JP2004022403A - Metal barrier for picture display device and its manufacturing method - Google Patents

Metal barrier for picture display device and its manufacturing method Download PDF

Info

Publication number
JP2004022403A
JP2004022403A JP2002177324A JP2002177324A JP2004022403A JP 2004022403 A JP2004022403 A JP 2004022403A JP 2002177324 A JP2002177324 A JP 2002177324A JP 2002177324 A JP2002177324 A JP 2002177324A JP 2004022403 A JP2004022403 A JP 2004022403A
Authority
JP
Japan
Prior art keywords
display device
sio
metal
oxide layer
metal partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002177324A
Other languages
Japanese (ja)
Inventor
Ryoji Inoue
井上 良二
Noriyuki Nakaoka
中岡 範行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002177324A priority Critical patent/JP2004022403A/en
Publication of JP2004022403A publication Critical patent/JP2004022403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal barrier for a picture display device which has a high performance (high precision/high luminance) since an opening rate is high, and has high insulation reliability and low cost, and furthermore, provide an effective insulation treatment process for that (manufacturing method of the metal barrier for the picture display device). <P>SOLUTION: This is the metal barrier for the picture display device in which an oxide layer having as the main component at least one kind of SiO<SB>2</SB>-P<SB>2</SB>O<SB>5</SB>series, SiO<SB>2</SB>-Li<SB>2</SB>O series, or P<SB>2</SB>O<SB>5</SB>-Al<SB>2</SB>O<SB>3</SB>series is formed on a substrate for the metal partition wall having numerous through holes. In the manufacturing method in which the oxide layer having as the main component at least one kind of SiO<SB>2</SB>-P<SB>2</SB>O<SB>5</SB>series, SiO<SB>2</SB>-Li<SB>2</SB>O series, or P<SB>2</SB>O<SB>5</SB>-Al<SB>2</SB>O<SB>3</SB>series is formed on the substrate for the metal partition wall having numerous through holes, this is the manufacturing method of the metal barrier for the picture display device in which formation of the oxide layer is carried out by a vapor deposition method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプラズマディスプレイパネル(以下PDPと称する)やフィールドエミッションディスプレイ(以下FEDと称する)等の薄型の画像表示装置に使用される金属隔壁及びとその製造方法に関する。
【0002】
【従来の技術】
薄型の画像表示装置において、例えばPDP等のガス放電型画像表示装置においては、一つの放電空間を形成し隣接したセルと色の干渉を防止するための仕切りとして絶縁性隔壁が必要である。また、FEDにおいては、冷陰極と蛍光体との間隔を一定に保持するためのスペーサとしての役割をする絶縁性隔壁が必要である。
これらの隔壁の製造方法について具体的に言えば、例えばPDPでは、鉛を含むガラスを基板素材として、主にサンドブラスト法により製造されている。
また、特開平3−205738号「メタルコアリブおよびその製造方法、並びに該メタルコアリブを用いたプラズマディスプレイパネル」では、ガラスを含む誘電体を表面に形成した金属隔壁が提案されている。この公報中では金属隔壁用基板表面に主として電着法によってガラスを含む誘電体を形成する絶縁処理方法が開示されている。
また、特開2000−3675号、特開2000−64027号、特開2001−52615号には、本出願人から、気相成長法を利用して金属隔壁用基板に酸化物を形成する絶縁処理方法を提案している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の技術では以下の問題点があった。
まず、サンドブラストによるガラス隔壁の製造方法は工程が煩雑であり、生産性が悪くコストが高くなるばかりか、製造されたガラス隔壁自体および除去されたガラス粉に有害な鉛が多く含まれるため、環境上好ましくないという問題点があった。
また、PDPの高性能化は隔壁の構造に制限され易く、特に、高精細化・高輝度化のためには隔壁の幅を小さくし開口率を高める必要があるが、ガラス隔壁は脆いため隔壁の幅を小さくすることが困難であるという問題点があった。
【0004】
一方、特開平3−205738号に主として開示される電着技術では、本発明者等の検討により、気泡が絶縁層中に残存するため位置によって絶縁性のばらつきが大きくなるということが分かった。従って、絶縁性を確保するためには膜厚を厚くする必要があるが、膜厚を厚くすると開口率が低下してしまい、高精細化できないという問題がある。
また、同公報の中で電着以外の絶縁処理法として開示されるガラス粉末を分散した溶液中へのディッピング法やスプレー法では、膜厚が均一にならないこと、更に金属の焼成酸化法および陽極酸化法では膜質が緻密にならないために十分な絶縁性が得られないこと、そして粉体静電塗布法では膜厚が厚くなり過ぎて10μm以下に制御することが難しいこと、から現在のところPDP等の画像表示装置の金属隔壁は実用化されていないのが実情である。
【0005】
次に、特開2000−003675号、特開2000−064027号、特開2001−052615号には、気相成長法を利用して金属隔壁用基板にAl等の酸化物を1μm以上の厚みに形成する絶縁処理方法を提案しているが、酸化物の膜の熱膨張係数が金属隔壁に近い熱膨張係数に調整されてないため、実用製品サイズの40インチ程度に大型化した場合に、酸化物の膜にクラックが生じる問題が新たに発生し、実用化されていないのが現状である。
本発明は上記に鑑みてなされたものであり、開口率が高いため高性能(高精細・高輝度)で、絶縁信頼性が高くかつ安価な画像表示装置用金属隔壁を提供すること、また、そのための有効な絶縁処理プロセス(画像表示装置用金属隔壁の製造方法)を提供することを目的とする。
【0006】
【問題を解決するための手段】
上述のように、特開平3−205738号、特開2000−003675号、特開2000−064027号、特開2001−052615号に記載された具体的な金属隔壁の絶縁処理方法では、実用的な画像表示装置用の金属隔壁を得るのが困難である。
本発明者等は、画像表示装置用金属隔壁に最適な絶縁層を形成するため種々の絶縁処理方法と絶縁膜成分を鋭意検討した結果、金属隔壁に求められる高開口率と絶縁性を兼備し、鉛等の有害物質を含まず、絶縁層の熱膨張係数が金属隔壁に近い熱膨張係数に調整可能な新たな酸化物組成と、その製造方法を見出し本発明に到達した。
【0007】
即ち本発明は、多数の貫通孔を有する金属隔壁用基板に、SiO−P系、SiO−LiO系、P−Al系のうちの少なくとも一種を主成分とする酸化物層を形成した画像表示装置用金属隔壁である。
好ましくは、SiO−P系の酸化物層はPを0.3〜20mass%含有し、SiO−LiO系の酸化物層は、LiOを5〜16mass%含有し、P−Al系の酸化物層はAlを8〜22mass%含有する画像表示装置用金属隔壁である。
更に好ましくは、酸化物層の厚みを0.1〜5μmの厚みに被覆する画像表示装置用金属隔壁である。
また本発明は、多数の貫通孔を有する金属隔壁用基板に、SiO−P系、SiO−LiO系、P−Al系のうちの少なくとも一種を主成分とする酸化物層を形成して画像表示装置用金属隔壁とする製造方法において、前記酸化物層の形成は、気相成長法によって形成する画像表示装置用金属隔壁の製造方法である。
【0008】
【発明の実施の形態】
本発明の重要な特徴は、画像表示装置用金属隔壁とすべき金属隔壁用基板に熱膨張係数を適正化された酸化物を形成した点にある。
以下に本発明を詳しく説明する。
本発明において、多数の貫通孔を有する金属隔壁用基板は酸化物層で被覆されて画像表示装置用金属隔壁となり、この画像表示装置用金属隔壁は前面板ガラスと背面板ガラスの間に挟まれて画像表示装置に使用される。
この画像表示装置用金属隔壁はパネルの組立工程で500℃程度の熱サイクルを受けるため、熱膨張差が大きい場合、熱応力が発生しパネルが破損して画像表示装置として機能できなくなる。それを防ぐためには、隔壁は前面板ガラス及び背面板ガラスと熱膨張係数を近似させることが好ましい。
【0009】
現状では、例えばPDPの前面板・背面板ガラスには熱膨張係数(20〜500℃)が8×10−6/℃程度のソーダライムガラスや高歪点ガラスが用いられているため、金属隔壁用基板にはNiを質量%で40〜52%の範囲で含み、残部が実質的にFeからなるFe−Ni系合金を用いると良く、このうちNiがmass%で45%〜49%の範囲であるFe−Ni系合金が特に好ましい。これらのFe−Ni系合金は、熱膨張係数を上記ガラスに近似させることができ、且つエッチング法により微細な貫通孔を容易に形成できるため、金属隔壁用基板に適している。
【0010】
本発明においては、上述した金属隔壁用基板の表面に酸化物層を形成する。
本発明でいう気相成長法とは、スパッタリング法、真空蒸着法、イオンプレーティング法、化学気相成長法(以下CVD法と称す)等を利用して、金属や金属化合物を気化した原料ガスを基板表面に衝突させることにより、金属酸化物層を形成する成膜法のことである。
この方式では、ピンホールの少ない緻密な膜が形成できるため、絶縁性の保証という面において優れているが、成膜速度は遅いため生産性が悪いという特徴がある。そのため、実用化する場合にはできる限り薄い酸化物の膜形成として適用すると良い。
これには、最近PDPの消費電力低減のため、PDP駆動時の低電圧化が進んでおり、緻密な膜が得られる製法によれば、例えば1〜2μm以下の膜厚で絶縁性が問題ないPDPが増加しているという背景もあり、薄くとも緻密な酸化物の膜であれば十分にPDPに用いることができるため、本発明の気相成長法の適用が有効である。
【0011】
また、本発明で利用する気相成長法を用いれば、酸化物層の膜厚を任意の厚みに緻密に形成することができる。但し、過度に酸化物層を厚くすると開口率の低下につながるため、開口率の観点から膜厚は5μm以下が好ましい。
一方、絶縁性の観点からは、厚みが0.1μm未満では十分な絶縁性を得られない。そのため、開口率と絶縁性を共に満足させるには、0.1〜5μmの厚さの酸化物層を形成させれば良く、より確実に開口率と絶縁性を満足させるためには、0.1〜2μmの範囲である。
【0012】
ところで、酸化物層の特性としてはPDPの組立てプロセスにより、500℃程度の熱サイクルを受けるため、金属隔壁用基板の熱膨張係数(20〜500℃)の8×10−6/℃に近い6〜10×10−6/℃であることが望ましく、軟化する性質を有す酸化物の場合は、その軟化点が500℃以上であることが望ましい。
酸化物層の熱膨張係数が、これらの範囲から外れると、熱サイクルにより膜にクラックが発生したり、剥離する危険性が生じる。また、酸化物層の軟化点が500℃以下の場合には、例えばPDPの組立て中に、酸化物層が軟化して膜の形状が変化して膜厚が薄くなる可能性がある。
【0013】
そこで本発明においては、金属隔壁に近い熱膨張係数に調整しやすいこと、さらに前述した気相成膜用の原料が比較的入手しやすさも考慮して、本発明で用いる酸化物としてSiO−P系、SiO−LiO系、P−Al系を選んだ。
これらの酸化物は、単独成分の酸化物と比較し、所望の熱膨張係数(20〜500℃)の6〜10×10−6/℃に調整しやすいという利点がある。
なお、本発明においては上述のSiO−P系、SiO−LiO系、P−Al系を主成分とすると規定した。これはSiO−P系、SiO−LiO系、P−Al系が50%以上ということであり、熱膨張係数や気相成膜用の原料の入手しやすさ等を考慮して、適宜幾つかの酸化物を添加しても良い。
【0014】
また本発明において、SiO−P系ではPを0.3〜20mass%含有したSiO、SiO−LiO系ではLiOを5〜16mass%含有したSiO、P−Al系では、Alを8〜22mass%含有したPでは熱膨張係数が画像表示装置用金属隔壁とすべき金属隔壁用基板に熱膨張係数の整合性という点で良好であり、これらの範囲に調整した酸化物を用いることが好ましい。
なお、上述以外の複合酸化物として、MgOとSiOの混合物で例えば、2MgO・SiO(フォルステライト)やMgOとAlの混合物で例えば、MgO・Al(スピネル)の利用も可能である。
【0015】
なお、付け加えておくと、本発明の気相成長法のうちのCVD法における原料としては、金属有機化合物(金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートなど)、金属無機化合物(硝酸塩、塩化物など)等も用いることができる。
中でも、金属元素含有有機物である例えば金属アルコキシド等は安価であるため、低コストプロセスという面で有利である。
本発明では、これらの酸化物を成膜して酸化物層とするが、酸化物層は一層であってもよく、また、複数層としてもよい。なお、複数層とする場合には全てを異なる酸化物としてもよいが、同じ酸化物で形成される層を複数積層させてもよい。
以上の説明で明らかなように、本発明では酸化物層形成に際し低融点ガラスを使用しないため有害な鉛を本質的に含まない。従って、本発明は環境上の問題も発生しないという効果も併せ持っている。
【0016】
【実施例】
以下、本発明を更に詳細に実施例を用いて説明する。
金属隔壁用素材には熱膨張係数8.0×10−6/℃のFe−47mass%Ni合金を用い、42インチPDP用金属隔壁の基板とすべく、FeCl水溶液をノズルから噴射するスプレー式の湿式エッチング法で所定形状の板材に多数の貫通孔を形成して金属隔壁用基板とした。加工された金属隔壁用基板の開口率は55%であった。
【0017】
気相成長法としては、スパッタリング、イオンプレーティング、熱CVDの3手法で成膜テストした。使用した原料について説明する。
スパッタリングでは、各種酸化物のターゲットを用意して、Arガスでこのターゲットをスパッタリングすることにより金属隔壁用基板に成膜した。
イオンプレーティングでは、各種酸化物のペレット状試料を入手し、るつぼに入れた状態でEB溶解しながら、基板に負の電圧を印加すると、これら酸化物の気化したガスがイオン化し、基板にこれらのイオンガスを引き付けることにより金属隔壁用基板に成膜した。
熱CVDでは、各種金属アルコキシドと金属アセチルアセトネートを原料として利用し、これらを気化器で加熱して気化させたガスを、キャリアガスと共に基板に吹き付けることにより金属隔壁用基板に成膜した。
【0018】
次に、比較例として特開平3−205738号で開示される絶縁処理方法(電着法)を用いて隔壁を作成した。平均粒径が6μmのBi−B−Si−O系ガラス粉末を原料として用いて、この粉末を分散した溶液中に基板を浸漬し、基板に電圧を印加することにより、この粉末を基板表面に堆積させて膜を形成した後、630℃で大気中で加熱―溶融させることにより、酸化物層を形成した。
【0019】
評価方法について説明する。
酸化物層の厚みは金属隔壁の平面部の断面の走査電子顕微鏡写真から測定した。その一例(No.4)を図1に示す。
絶縁性については、金属隔壁で孔のない平面部においてJIS−C2110に従い絶縁破壊電圧を測定し、10点の平均値として算出した。それぞれの結果を表1に示す。
【0020】
【表1】

Figure 2004022403
【0021】
表1の結果より、本発明によるNo.2〜7は絶縁破壊電圧として、50V以上が確保されており、この金属隔壁をPDPとFEDのパネルに組立てて駆動させたところ絶縁性に問題なく、表示装置として正常に作動することを確認した。
また、図1に示す断面顕微鏡写真から、金属隔壁用素材表面に、均一な酸化物層が形成されているのが分かる。なお、酸化物層の外側に白く見える砕けたものは、研磨によって砕けたニッケルメッキである。
また、開口率は、絶縁層形成後では、形成前の55%から54%へ僅かに低下したが、現行のガラス隔壁使用PDPと比較して輝度はほぼ同レベルであることが確認できた。
一方、従来方法(特開平3−205738号に開示される方法)のNo.7では、開口率が55%から44%へ大きく低下し、現行のガラス隔壁使用PDPと比較して輝度が低下してしまうことが確認された。また、No.1は、PDPの組立て工程における熱サイクルにより、クラックが発生して、正常に駆動しなかった。
【0022】
以上の結果から、本発明の製造方法を適用すれば、絶縁層の膜厚を片面で5μm以下に抑えても十分な絶縁性を得ることができ、開口率も実用上問題ないレベルの画像表示装置用金属隔壁を得ることができた。また、画像表示装置としてPDPに組み込んだ性能面でも従来方式と比較して輝度を確保できることが分かった。
【0023】
【発明の効果】
本発明によれば、開口率が高く高性能(高精細・高輝度)で、絶縁信頼性が高く、安価な画像表示装置用金属隔壁を提供すること、また、そのための有効な絶縁処理プロセス(画像表示装置用金属隔壁の製造方法)を提供することができた。
【図面の簡単な説明】
【図1】本発明の画像表示用金属隔壁の断面顕微鏡写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal partition used for a thin image display device such as a plasma display panel (hereinafter, referred to as PDP) or a field emission display (hereinafter, referred to as FED), and a method of manufacturing the same.
[0002]
[Prior art]
In a thin image display device, for example, a gas discharge type image display device such as a PDP requires an insulating partition as a partition for forming one discharge space and preventing color interference with an adjacent cell. Further, in the FED, an insulating partition which functions as a spacer for keeping a constant distance between the cold cathode and the phosphor is required.
More specifically, for example, a PDP is manufactured using a glass containing lead as a substrate material by a sand blast method.
Also, Japanese Patent Application Laid-Open No. Hei 3-205538, entitled "Metal Core Rib and Method for Producing the Same, and Plasma Display Panel Using the Metal Core Rib" proposes a metal partition having a dielectric containing glass formed on the surface. This publication discloses an insulation treatment method for forming a dielectric containing glass mainly on the surface of a metal partition wall substrate by an electrodeposition method.
In addition, JP-A-2000-3675, JP-A-2000-64027, and JP-A-2001-52615 disclose an insulating treatment for forming an oxide on a metal partition wall substrate by using a vapor phase growth method. Suggest a way.
[0003]
[Problems to be solved by the invention]
However, the conventional technique has the following problems.
First, the method of manufacturing a glass partition wall by sandblasting is not only complicated and costly, but also has a high productivity, and the manufactured glass partition wall itself and the removed glass powder contain a lot of harmful lead. There was a problem that it was not preferable.
In addition, the high performance of PDPs is easily limited by the structure of the partition walls. In particular, in order to achieve high definition and high brightness, it is necessary to reduce the width of the partition walls and increase the aperture ratio. However, there is a problem that it is difficult to reduce the width of the frame.
[0004]
On the other hand, in the electrodeposition technique mainly disclosed in Japanese Patent Application Laid-Open No. Hei 3-205738, the present inventors have studied and found that since the bubbles remain in the insulating layer, the insulating property varies greatly depending on the position. Therefore, it is necessary to increase the film thickness in order to ensure insulation. However, when the film thickness is increased, there is a problem that an aperture ratio is reduced and high definition cannot be achieved.
In addition, in the dipping method or the spray method into a solution in which glass powder is dispersed, which is disclosed as an insulation treatment method other than electrodeposition in the same publication, the film thickness is not uniform, and furthermore, the sintering oxidation method of the metal and the anode At present, PDPs are difficult to control because the oxidation method does not provide sufficient insulation because the film quality is not dense, and the powder electrostatic coating method is too thick to control it to 10 μm or less. In fact, metal partition walls of image display devices such as those described above have not been put to practical use.
[0005]
Next, JP-A-2000-003675, JP-A-2000-064027, and JP-A-2001-052615 disclose an oxide such as Al 2 O 3 on a substrate for a metal partition wall using a vapor phase growth method of 1 μm or more. Has been proposed, but the thermal expansion coefficient of the oxide film is not adjusted to a thermal expansion coefficient close to that of the metal partition walls. In addition, the problem that cracks occur in the oxide film newly occurs, and at present, it has not been put to practical use.
The present invention has been made in view of the above, and provides a metal partition for an image display device having a high aperture ratio, high performance (high definition and high brightness), high insulation reliability, and low cost. An object of the present invention is to provide an effective insulation process (a method of manufacturing a metal partition wall for an image display device) for that purpose.
[0006]
[Means to solve the problem]
As described above, in the specific insulation treatment method of the metal partition described in JP-A-3-205538, JP-A-2000-003675, JP-A-2000-064027, and JP-A-2001-052615, a practical method is used. It is difficult to obtain a metal partition for an image display device.
The present inventors have intensively studied various insulating treatment methods and insulating film components to form an optimal insulating layer on a metal partition for an image display device, and as a result, have a high aperture ratio and insulating properties required for the metal partition. A new oxide composition which does not contain harmful substances such as lead and lead and whose thermal expansion coefficient of the insulating layer can be adjusted to a thermal expansion coefficient close to that of a metal partition, and a method for producing the same have been found, and the present invention has been achieved.
[0007]
That is, the present invention provides at least one of SiO 2 —P 2 O 5 , SiO 2 —Li 2 O, and P 2 O 5 —Al 2 O 3 based on a metal partition wall substrate having a large number of through holes. This is a metal partition wall for an image display device on which an oxide layer as a main component is formed.
Preferably, the SiO 2 —P 2 O 5 -based oxide layer contains 0.3 to 20 mass% of P 2 O 5 , and the SiO 2 —Li 2 O-based oxide layer includes Li 2 O of 5 to 16 mass%. % containing, P 2 O 5 -Al 2 O 3 based oxide layer is a metal partition wall for an image display device containing 8~22Mass% of Al 2 O 3.
More preferably, it is a metal partition for an image display device in which the thickness of the oxide layer is 0.1 to 5 μm.
Further, the present invention provides a metal partition wall substrate having a large number of through holes, wherein at least one of SiO 2 —P 2 O 5 , SiO 2 —Li 2 O, and P 2 O 5 —Al 2 O 3 is used. In the method for manufacturing a metal partition wall for an image display device by forming an oxide layer as a main component, the formation of the oxide layer is a method for manufacturing a metal partition wall for an image display device formed by a vapor phase growth method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An important feature of the present invention resides in that an oxide having an optimized thermal expansion coefficient is formed on a metal partition wall substrate to be a metal partition wall for an image display device.
Hereinafter, the present invention will be described in detail.
In the present invention, a metal partition wall substrate having a large number of through holes is coated with an oxide layer to form a metal partition wall for an image display device. The metal partition wall for an image display device is sandwiched between a front glass plate and a rear glass plate to form an image. Used for display devices.
This metal partition for an image display device undergoes a thermal cycle of about 500 ° C. in a panel assembling process. Therefore, if the thermal expansion difference is large, thermal stress is generated and the panel is damaged, so that the panel cannot function as an image display device. In order to prevent this, it is preferable that the partition has a thermal expansion coefficient similar to that of the front glass and the rear glass.
[0009]
At present, for example, soda lime glass or a high strain point glass having a thermal expansion coefficient (20 to 500 ° C.) of about 8 × 10 −6 / ° C. is used for front and back glass of PDP. It is preferable to use a Fe-Ni-based alloy containing Ni in the range of 40 to 52% by mass of the substrate, and the balance substantially consisting of Fe, of which Ni is in the range of 45% to 49% by mass%. Certain Fe-Ni alloys are particularly preferred. These Fe—Ni-based alloys are suitable for a metal partition wall substrate because the thermal expansion coefficient can be approximated to that of the above glass and fine through holes can be easily formed by an etching method.
[0010]
In the present invention, an oxide layer is formed on the surface of the metal partition wall substrate described above.
The vapor phase growth method referred to in the present invention is a source gas obtained by vaporizing a metal or a metal compound using a sputtering method, a vacuum deposition method, an ion plating method, a chemical vapor deposition method (hereinafter referred to as a CVD method), or the like. Is a method for forming a metal oxide layer by colliding a metal oxide layer with a substrate surface.
This method is excellent in assuring insulation because a dense film with few pinholes can be formed, but has a feature that productivity is poor because the film formation rate is low. Therefore, in practical use, it is preferable to apply as thin an oxide film as possible.
In order to reduce the power consumption of the PDP, lowering of the voltage at the time of driving the PDP has recently been promoted. According to a manufacturing method capable of obtaining a dense film, for example, there is no problem in insulation at a film thickness of 1 to 2 μm or less. Due to the increasing number of PDPs, a thin but dense oxide film can be sufficiently used for a PDP, so that the vapor deposition method of the present invention is effective.
[0011]
Further, by using the vapor deposition method used in the present invention, the oxide layer can be densely formed to have an arbitrary thickness. However, an excessively thick oxide layer leads to a decrease in the aperture ratio. Therefore, the film thickness is preferably 5 μm or less from the viewpoint of the aperture ratio.
On the other hand, from the viewpoint of insulating properties, if the thickness is less than 0.1 μm, sufficient insulating properties cannot be obtained. Therefore, in order to satisfy both the aperture ratio and the insulating property, it is sufficient to form an oxide layer having a thickness of 0.1 to 5 μm. It is in the range of 1-2 μm.
[0012]
By the way, as a property of the oxide layer, since the PDP is subjected to a thermal cycle of about 500 ° C. due to a process of assembling the PDP, the thermal expansion coefficient (20 to 500 ° C.) of the metal partition wall substrate is close to 8 × 10 −6 / ° C. is preferably a ~10 × 10 -6 / ℃, in the case of oxide having a property of softening, it is desirable that the softening point of 500 ° C. or higher.
If the coefficient of thermal expansion of the oxide layer is out of these ranges, there is a risk that the film may be cracked or peeled off by thermal cycling. Further, when the softening point of the oxide layer is 500 ° C. or lower, the oxide layer may be softened, for example, during assembling of the PDP, and the shape of the film may be changed, so that the film thickness may be reduced.
[0013]
Therefore, in the present invention, in consideration of the fact that the thermal expansion coefficient can be easily adjusted to a value close to that of the metal partition wall and the above-mentioned raw material for vapor phase film formation is relatively easily available, SiO 2 − is used as the oxide used in the present invention. P 2 O 5 system, SiO 2 —Li 2 O system, and P 2 O 5 —Al 2 O 3 system were selected.
These oxides have an advantage that they can be easily adjusted to a desired coefficient of thermal expansion (20 to 500 ° C.) of 6 to 10 × 10 −6 / ° C. as compared with the oxide of a single component.
In the present invention, the above-mentioned SiO 2 —P 2 O 5 system, SiO 2 —Li 2 O system, and P 2 O 5 —Al 2 O 3 system are defined as the main components. This means that the content of SiO 2 —P 2 O 5 , SiO 2 —Li 2 O, and P 2 O 5 —Al 2 O 3 is 50% or more. Considering availability and the like, some oxides may be appropriately added.
[0014]
In the present invention, SiO 2 in SiO 2 -P 2 O 5 system containing 5~16Mass% of Li 2 O is in the SiO 2, SiO 2 -Li 2 O system containing 0.3~20Mass% of P 2 O 5 , P 2 O 5 —Al 2 O 3 system, the thermal expansion coefficient of P 2 O 5 containing 8 to 22 mass% of Al 2 O 3 is the thermal expansion coefficient of a metal partition wall substrate to be used as a metal partition wall for an image display device. It is preferable in terms of the consistency of the oxide, and it is preferable to use an oxide adjusted to these ranges.
As a composite oxide other than the above, use of a mixture of MgO and SiO 2 , for example, 2MgO.SiO 2 (forsterite) or a mixture of MgO and Al 2 O 3 , for example, MgO.Al 2 O 3 (spinel) Is also possible.
[0015]
It should be noted that as a raw material in the CVD method of the vapor phase growth method of the present invention, metal organic compounds (metal alkoxide, metal acetylacetonate, metal carboxylate, etc.) and metal inorganic compounds (nitrate, chloride) Etc.) can also be used.
In particular, metal alkoxides, which are metal-containing organic substances, are inexpensive, and are therefore advantageous in terms of low-cost processes.
In the present invention, these oxides are formed into an oxide layer, but the oxide layer may be a single layer or a plurality of layers. Note that when a plurality of layers are used, all may be different oxides, but a plurality of layers formed using the same oxide may be stacked.
As is clear from the above description, the present invention does not use a low-melting glass when forming the oxide layer, and thus does not essentially contain harmful lead. Therefore, the present invention has an effect that no environmental problem occurs.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
Spray type which sprays FeCl 3 aqueous solution from nozzle to use as a substrate of metal partition for 42 inch PDP, using Fe-47mass% Ni alloy with thermal expansion coefficient of 8.0 × 10 −6 / ° C. as material for metal partition. A large number of through-holes were formed in a plate member having a predetermined shape by the wet etching method described above to obtain a metal partition wall substrate. The aperture ratio of the processed metal partition wall substrate was 55%.
[0017]
As a vapor phase growth method, a film formation test was performed by three methods of sputtering, ion plating, and thermal CVD. The used raw materials will be described.
In sputtering, various oxide targets were prepared, and the target was sputtered with Ar gas to form a film on the metal partition wall substrate.
In ion plating, a pellet-shaped sample of various oxides is obtained, and a negative voltage is applied to the substrate while dissolving the EB in a crucible, and the vaporized gas of these oxides is ionized. A film was formed on the metal partition wall substrate by attracting the ion gas.
In the thermal CVD, various metal alkoxides and metal acetylacetonates were used as raw materials, and a gas obtained by heating these with a vaporizer and spraying the same with a carrier gas was sprayed on the substrate to form a film on the metal partition wall substrate.
[0018]
Next, as a comparative example, a partition wall was formed by using an insulating treatment method (electrodeposition method) disclosed in Japanese Patent Application Laid-Open No. Hei 3-205738. Using a Bi-B-Si-O-based glass powder having an average particle diameter of 6 μm as a raw material, the substrate is immersed in a solution in which the powder is dispersed, and a voltage is applied to the substrate, whereby the powder is applied to the substrate surface. After deposition to form a film, the film was heated and melted at 630 ° C. in the air to form an oxide layer.
[0019]
The evaluation method will be described.
The thickness of the oxide layer was measured from a scanning electron micrograph of a cross section of a plane portion of the metal partition. One example (No. 4) is shown in FIG.
Regarding the insulating property, the dielectric breakdown voltage was measured in accordance with JIS-C2110 on a flat portion of the metal partition wall having no holes, and calculated as an average value of 10 points. Table 1 shows the results.
[0020]
[Table 1]
Figure 2004022403
[0021]
From the results in Table 1, No. 1 according to the present invention was obtained. Nos. 2 to 7 ensured a dielectric breakdown voltage of 50 V or more. When this metal partition was assembled and driven on a panel of PDP and FED, it was confirmed that there was no problem in the insulation properties and that the display normally operated as a display device. .
Further, it can be seen from the cross-sectional micrograph shown in FIG. 1 that a uniform oxide layer is formed on the surface of the material for metal partition walls. Note that the crushed one that looks white on the outside of the oxide layer is nickel plating crushed by polishing.
Further, the aperture ratio slightly decreased from 55% before formation to 54% after the formation of the insulating layer, but it was confirmed that the luminance was almost the same level as that of the current PDP using glass partition walls.
On the other hand, in the conventional method (the method disclosed in Japanese Patent Application Laid-Open No. Hei 3-205538), No. In No. 7, it was confirmed that the aperture ratio was greatly reduced from 55% to 44%, and the luminance was reduced as compared with the current PDP using glass partition walls. No. In No. 1, cracks occurred due to a thermal cycle in the assembly process of the PDP, and the device did not operate normally.
[0022]
From the above results, when the manufacturing method of the present invention is applied, a sufficient insulating property can be obtained even if the thickness of the insulating layer is suppressed to 5 μm or less on one side, and the image display has a sufficient aperture ratio for practical use. A metal partition for the device was obtained. Also, it was found that the brightness incorporated in the PDP as an image display device could be secured as compared with the conventional system.
[0023]
【The invention's effect】
According to the present invention, it is possible to provide an inexpensive metal partition for an image display device having a high aperture ratio, high performance (high definition and high brightness), high insulation reliability, and an effective insulation process ( Manufacturing method of a metal partition wall for an image display device).
[Brief description of the drawings]
FIG. 1 is a cross-sectional micrograph of a metal partition for image display of the present invention.

Claims (4)

多数の貫通孔を有する金属隔壁用基板に、SiO−P系、SiO−LiO系、P−Al系のうちの少なくとも一種を主成分とする酸化物層を形成したことを特徴とする画像表示装置用金属隔壁。Oxidation mainly containing at least one of SiO 2 —P 2 O 5 , SiO 2 —Li 2 O, and P 2 O 5 —Al 2 O 3 based on a metal partition wall substrate having many through holes. A metal partition wall for an image display device, comprising a material layer. SiO−P系の酸化物層はPを0.3〜20mass%含有し、SiO−LiO系の酸化物層は、LiOを5〜16mass%含有し、P−Al系の酸化物層はAlを8〜22mass%含有することを特徴とする請求項1に記載の画像表示装置用金属隔壁。The SiO 2 —P 2 O 5 -based oxide layer contains 0.3 to 20 mass% of P 2 O 5 , and the SiO 2 —Li 2 O-based oxide layer contains 5 to 16 mass% of Li 2 O. , P 2 O 5 -Al 2 O 3 based oxide layer is an image display device for metal barrier wall according to claim 1, characterized in that it contains 8~22Mass% of Al 2 O 3 of. 酸化物層の厚みを0.1〜5μmの厚みに被覆することを特徴とする請求項1または2に記載の画像表示装置用金属隔壁。3. The metal partition according to claim 1, wherein the oxide layer is coated to a thickness of 0.1 to 5 [mu] m. 多数の貫通孔を有する金属隔壁用基板に、SiO−P系、SiO−LiO系、P−Al系のうちの少なくとも一種を主成分とする酸化物層を形成して画像表示装置用金属隔壁とする製造方法において、前記酸化物層の形成は、気相成長法によって形成することを特徴とする画像表示装置用金属隔壁の製造方法。Oxidation mainly containing at least one of SiO 2 —P 2 O 5 , SiO 2 —Li 2 O, and P 2 O 5 —Al 2 O 3 based on a metal partition wall substrate having many through holes. In the method for producing a metal partition for an image display device by forming an object layer, the oxide layer is formed by a vapor phase growth method.
JP2002177324A 2002-06-18 2002-06-18 Metal barrier for picture display device and its manufacturing method Pending JP2004022403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177324A JP2004022403A (en) 2002-06-18 2002-06-18 Metal barrier for picture display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177324A JP2004022403A (en) 2002-06-18 2002-06-18 Metal barrier for picture display device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004022403A true JP2004022403A (en) 2004-01-22

Family

ID=31175389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177324A Pending JP2004022403A (en) 2002-06-18 2002-06-18 Metal barrier for picture display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004022403A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211238A (en) * 1991-08-06 1993-08-20 Nec Corp Manufacture of semiconductor device
JPH07142707A (en) * 1993-06-17 1995-06-02 Kawasaki Steel Corp Manufacture of mos transistor
JPH11330067A (en) * 1998-05-20 1999-11-30 Oki Electric Ind Co Ltd Semiconductor device and its manufacture
JP2000277021A (en) * 1999-03-23 2000-10-06 Hitachi Metals Ltd Barrier for gas discharge type display panel and manufacture thereof
JP2000340122A (en) * 1999-05-25 2000-12-08 Hitachi Metals Ltd Partition wall for gas electric discharge type display panel and manufacture thereof
JP2001006559A (en) * 1999-06-17 2001-01-12 Hitachi Metals Ltd Barrier rib for gas discharge display panel and its manufacture
JP2001019490A (en) * 1998-03-23 2001-01-23 Ohara Inc Glass ceramic material
JP2001052615A (en) * 1999-08-05 2001-02-23 Hitachi Metals Ltd Metal barrier rib for gas electric discharge type display panel
JP2001261369A (en) * 2000-03-22 2001-09-26 Central Glass Co Ltd Low melting point glass composition
JP2002025762A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Glass board for inorganic el display

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211238A (en) * 1991-08-06 1993-08-20 Nec Corp Manufacture of semiconductor device
JPH07142707A (en) * 1993-06-17 1995-06-02 Kawasaki Steel Corp Manufacture of mos transistor
JP2001019490A (en) * 1998-03-23 2001-01-23 Ohara Inc Glass ceramic material
JPH11330067A (en) * 1998-05-20 1999-11-30 Oki Electric Ind Co Ltd Semiconductor device and its manufacture
JP2000277021A (en) * 1999-03-23 2000-10-06 Hitachi Metals Ltd Barrier for gas discharge type display panel and manufacture thereof
JP2000340122A (en) * 1999-05-25 2000-12-08 Hitachi Metals Ltd Partition wall for gas electric discharge type display panel and manufacture thereof
JP2001006559A (en) * 1999-06-17 2001-01-12 Hitachi Metals Ltd Barrier rib for gas discharge display panel and its manufacture
JP2001052615A (en) * 1999-08-05 2001-02-23 Hitachi Metals Ltd Metal barrier rib for gas electric discharge type display panel
JP2001261369A (en) * 2000-03-22 2001-09-26 Central Glass Co Ltd Low melting point glass composition
JP2002025762A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Glass board for inorganic el display

Similar Documents

Publication Publication Date Title
EP1780749A2 (en) Plasma display panel and method for producing the same
US6805601B2 (en) Method for producing plasma display panel and the plasma display panel
JP2571015B2 (en) Method of manufacturing gas discharge display panel
JP2005340214A (en) Plasma display panel
JPH10233157A (en) Plasma display panel protective layer, and forming method for the layer
JP2006196461A (en) Protecting film, complex for forming protecting film, manufacturing method of above protecting film and plasma display panel equipped with above protecting film
KR100651421B1 (en) Plasma display panel and method for producing same
JP2004022403A (en) Metal barrier for picture display device and its manufacturing method
JP3555711B2 (en) AC plasma display panel and method of manufacturing the same
JP2004022404A (en) Manufacturing method of metal barrier for picture display device
CN101165840A (en) Plasma display panel
JP2004247081A (en) Manufacturing method of metallic separation wall for image display device
JP3912567B2 (en) Gas discharge display device
JP2003342733A (en) Process for manufacturing metal barrier plate for image display device
JP2001052615A (en) Metal barrier rib for gas electric discharge type display panel
JPWO2011118164A1 (en) Method for manufacturing plasma display panel
JP2013502373A (en) LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING THE SAME
JP2004505411A (en) Glass plate with electrodes made of conductive material
US6291362B1 (en) Method of fabricating dielectric layer and fluorescent film for plasma display device
JP2000212555A (en) Method for enclosing phosphor
JP2006092765A (en) Manufacturing method of metallic member for image display device
JP2013033678A (en) Plasma display panel and method for manufacturing the same
CN103794441A (en) Plasma display screen medium protection film and manufacturing method thereof, and plasma display screen
KR20070047076A (en) Protect layer of plasma display panel
JP2004185858A (en) Member for plasma display panel (pdp), and manufacturing method of member for plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070601