali metal oxide, the coating film is excellent in electrical insulation properties and does not cause any adverse effects due to alkali leaching from glass, so that it is suitable for use in electronic materials and the like.
【0012】本発明の低融点ガラスは、基板に配した導
電体、半導体パターンを絶縁被覆する用途のほか、基板
表面に直接被膜形成するケース、例えばアルカリ含有ガ
ラス基板のアルカリ浸出を抑制したり、ガラス基板の光
学特性を変更したり、その他等各種機能性被膜を形成す
る場合にも適用できる。また、基板と他の金属質材料や
セラミック質材料などを接着するうえで有効である。あ
るいはガラス基板に、低融点ガラス粉にシリカ微粉、ア
ルミナ微粉等を適宜混入したものを膜付けすれば、日射
や照明による眩光を緩和するフロスト調ガラスとするこ
ともできる等適用範囲は広い。The low-melting glass of the present invention is used not only for insulatingly coating conductors and semiconductor patterns disposed on a substrate, but also for cases where a film is formed directly on the substrate surface, for example, for suppressing alkali leaching of an alkali-containing glass substrate. The present invention can also be applied to the case where the optical characteristics of a glass substrate are changed or other various functional films are formed. Further, it is effective in bonding the substrate to another metallic or ceramic material. Alternatively, when a glass substrate is coated with a low-melting glass powder mixed with silica fine powder, alumina fine powder, or the like as appropriate, a frosted glass that reduces glare caused by solar radiation or illumination can be used, and thus has a wide application range.
【0013】低融点ガラスにおける成分組成は以下の範
囲とする。P2O5は重要なガラス形成成分であり、ガラス
中40〜66%(重量%表示、以下においても同様)の範囲
で含有させる。40%未満ではガラス形成を不安定とし、
熱処理により失透が発生する。66%を越えると軟化点が
過度に上昇する。The composition of components in the low-melting glass is in the following range. P 2 O 5 is an important glass-forming component, and is contained in the glass in the range of 40 to 66% (expressed by weight%, the same applies hereinafter). If it is less than 40%, the glass formation becomes unstable,
Heat treatment causes devitrification. If it exceeds 66%, the softening point rises excessively.
【0014】Al2O3はガラスに適度な熱膨張係数と軟化
点を与えるもので、ガラス中必要に応じ10%以下の範囲
で含有させる。10%を越えると熱膨張係数が過小とな
る。Al 2 O 3 gives the glass an appropriate coefficient of thermal expansion and softening point, and is contained in the glass in a range of 10% or less as necessary. If it exceeds 10%, the coefficient of thermal expansion becomes too small.
【0015】B2O3はガラス形成成分であり、ガラス溶融
を容易とし、ガラスに適度な熱膨張係数を与えるうえ
で、ガラス中必要に応じ10%以下の範囲で含有させる。
10%を越えるとガラスを不安定とし、前記含有範囲にお
けるP2O5と不混和を生ずる傾向がある。B 2 O 3 is a glass-forming component and facilitates melting of the glass and gives the glass an appropriate coefficient of thermal expansion.
If it exceeds 10%, the glass becomes unstable and tends to be immiscible with P 2 O 5 in the above content range.
【0016】更に、ガラス中(Al2O3+B2O3)/P2O5重
量比を0.05〜0.25の範囲とするもので、0.05未満では熱
膨張係数、軟化点を適度な範囲に調整するのが困難とな
り、0.25を越えると軟化点が過度に上昇したり、失透の
析出、ときにガラスに不混和が生ずる等不都合点が多
い。Further, the weight ratio of (Al 2 O 3 + B 2 O 3 ) / P 2 O 5 in the glass is in the range of 0.05 to 0.25. When the ratio is less than 0.05, the thermal expansion coefficient and the softening point are adjusted to appropriate ranges. When it exceeds 0.25, there are many disadvantages such as an excessive increase in softening point, precipitation of devitrification, and sometimes immiscibility in glass.
【0017】なお、熱膨張係数、軟化点、ガラス溶融
性、対失透析出性等を総合的に考慮すれば、P2O5+Al2O
3+B2O3の合計が50〜75%の範囲であるのが望ましい。In consideration of the thermal expansion coefficient, the softening point, the glass melting property, and the dialysis loss property, P 2 O 5 + Al 2 O
3 + B 2 Total O 3 is desirably in the range of 50% to 75%.
【0018】ZnOはガラスの軟化点を下げ、適度に流動
性を与え、概して熱膨張係数が大きいリン酸塩ガラス構
造においてZnイオンが介在して熱膨張係数を適度に小さ
くするうえで、ガラス中10〜30%の範囲で含有させる。
10%未満では上記効果を発揮し得ず、特にガラスの熱膨
張係数を過大とする。30%を越えるとガラス形成を困難
とする。ZnO lowers the softening point of the glass and imparts appropriate fluidity. In general, in a phosphate glass structure having a large coefficient of thermal expansion, Zn ions are intervened to reduce the coefficient of thermal expansion to an appropriate level. It is contained in the range of 10 to 30%.
If it is less than 10%, the above effect cannot be exerted, and particularly, the thermal expansion coefficient of glass becomes excessive. If it exceeds 30%, glass formation becomes difficult.
【0019】BaOはガラスの軟化点を下げ、適度に流動
性を与え、熱膨張係数を適宜範囲に調整するもので、ガ
ラス中0〜26%の範囲で含有させる。26%を越えると熱
膨張係数が過度に上昇する。好適には5〜26%の範囲と
するのがよい。BaO lowers the softening point of glass, imparts appropriate fluidity, and adjusts the thermal expansion coefficient to an appropriate range. BaO is contained in the glass in the range of 0 to 26%. If it exceeds 26%, the coefficient of thermal expansion increases excessively. Preferably, it is in the range of 5 to 26%.
【0020】ガラス中に、上記以外の二価金属成分のう
ちMgOは0〜5%、CaOは0〜11%、SrOは0〜18%の範
囲で適宜含有させることにより、ガラス粘度、軟化点を
適度に調整し、また熱膨張係数を適度に調整する。いず
れも上記範囲を越えるとガラス形成を困難とし、あるい
は熱膨張係数が適当範囲から外れる恐れがある。Of the divalent metal components other than those described above, MgO is contained in the range of 0 to 5%, CaO is contained in the range of 0 to 11%, and SrO is contained in the range of 0 to 18%, so that the glass viscosity and softening point are increased. Is adjusted appropriately, and the coefficient of thermal expansion is adjusted appropriately. In any case, if the ratio exceeds the above range, glass formation becomes difficult, or the coefficient of thermal expansion may be out of an appropriate range.
【0021】なお、PbO、Bi2O3、アルカリ金属酸化物
は、ガラス原料やカレット中に不純物として混入する程
度の量、夫々低融点ガラス中0.3%以下の範囲であれ
ば、先述した弊害、すなわち人体、環境に対する影響、
絶縁特性等に与える影響は殆どない。If the amounts of PbO, Bi 2 O 3 and alkali metal oxides are such that they are mixed as impurities in the glass raw material or cullet, and each is within the range of 0.3% or less in the low melting point glass, the above-mentioned harmful effects are obtained. That is, the effects on the human body and the environment,
There is almost no effect on insulation characteristics and the like.
【0022】また、低融点ガラスの用途にもよるが、先
述した特性を損なわない範囲でガラスを着色したり、紫
外線吸収性能、赤外線遮断性能等を付与するうえで、Fe
2O3、Cr2O3、CoO、TiO2、CeO2等を添加することができ
るが、それら添加成分の合計は1%以下とすべきであ
る。Further, depending on the use of the low melting point glass, Fe may be used for coloring the glass within the range not deteriorating the above-mentioned properties, or for imparting the ultraviolet absorbing performance, the infrared shielding performance and the like.
2 O 3 , Cr 2 O 3 , CoO, TiO 2 , CeO 2 and the like can be added, but the total of these added components should be 1% or less.
【0023】[0023]
【実施例】〔低融点ガラスの作製〕P2O5源としてリン酸
を、B2O3源としてほう酸あるいはリン酸ホウ素を、Al2O
3源として酸化アルミニウムあるいはメタリン酸アルミ
ニウムを、ZnO源として亜鉛華を、BaO源として炭酸バリ
ウムを、MgO源として炭酸マグネシウムを、CaO源として
炭酸カルシウムを、SrO源として炭酸ストロンチウムを
使用し、これらを所望の低融点ガラス組成となるべく調
合したうえで、粉末原料を白金ルツボに投入し、液体原
料であるリン酸を滴下し反応を生じさせた。電気加熱炉
内で400〜500℃、1〜2h加熱し反応を終了させた後、
電気加熱炉内で1000〜1100℃、1〜2時間で加熱溶融し
た後、カーボン板に流し出し、徐冷することにより、表
1〜表5の実施例、比較例に示す組成のガラスを得た。
それらのガラス試料は以下の試験に供した。[Example] [Preparation of low melting point glass] Phosphoric acid as a P 2 O 5 source, boric acid or boron phosphate as a B 2 O 3 source, Al 2 O
Using aluminum oxide or aluminum metaphosphate as a source, zinc white as a ZnO source, barium carbonate as a BaO source, magnesium carbonate as a MgO source, calcium carbonate as a CaO source, and strontium carbonate as a SrO source. After mixing to obtain a desired low-melting glass composition, the powdery raw material was charged into a platinum crucible, and phosphoric acid as a liquid raw material was dropped to cause a reaction. After heating in an electric heating furnace at 400 to 500 ° C for 1 to 2 hours to terminate the reaction,
After heating and melting at 1000 to 1100 ° C. for 1 to 2 hours in an electric heating furnace, the mixture is poured onto a carbon plate and gradually cooled to obtain glasses having compositions shown in Examples of Tables 1 to 5 and Comparative Examples. Was.
The glass samples were subjected to the following tests.
【0024】〔熱膨張係数の測定〕ガラス試料を所定寸
法(20×4mmφ)に切断研磨加工したうえで、示差熱膨
張計にセットし、5℃/分の速度で昇温して伸び量を測
定、記録し、30〜300℃の平均熱膨張係数α(×10-7/
℃)を算出した。なお試験荷重は5gfとした。[Measurement of Thermal Expansion Coefficient] A glass sample was cut and polished to a predetermined size (20 × 4 mmφ), set on a differential thermal dilatometer, and heated at a rate of 5 ° C./min to measure the amount of elongation. Measured and recorded, the average coefficient of thermal expansion α (× 10 -7 /
° C) was calculated. The test load was 5 gf.
【0025】〔転移点、軟化点(熱膨張屈伏点)の測
定〕前記熱膨張データより転移点(Tg(℃))、および熱
膨張屈伏点である軟化点(Tyield(℃))を測定した。参
考のため、一部のガラス試料については所定太さ、寸法
のガラスビームを作製し、リトルトン粘度計にセットし
て昇温し、ガラス粘度107.6ポイズにおける温度、すな
わちリトルトン軟化点(単に軟化点、またはリトルトン
点ともいう:Ts oft(℃))を測定した。[Measurement of transition point and softening point (thermal expansion yield point)] The transition point (Tg (° C.)) and the softening point (T yield (° C.)) which is the thermal expansion yield point are measured from the above thermal expansion data. did. For reference, a glass beam of a specified thickness and dimensions was prepared for some glass samples, set in a Littleton viscometer, and heated to a temperature at a glass viscosity of 107.6 poise, that is, the Littleton softening point (simply the softening point). Or Littleton point: T s oft (° C.).
【0026】〔結晶析出温度の測定、結晶析出温度−転
移点の測定〕微粉砕したガラス試料を示差熱分析計にセ
ットし、10℃/分の速度で1000℃まで昇温して吸熱、発
熱ピークを測定、記録した。うち、結晶析出にもとづく
発熱ピークを結晶析出温度(Tc(℃))とし、結晶の析出
の有無については拡大鏡下で確認した。上記結晶析出温
度(Tc)から前記転移点(Tg)を減じた値より、結晶析
出温度−転移点間温度差:Tc−Tg(℃)を算出した。な
お、Tc−Tg(℃) の値が大きい程転移点以上の熱処理に
際して失透の析出、ガラスの不透明化が生じ難いことを
示すもので、Tc−Tg(℃)≧200(℃)であることが好ま
しい。[Measurement of Crystal Precipitation Temperature, Measurement of Crystal Precipitation Temperature-Transition Point] A finely pulverized glass sample was set in a differential thermal analyzer, and the temperature was raised to 1000 ° C. at a rate of 10 ° C./min to absorb heat and generate heat. The peak was measured and recorded. Among these, the exothermic peak based on the crystal precipitation was defined as the crystal deposition temperature (Tc (° C.)), and the presence or absence of the crystals was confirmed under a magnifying glass. From the value obtained by subtracting the transition point (Tg) from the crystal precipitation temperature (Tc), a temperature difference between the crystal precipitation temperature and the transition point: Tc−Tg (° C.) was calculated. The larger the value of Tc−Tg (° C.), the less the devitrification precipitation and the opacity of the glass occur during the heat treatment above the transition point, indicating that Tc−Tg (° C.) ≧ 200 (° C.). Is preferred.
【0027】〔結果〕各種試験結果を表1〜表5に示
す。[Results] The results of various tests are shown in Tables 1 to 5.
【0028】表1〜表5から明らかなように、本発明に
かかる実施例においては、適度なガラス熱膨張係数、低
い軟化点(熱膨張屈伏点)、転移点を有し、溶融−冷却
過程や再熱処理においても失透が析出し難く、P2O5−B2
O3の不混和もなく、基板特にガラス基板の被覆、基板上
の導電体パターン等の被覆、基板と他種材料との接着な
どにおいて著効を奏する。他方比較例は、上記熱物性を
満足し得ない。As is clear from Tables 1 to 5, the examples according to the present invention have an appropriate glass thermal expansion coefficient, a low softening point (thermal expansion yielding point), a transition point, and a melting-cooling process. Is difficult to precipitate even during heat treatment and re-heat treatment, and P 2 O 5 −B 2
There is no immiscibility of O 3 , and it is very effective in coating a substrate, especially a glass substrate, coating a conductor pattern on the substrate, and bonding the substrate to other materials. On the other hand, the comparative example cannot satisfy the above thermophysical properties.
【0029】 〔表1〕 実施例 1 2 3 4 5 6 ──────────────────────────────────── 組成 P2O5 64.7 63.8 61.2 58.7 59.5 59.9 重量% Al2O3 9.3 9.1 8.8 8.4 4.3 2.2 B2O3 -- -- -- -- 2.9 4.4 A+B *1 9.3 9.1 8.8 8.4 7.2 6.6 P+A+B計 *1 74.0 72.9 70.0 67.1 66.7 66.5 MgO 3.7 -- -- -- -- -- CaO -- 5.1 -- -- -- -- SrO -- -- 8.9 -- -- -- BaO -- -- -- 12.7 12.9 12.9 ZnO 22.3 22.0 21.1 20.2 20.4 20.6 RO計 *2 26.0 27.1 30.0 32.9 33.3 33.5 合計 100 100 100 100 100 100 (A+B)/P重量比*1 0.144 0.143 0.144 0.143 0.121 0.110 α(30-300℃) 60 64 69 74 78 86 Tg(℃) 470 470 476 479 484 481 Tc-Tg(℃) *3 ∞ ∞ ∞ ∞ ∞ ∞ Tyield(℃) 532 534 518 530 537 538 Tsoft(℃:107.6P) − − − 588 − 602 ──────────────────────────────────── 注 *1:AはAl2O3を、BはB2O3を、PはP2O5を表す(表2〜5においても同様)。 *2:ROはMgO、CaO、SrO、BaO、ZnOを総称したもの(表2〜5においても同様)。 *3:Tc-Tg(℃)データにおいて、∞は示差熱分析において結晶化ピークが検 出されず、かつ鏡下観察において結晶の析出が見 出せなかったことを示す(表2〜5においても同様)。 物性データ中 − は未測定である(表2〜5においても同様)。[Table 1] Example 1 2 3 4 5 6組成 Composition P 2 O 5 64.7 63.8 61.2 58.7 59.5 59.9 wt% Al 2 O 3 9.3 9.1 8.8 8.4 4.3 2.2 B 2 O 3 ----2.9 4.4 A + B * 1 9.3 9.1 8.8 8.4 7.2 6.6 P + A + B Total * 1 74.0 72.9 70.0 67.1 66.7 66.5 MgO 3.7-----CaO-5.1----SrO--8.9---BaO ---12.7 12.9 12.9 ZnO 22.3 22.0 21.1 20.2 20.4 20.6 RO total * 2 26.0 27.1 30.0 32.9 33.3 33.5 Total 100 100 100 100 100 100 (A + B) / P weight ratio * 1 0.144 0.143 0.144 0.143 0.121 0.110 α (30-300 ℃) 60 64 69 74 78 86 Tg (℃) 470 470 476 479 484 481 Tc-Tg (℃) * 3 ∞ ∞ ∞ ∞ ∞ ∞ yield T yield (℃) 532 534 518 530 537 538 T soft (℃: 10 7.6 P) − − − 588 − 602 ──────────────────────────────────── Note * 1: A represents Al 2 O 3 , B represents B 2 O 3 , and P represents P 2 O 5 (see Tables 2 to 5). The same). * 2: RO is a general term for MgO, CaO, SrO, BaO, and ZnO (the same applies to Tables 2 to 5). * 3: In the Tc-Tg (° C) data, ∞ indicates that no crystallization peak was detected by differential thermal analysis and no crystal precipitation was found by microscopic observation (also in Tables 2 to 5). Similar). In the physical property data,-is not measured (the same applies to Tables 2 to 5).
【0030】 〔表2〕 実施例 7 8 9 10 11 12 ──────────────────────────────────── 組成 P2O5 62.4 60.3 55.4 60.1 65.3 46.9 重量% Al2O3 9.0 -- 8.0 8.6 9.4 2.7 B2O3 -- 5.9 -- -- -- 6.2 A+B *1 9.0 5.9 8.0 8.6 9.4 8.9 P+A+B計 71.4 66.2 63.4 68.7 74.7 55.8 MgO -- -- -- -- -- 1.9 CaO -- -- -- -- 10.3 -- SrO -- -- -- 17.5 -- -- BaO -- 13.0 23.9 -- -- 20.5 ZnO 28.6 20.8 12.7 13.8 15.0 21.8 RO計 28.6 33.8 36.6 31.3 25.3 44.2 合計 100 100 100 100 100 100 (A+B)/P重量比 0.144 0.098 0.144 0.143 0.144 0.190 α(30-300℃) 60 85 87 80 71 81 Tg(℃) 450 471 502 499 499 520 Tc-Tg(℃) ∞ ∞ ∞ ∞ ∞ 228 Tyield(℃) 495 529 548 550 552 566 Tsoft(℃:107.6P) − − − − − − ────────────────────────────────────[Table 2] Example 7 8 9 10 11 12 ─ composition P 2 O 5 62.4 60.3 55.4 60.1 65.3 46.9 wt% Al 2 O 3 9.0 - 8.0 8.6 9.4 2.7 B 2 O 3 - 5.9 - - - 6.2 A + B * 1 9.0 5.9 8.0 8.6 9.4 8.9 P + A + B Total 71.4 66.2 63.4 68.7 74.7 55.8 MgO-----1.9 CaO----10.3-SrO---17.5--BaO- -13.0 23.9--20.5 ZnO 28.6 20.8 12.7 13.8 15.0 21.8 RO total 28.6 33.8 36.6 31.3 25.3 44.2 Total 100 100 100 100 100 100 (A + B) / P weight ratio 0.144 0.098 0.144 0.143 0.144 0.190 α (30-300 ℃) 60 85 87 80 71 81 Tg (℃) 450 471 502 499 499 520 Tc-Tg (℃) ∞ ∞ ∞ ∞ 228 228 T yield (℃) 495 529 548 550 552 566 566 T soft (℃: 10 7.6 P) − − − − − − ────────────────────────────────────
【0031】 〔表3〕 実施例 13 14 15 16 17 18 ──────────────────────────────────── 組成 P2O5 55.3 59.1 50.2 50.5 53.7 47.5 重量% Al2O3 2.2 6.4 2.3 2.1 2.1 B2O3 4.5 1.5 6.2 4.6 4.4 4.4 A+B 6.7 7.9 6.2 6.9 6.5 6.5 P+A+B計 62.0 67.0 56.4 57.4 60.2 54.0 MgO -- -- 1.8 -- -- -- CaO -- -- -- -- -- -- SrO -- -- -- -- -- -- BaO 13.3 12.7 20.3 13.6 19.3 25.6 ZnO 24.7 20.3 21.5 29.0 20.5 20.4 RO計 38.0 33.0 43.6 42.6 39.8 46.0 合計 100 100 100 100 100 100 (A+B)/P重量比 0.121 0.134 0.124 0.137 0.121 0.137 α(30-300℃) 79 76 86 77 88 90 Tg(℃) 469 480 501 462 460 491 Tc-Tg(℃) ∞ ∞ ∞ ∞ ∞ 243 Tyield(℃) 518 530 540 509 509 558 Tsoft(℃:107.6P) − 594 − − − − ────────────────────────────────────[Table 3] Example 13 14 15 16 17 18組成 Composition P 2 O 5 55.3 59.1 50.2 50.5 53.7 47.5 wt% Al 2 O 3 2.2 6.4 2.3 2.1 2.1 B 2 O 3 4.5 1.5 6.2 4.6 4.4 4.4 A + B 6.7 7.9 6.2 6.9 6.5 6.5 P + A + B Total 62.0 67.0 56.4 57.4 60.2 54.0 MgO--1.8---CaO------SrO------BaO 13.3 12.7 20.3 13.6 19.3 25.6 ZnO 24.7 20.3 21.5 29.0 20.5 20.4 RO total 38.0 33.0 43.6 42.6 39.8 46.0 Total 100 100 100 100 100 100 (A + B) / P weight ratio 0.121 0.134 0.124 0.137 0.121 0.137 α (30-300 ° C) 79 76 86 77 88 90 Tg (° C) 469 480 501 462 460 491 Tc-Tg (° C) ∞ ∞ ∞ ∞ ∞ 243 T yield (° C) 518 530 540 509 509 558 558 T soft (° C: 10 7.6 P) − 594 − − − − ─── ─────────────────────────────────
【0032】 〔表4〕 比較例 1 2 3 4 5 ──────────────────────────────── 組成 P2O5 53.3 51.4 40.0 52.5 58.9 重量% Al2O3 9.6 -- 9.6 7.5 8.5 B2O3 6.5 12.6 13.1 -- -- A+B *1 16.1 12.6 22.7 7.5 8.5 P+A+B計 69.4 64.0 62.7 60.0 67.4 MgO -- -- -- -- -- CaO -- -- -- -- -- SrO -- -- -- -- 25.8 BaO -- 13.9 14.4 34.0 -- ZnO 30.6 22.1 22.9 6.0 6.8 RO計 30.6 36.0 37.3 40.0 32.6 合計 100 100 100 100 100 (A+B)/P重量比 0.302 0.245 0.568 0.143 0.144 α(30-300℃) − 76 − − − Tg(℃) − 529 − − − Tc-Tg(℃) − 178 − − − Tyield(℃) − 583 − − − Tsoft(℃:107.6P) − − − − − 備考 結晶化 不混和 不混和 不混和 ────────────────────────────────[Table 4] Comparative Example 1 2 3 4 5 ──────────────────────────────── Composition P 2 O 5 53.3 51.4 40.0 52.5 58.9 wt% Al 2 O 3 9.6-9.6 7.5 8.5 B 2 O 3 6.5 12.6 13.1--A + B * 1 16.1 12.6 22.7 7.5 8.5 P + A + B Total 69.4 64.0 62.7 60.0 67.4 MgO-----CaO-----SrO----25.8 BaO-13.9 14.4 34.0-ZnO 30.6 22.1 22.9 6.0 6.8 RO total 30.6 36.0 37.3 40.0 32.6 Total 100 100 100 100 100 (A + B) / P weight ratio 0.302 0.245 0.568 0.143 0.144 α (30-300 ° C) − 76 − − − Tg (° C) − 529 − − − Tc-Tg (° C) − 178 − − − T yield (° C) − 583 − − − T soft (° C: 107.6 P) − − − − − Remarks Crystallization Immiscible Immiscible Immiscible ──────────── ────────────────────
【0033】 [0033]
【0034】[0034]
【発明の効果】本発明においては、適度なガラス熱膨張
係数、低い軟化点(熱膨張屈伏点)、転移点を有し、溶
融−冷却過程や再熱処理においても失透が析出し難く、
P2O5−B2O3の不混和もなく、基板特にガラス基板の被
覆、基板上の導電体パターン等の被覆、基板と他種材料
との接着などにおいて著効を奏する。According to the present invention, the glass has an appropriate glass thermal expansion coefficient, a low softening point (thermal expansion yielding point), and a transition point, and hardly causes devitrification even in a melting-cooling process or a re-heat treatment.
There is no immiscibility of P 2 O 5 -B 2 O 3 , and it has a remarkable effect in coating a substrate, particularly a glass substrate, coating a conductive pattern on the substrate, and bonding the substrate to other materials.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 町下 汎史 三重県松阪市大口町1510 セントラル硝子 株式会社硝子研究所内 Fターム(参考) 4G062 AA08 AA09 AA11 BB09 DA01 DB01 DB02 DB03 DC01 DC02 DC03 DD05 DD06 DE04 DF01 EA01 EA10 EB01 EC01 ED01 ED02 ED03 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EF04 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM07 NN26 NN32 5E314 AA10 AA11 GG21 GG26 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Machishita 1510 Oguchicho, Matsusaka-shi, Mie Central Glass F-term in Glass Research Laboratories Co., Ltd. 4G062 AA08 AA09 AA11 BB09 DA01 DB01 DB02 DB03 DC01 DC02 DC03 DD05 DD06 DE04 DF01 EA01 EA10 EB01 EC01 ED01 ED02 ED03 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EF04 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 H01 H01 H01 H01 H01 H JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM07 NN26 NN32 5E314 AA10 AA11 GG21 GG26
Claims (2)
O3 0〜10、B2O3 0〜10、MgO 0〜5、CaO 0〜11、Sr
O 0〜18、BaO 0〜26、ZnO 10〜30%、(Al2O3+B
2O3)/P 2O5重量比が0.05〜0.25の範囲であり、実質的
に鉛成分、ビスマス成分、およびアルカリ金属類を含ま
ないことを特徴とする低融点ガラス組成物。(1) A glass composition having a weight percentage of PTwoOFive 45-66, AlTwo
OThree 0-10, BTwoOThree 0-10, MgO 0-5, CaO 0-11, Sr
O 0-18, BaO 0-26, ZnO 10-30%, (AlTwoOThree+ B
TwoOThree) / P TwoOFiveWeight ratio in the range of 0.05 to 0.25, substantially
Contains lead, bismuth, and alkali metals
A low-melting glass composition characterized by being free of glass.
℃、熱膨張屈伏点が570℃以下であることを特徴とする
請求項1記載の低融点ガラス組成物。2. The thermal expansion coefficient at 30 to 300 ° C. is 60 to 90 × 10 -7 /
The low-melting glass composition according to claim 1, wherein the low-melting glass composition has a thermal expansion deformation point of 570 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000079632A JP2001261369A (en) | 2000-03-22 | 2000-03-22 | Low melting point glass composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000079632A JP2001261369A (en) | 2000-03-22 | 2000-03-22 | Low melting point glass composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001261369A true JP2001261369A (en) | 2001-09-26 |
Family
ID=18596857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000079632A Pending JP2001261369A (en) | 2000-03-22 | 2000-03-22 | Low melting point glass composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001261369A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004022403A (en) * | 2002-06-18 | 2004-01-22 | Hitachi Metals Ltd | Metal barrier for picture display device and its manufacturing method |
JP2006080317A (en) * | 2004-09-09 | 2006-03-23 | Sumita Optical Glass Inc | Solid-state element device |
JP2006108621A (en) * | 2004-09-09 | 2006-04-20 | Toyoda Gosei Co Ltd | Solid-state element device |
JP2007051030A (en) * | 2005-08-18 | 2007-03-01 | Mitsumi Electric Co Ltd | Glass, glass powder, optical fiber, optical fiber array, and optical waveguide |
US7470926B2 (en) | 2004-09-09 | 2008-12-30 | Toyoda Gosei Co., Ltd | Solid-state optical device |
JP2009013186A (en) * | 2007-06-29 | 2009-01-22 | Mitsubishi Chemicals Corp | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device |
EP2163531A1 (en) * | 2008-09-11 | 2010-03-17 | Samsung SDI Co., Ltd. | Material for forming barrier ribs and pdp comprising the same |
US8227988B2 (en) | 2008-09-11 | 2012-07-24 | Samsung Sdi Co., Ltd | Material for forming barrier ribs, barrier ribs formed using the material and PDP comprising the barrier ribs |
JP2012212853A (en) * | 2011-03-24 | 2012-11-01 | Alps Green Devices Co Ltd | Dust core and production method therefor |
CN104526591A (en) * | 2014-12-29 | 2015-04-22 | 廖云建 | Manufacturing method of ceramic PCD grinding wheel |
-
2000
- 2000-03-22 JP JP2000079632A patent/JP2001261369A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004022403A (en) * | 2002-06-18 | 2004-01-22 | Hitachi Metals Ltd | Metal barrier for picture display device and its manufacturing method |
JP2006080317A (en) * | 2004-09-09 | 2006-03-23 | Sumita Optical Glass Inc | Solid-state element device |
JP2006108621A (en) * | 2004-09-09 | 2006-04-20 | Toyoda Gosei Co Ltd | Solid-state element device |
US7470926B2 (en) | 2004-09-09 | 2008-12-30 | Toyoda Gosei Co., Ltd | Solid-state optical device |
JP2007051030A (en) * | 2005-08-18 | 2007-03-01 | Mitsumi Electric Co Ltd | Glass, glass powder, optical fiber, optical fiber array, and optical waveguide |
JP2009013186A (en) * | 2007-06-29 | 2009-01-22 | Mitsubishi Chemicals Corp | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device |
EP2163531A1 (en) * | 2008-09-11 | 2010-03-17 | Samsung SDI Co., Ltd. | Material for forming barrier ribs and pdp comprising the same |
CN101671117A (en) * | 2008-09-11 | 2010-03-17 | 三星Sdi株式会社 | Glass frit composition, photosensitive barrier rib paste, PDP and method for preparing PDP |
US8227988B2 (en) | 2008-09-11 | 2012-07-24 | Samsung Sdi Co., Ltd | Material for forming barrier ribs, barrier ribs formed using the material and PDP comprising the barrier ribs |
KR101174888B1 (en) | 2008-09-11 | 2012-08-17 | 삼성에스디아이 주식회사 | Material for forming barrier ribs, barrier ribs formed using the material and PDP comprising the barrier ribs |
JP2012212853A (en) * | 2011-03-24 | 2012-11-01 | Alps Green Devices Co Ltd | Dust core and production method therefor |
CN104526591A (en) * | 2014-12-29 | 2015-04-22 | 廖云建 | Manufacturing method of ceramic PCD grinding wheel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100511617B1 (en) | Lead-free low-melting glass | |
US5780373A (en) | Glass composition and substrate for plasma display | |
EP0795522B1 (en) | Glass composition for a substrate | |
US5599754A (en) | Glass composition for a substrate, and substrate for plasma display made thereof | |
JP2871163B2 (en) | Alkali-free glass | |
CA2314295C (en) | Alkali-free aluminoborosilicate glass, its use and process for its preparation | |
US5908794A (en) | Glass composition for a substrate | |
US6475605B2 (en) | Low-melting glass for covering substrate | |
JP4972954B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
WO2006115143A1 (en) | Lead-free low-melting-point glass | |
EP3954663A1 (en) | Alkali-free glass and glass plate | |
TWI392660B (en) | High strain-point glass composition for substrate | |
EP0782552A1 (en) | Substrate glasses for plasma displays | |
JP2001261369A (en) | Low melting point glass composition | |
CN116332502A (en) | Environment-friendly anti-halation glass and preparation method thereof | |
JP2002193635A (en) | Glass substrate for flat panel display device | |
JPH0624998B2 (en) | Alkali free glass | |
JP2007070196A (en) | Lead-free low melting-point glass | |
JP2008019148A (en) | Lead free low melting point glass | |
JPH1025130A (en) | Glass for substrate | |
JPH1025129A (en) | Glass for substrate | |
JPH1025128A (en) | Glass for substrate | |
JP2001247332A (en) | Glass plate for flat panel displaying unit | |
US2929727A (en) | Glass compositions and glass-to-metal seals | |
WO2008007596A1 (en) | Lead-free low-melting glass |