JPH0797226B2 - Electrophotographic photoreceptor and manufacturing method thereof - Google Patents

Electrophotographic photoreceptor and manufacturing method thereof

Info

Publication number
JPH0797226B2
JPH0797226B2 JP62164556A JP16455687A JPH0797226B2 JP H0797226 B2 JPH0797226 B2 JP H0797226B2 JP 62164556 A JP62164556 A JP 62164556A JP 16455687 A JP16455687 A JP 16455687A JP H0797226 B2 JPH0797226 B2 JP H0797226B2
Authority
JP
Japan
Prior art keywords
layer
charge transport
transport layer
photosensitive member
vib group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62164556A
Other languages
Japanese (ja)
Other versions
JPS649460A (en
Inventor
昭雄 滝本
栄一郎 田中
京子 尾道
浩二 秋山
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62164556A priority Critical patent/JPH0797226B2/en
Priority to US07/190,093 priority patent/US4886719A/en
Priority to DE3855975T priority patent/DE3855975T2/en
Priority to EP88304123A priority patent/EP0290270B1/en
Publication of JPS649460A publication Critical patent/JPS649460A/en
Publication of JPH0797226B2 publication Critical patent/JPH0797226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0582Polycondensates comprising sulfur atoms in the main chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/076Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds having a photoconductive moiety in the polymer backbone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式の複写機、光プリンタ等に用い
られる電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member used in electrophotographic copying machines, optical printers and the like.

従来の技術 電子写真感光体における光導電体として、Se、有機光半
導体(以下OPCと記す)があるが、最近、10〜40atm%の
水素を局在化状態密度を減少せしめる修飾物質として含
む非晶質シリコン(以下a−Si:Hと記す)が高い光感
度、無公害性、及び高い硬度を有することにより注目さ
れ利用されている。
2. Description of the Related Art Se and organic photo-semiconductors (hereinafter referred to as OPCs) are used as photoconductors in electrophotographic photoreceptors, but recently, they contain 10 to 40 atm% hydrogen as a modifier that reduces the localized density of states. Amorphous silicon (hereinafter referred to as a-Si: H) has been noted and used because of its high photosensitivity, pollution-free property, and high hardness.

しかし、上記のa−Si:Hで構成される電子写真感光体は
問題も多い。第1にa−Si:Hは誘電率が約11とOPCの約
3、Seの約6に比べて大きく、そのため静電容量が大き
く、電子写真プロセスの帯電過程に於て大きな帯電電流
が必要となる。第2に画像で十分な黒濃度を得るための
実用表面電位(〜400V)では表面電荷密度が高く、電荷
を光除電するのに必要な光量は大きい。このためキャリ
ア生成における量子効率が高いと言う特徴が、生かされ
ていない。第3に、a−Si:H膜の成膜に用いるシランガ
ス(以下SiH4と記す)を原料ガスとしたプラズマCVD法
は、堆積速度も10μm/h以下と遅くSiH4ガスも高価であ
ることから、製造コストの低減は困難である。
However, the electrophotographic photosensitive member composed of a-Si: H has many problems. First, a-Si: H has a dielectric constant of about 11, which is larger than about 3 for OPC and about 6 for Se, and therefore has a large capacitance and requires a large charging current in the charging process of the electrophotographic process. Becomes Secondly, the surface charge density is high at a practical surface potential (up to 400 V) for obtaining a sufficient black density in an image, and the amount of light required to photo-eliminate the charges is large. Therefore, the feature of high quantum efficiency in carrier generation has not been utilized. Third, the plasma CVD method using a silane gas (hereinafter referred to as SiH 4 ) used as a source gas for forming an a-Si: H film has a low deposition rate of 10 μm / h or less and SiH 4 gas is also expensive. Therefore, it is difficult to reduce the manufacturing cost.

これらの問題を解決する手段として、特開昭54-143645
号公報には有機半導体材料を用いた機能分離型の感光体
が、また特開昭56-24355号公報には無機半導体材料を用
いた機能分離型感光体が提案されている。また我々は、
電荷輸送層として非晶質カーボンを主成分とする層を用
い、電荷発生層を非晶質シリコンで構成する機能分離型
感光体を提案している。
As means for solving these problems, JP-A-54-143645
A function-separated type photoreceptor using an organic semiconductor material is proposed in JP-A-56-24355, and a function-separated type photoreceptor using an inorganic semiconductor material is proposed in JP-A-56-24355. Also we
A function-separated type photoreceptor in which a layer containing amorphous carbon as a main component is used as a charge transport layer and a charge generation layer is made of amorphous silicon is proposed.

しかし、第1の有機半導体を用いた場合、誘電率の減少
により帯電電流は減少するものの、一般に移動度が小さ
く、またキャリアの寿命も短いため光感度は劣化する。
また硬度が小さいため、a−Si:H膜の持つ高い硬度によ
り長寿命感光体として特長が生かせない。第2の無機半
導体においては、多結晶化しやすいカルコゲン材料、あ
るいは誘電率の大きなSiC等を用いるため温度特性の低
下、或は光感度の大幅な向上が期待できない。第3の非
晶質カーボンを電荷輸送層として用いた場合、誘電率が
小さく、帯電電流の減少、表面電荷密度の減少と特性の
改善向上に結びつくが、通常移動度が低く、電子写真プ
ロセスのスピードに大きな制約を課すことになる。また
非晶質カーボンの成膜にプラズマCVD法を使用した場
合、原料ガスとして、安価なCH4、C2H4、C2H2、C6H6
のガスが使用可能であるが、成膜速度が最大でも10μ/h
と遅く、感光体の製造コストの大幅な低減には難点が残
る。
However, when the first organic semiconductor is used, although the charging current decreases due to the decrease in the dielectric constant, the mobility is generally low and the carrier life is short, so that the photosensitivity deteriorates.
In addition, since the hardness is low, the high hardness of the a-Si: H film makes it impossible to take advantage of its characteristics as a long-life photoreceptor. In the second inorganic semiconductor, since a chalcogen material that is easily polycrystallized or SiC having a large dielectric constant is used, it is not possible to expect a decrease in temperature characteristics or a significant improvement in photosensitivity. When the third amorphous carbon is used as the charge transport layer, the dielectric constant is small, which leads to a decrease in charging current, a decrease in surface charge density and improvement in characteristics. It imposes a major constraint on speed. When the plasma CVD method is used for forming the amorphous carbon film, inexpensive gas such as CH 4 , C 2 H 4 , C 2 H 2 and C 6 H 6 can be used as a source gas, Maximum film deposition rate of 10 μ / h
However, there remains a difficulty in drastically reducing the manufacturing cost of the photoconductor.

発明が解決しようとする問題点 機能分離型電子写真感光体において、高感度の感光体を
得るには、より小さい誘電率を有する、或はより大きな
移動度を有する電荷輸送層の実現が必要である。
Problems to be Solved by the Invention In a function-separated electrophotographic photoreceptor, in order to obtain a highly sensitive photoreceptor, it is necessary to realize a charge transport layer having a smaller dielectric constant or a larger mobility. is there.

電荷輸送層の誘電率は、非晶質カーボンの場合3〜6で
あり、OPCの場合およそ3である。これ以下の誘電率を
実現することは困難であるし、またメリットも少ない。
The dielectric constant of the charge transport layer is 3 to 6 for amorphous carbon and about 3 for OPC. It is difficult to achieve a dielectric constant lower than this, and there is little merit.

これに対して、電荷輸送層の移動度に課せられる条件
は、μτV>d2であり、(ここでμ移動度、τはキャリ
ア寿命、dは電荷輸送層の膜厚、Vは電荷輸送層にかか
る電圧を表す)μが大きい場合、キャリアが電荷輸送層
の膜厚を走りきる時間は、Tr=d2/μVとなり、移動度
の大きな電荷輸送層ほど、速いプロセススピードを有す
る複写機、光プリンタが実現可能となる。
On the other hand, the condition imposed on the mobility of the charge transport layer is μτV> d 2 , where (μ mobility, τ is carrier lifetime, d is the thickness of the charge transport layer, and V is the charge transport layer. When μ is large, the time for carriers to run through the film thickness of the charge transport layer is T r = d 2 / μV. A charge transport layer with higher mobility has a faster process speed. The optical printer can be realized.

小さな誘電率を有する非晶質カーボンは、キャリアの走
行距離を表すμτ積としては、電荷輸送層の膜厚相当の
距離を走りきる条件を満足しており、低光量で表面電位
を減衰させることができるが、μが小さく電荷輸送層に
注入したキャリアが層中を走りきるのに時間がかかり、
プロセススピードに大きな制限を加える。
Amorphous carbon, which has a small dielectric constant, satisfies the condition that it can travel a distance equivalent to the film thickness of the charge transport layer as the μτ product that represents the travel distance of carriers, and it must reduce the surface potential with a low light intensity. However, since μ is small and it takes time for carriers injected into the charge transport layer to run through the layer,
Puts a big limitation on the process speed.

問題点を解決するための手段 光励起によってキャリアを発生する光導電層と、そのキ
ャリアを輸送する電荷輸送層からなる機能分離型電子写
真感光体において電荷輸送層がP−フェニレンを有し、
パラ位にVIb族元素を有する直鎖状化合物高分子層であ
り、VIb族元素としてS,Se、Te、の少なくともいずれか
一つを含有し、更にO原子を該VIb族とは別に高分子鎖
上外に含有させる。
Means for Solving the Problems In a function-separated electrophotographic photosensitive member including a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transports the carriers, the charge transport layer has P-phenylene,
A linear compound polymer layer having a VIb group element in the para position, which contains at least one of S, Se, and Te as a VIb group element, and further contains an O atom separately from the VIb group. Included outside the chain.

作用 高分子におけるキャリアの移動は、高分子の主鎖方向に
沿っての電子軌道間のホッピング伝導で行われるが、そ
のキャリアの移動度は、隣合う軌道の重なりの大きいほ
どホッピング確率が増し、増加する。主鎖方向にP−フ
ェニレンを有し、パラ位にVIb族元素を有する構造の高
分子においてVIb族元素が中性の状態であると、隣合う
P−フェニレンは、空間的にπ電子軌道が、直行する配
位状態にあり、移動度は小さい。しかしVIb族元素が添
加させたO原子により正に帯電し、イオン化した場合P
−フェニレンの空間的ねじれは解消し、π電子軌道は同
一平面内に配置され、ホッピング確率の増加とともに移
動度の向上が図られる。
Action The movement of carriers in a polymer is carried out by hopping conduction between electron orbits along the main chain direction of the polymer, and the mobility of the carrier increases as the overlap between adjacent orbits increases, To increase. In a polymer having a structure having P-phenylene in the main chain direction and a VIb group element in the para position, when the VIb group element is in a neutral state, adjacent P-phenylenes have spatial π electron orbits. , Is in a direct coordination state and has low mobility. However, when the VIb group element is positively charged by the added O atom and ionized, P
-The spatial twist of phenylene is eliminated, the π electron orbits are arranged in the same plane, and the mobility is improved as the hopping probability increases.

実施例 図は、本発明における基本的な電子写真感光体の一実施
例の断面を模式的に示したものである。
Example FIG. 1 schematically shows a cross section of an example of a basic electrophotographic photosensitive member according to the present invention.

図に示す電子写真感光体は、電子写真感光体としての支
持体1上に、高分子層からなる電荷移動層2と光導電層
3とを有し、前記光導電層3は一方で自由表面4を有し
ている。
The electrophotographic photosensitive member shown in the figure has a charge transfer layer 2 composed of a polymer layer and a photoconductive layer 3 on a support 1 as an electrophotographic photosensitive member, and the photoconductive layer 3 is a free surface on the one hand. Have four.

本発明においては、光導電層として硬度の高いシリコン
を含有する非晶質を用い、例えば、a−Si(:H:X)、a
−Si1-yCy(:H:X)(0<y<1)、a−Si1-yOy(:H:
X)(0<y<1)、a−Si1-yNy(:H:X)(0<y<
1)、a−Si1-zGez(:H:X)(0<z<1)、a−(Si
1-zGez)1-yNy(:H:X)(0<y,z<1)、a−(Si1-zG
ez)1-yOy(:H:X)(0<y,z<1)、またはa−(Si1-zG
ez)1-yCy(:H:X)(0<y,z<1)の単層、あるいはこ
れらの積層からなる。また、yを連続的に変化させた場
合も使用できる。
In the present invention, an amorphous material containing silicon having a high hardness is used as the photoconductive layer, and for example, a-Si (: H: X), a
-Si 1-y C y (: H: X) (0 <y <1), a-Si 1-y O y (: H:
X) (0 <y <1), a-Si 1-y N y (: H: X) (0 <y <
1), a-Si 1-z Ge z (: H: X) (0 <z <1), a- (Si
1-z Ge z ) 1-y N y (: H: X) (0 <y, z <1), a- (Si 1-z G
e z ) 1-y O y (: H: X) (0 <y, z <1), or a- (Si 1-z G
e z ) 1-y C y (: H: X) (0 <y, z <1), or a single layer of these layers. It can also be used when y is continuously changed.

この時の膜厚は、電荷移動層は5〜50μm好適には10〜
25μm、また光導電層の膜厚は0.5〜10μm好適には1
〜5μmとすれば良い。
At this time, the thickness of the charge transfer layer is 5 to 50 μm, preferably 10 to
25 μm, and the thickness of the photoconductive layer is 0.5 to 10 μm, preferably 1
It may be set to ˜5 μm.

本発明において、更に電子写真特性を向上させるため
に、第1図において、支持体1と電荷移動層2との間
に、支持体1から電荷移動層2に注入するキャリアを効
果的に阻止するため障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic characteristics, the carrier injected from the support 1 into the charge transfer layer 2 is effectively blocked between the support 1 and the charge transfer layer 2 in FIG. Therefore, a barrier layer may be provided.

障壁層を形成する材料としては、Al2O3、BaO、BaO2、Be
O、Bi2O3、CaO、CeO2、Ce2O3、La2O3、Dy2O3、Lu2O3、C
r2O3、CuO、Cu2O、FeO、PbO、MgO、SrO、Ta2O3、ThO2
ZrO2、HfO2、TiO2、TiO、SiO2、GeO2、SiO、GeO等の金
属酸化物またはTiN、AlN、SnN、NbN、TaN、GaN等の金属
窒化物、またはWC、SnC、TiC、等の金属炭化物またはSi
C,SiN、GeC、GeN、BC、BN等の絶縁物、ポリイミド、ポ
リアミドイミド、ポリアクリルニトリル等の耐熱性を有
する有機化合物が使用される。
As the material for forming the barrier layer, Al 2 O 3 , BaO, BaO 2 , Be
O, Bi 2 O 3 , CaO, CeO 2 , Ce 2 O 3 , La 2 O 3 , Dy 2 O 3 , Lu 2 O 3 , C
r 2 O 3 , CuO, Cu 2 O, FeO, PbO, MgO, SrO, Ta 2 O 3 , ThO 2 ,
ZrO 2 , HfO 2 , TiO 2 , TiO, SiO 2 , GeO 2 , SiO, GeO or other metal oxides or TiN, AlN, SnN, NbN, TaN, GaN or other metal nitrides, or WC, SnC, TiC, Carbide such as Si or Si
Insulators such as C, SiN, GeC, GeN, BC, and BN, and heat-resistant organic compounds such as polyimide, polyamideimide, and polyacrylonitrile are used.

また、クリーニング性、耐摩耗性あるいは耐コロナ性を
向上させるため、図において、自由表面4上に表面被覆
層を形成する。表面被覆層として好適な材料としては、
SixO1-x、SixC1-x、SixN1-x、GexO1-x、GexC1-x、GexN
1-x、BxN1-x、BxC1-x、AlxN1-x(0<x<1)、カーボ
ンおよびこれらに水素あるいはハロゲンを含有する層等
の無機物などが上げられる。
Further, in order to improve the cleaning property, abrasion resistance or corona resistance, a surface coating layer is formed on the free surface 4 in the figure. Suitable materials for the surface coating layer include
Si x O 1-x , Si x C 1-x , Si x N 1-x , Ge x O 1-x , Ge x C 1-x , Ge x N
1-x , B x N 1-x , B x C 1-x , Al x N 1-x (0 <x <1), inorganic substances such as carbon and layers containing hydrogen or halogen therein .

シリコンを含有する光導電層であるa−Si(:H:X)の作
成には、SiH4、Si2H6、Si3H8、SiF4、SiCl4、SiHF3、Si
H2F2、SiH3F、SiHCl3、SiH2Cl2、SiH3Cl等のSi原子の原
料ガスを用いたプラズマCVD法、または多結晶シリコン
をターゲットとし、ArとH2(さらにF2又はCl2を混合し
ても良い)の混合ガス中での反応性スパッタ法が用いら
れる。また、a−Si1-yCy(:H:X)(0<y<1)、a
−Si1-yOy(:H:X)(0<y<1)、a−Si1-yNy(:H:
X)(0<y<1)の作成には、更に炭素源として、C
H4、C2H6、C3H8、C4H10、C2H4、C3H6、C4H8、C2H2、C3H
4、C4H6、C6H6等の炭化水素、CH3F、CH3CI、CH3I、C2H5
Cl、C2H5Br、等のハロゲン化アリル、CClF3、CF4、CH
F3、C2F6、C3F8等のフロンガス、C6H6-mFm(m−1〜
6)の弗化ベンゼン等のC原子の原料ガスをプラズマCV
D法に用いるシリコン原料ガスと混合して、あるいは、
反応性スパッタ法にはAr等のスパッタガスと混合して用
いる。また、酸素源としてはO2、CO、CO2、NO、NO2等、
また、窒素源としてはN2、NH3、NO等を混合して用い
る。
For forming a-Si (: H: X), which is a photoconductive layer containing silicon, SiH 4 , Si 2 H 6 , Si 3 H 8 , SiF 4 , SiCl 4 , SiHF 3 , Si is used.
A plasma CVD method using a source gas of Si atoms such as H 2 F 2 , SiH 3 F, SiHCl 3 , SiH 2 Cl 2 , and SiH 3 Cl, or using polycrystalline silicon as a target, Ar and H 2 (further F 2 Alternatively, a reactive sputtering method in a mixed gas of Cl 2 may be used) is used. In addition, a-Si 1-y C y (: H: X) (0 <y <1), a
-Si 1-y O y (: H: X) (0 <y <1), a-Si 1-y N y (: H:
X) (0 <y <1) is prepared by further adding C as a carbon source.
H 4, C 2 H 6, C 3 H 8, C 4 H 10, C 2 H 4, C 3 H 6, C 4 H 8, C 2 H 2, C 3 H
Hydrocarbons such as 4 , C 4 H 6 , C 6 H 6, etc., CH 3 F, CH 3 CI, CH 3 I, C 2 H 5
Allyl halides such as Cl, C 2 H 5 Br, CClF 3 , CF 4 , CH
F 3, C 2 F 6, C 3 chlorofluorocarbon such as F 8, C 6 H 6- m F m (m-1~
6) C atom source gas such as fluorinated benzene is plasma CV
Mixed with silicon source gas used in method D, or
The reactive sputtering method is used by mixing with a sputtering gas such as Ar. Also, as the oxygen source, O 2 , CO, CO 2 , NO, NO 2, etc.,
As the nitrogen source, N 2 , NH 3 , NO or the like is mixed and used.

また、a−Si(:H:X)にGeを添加する場合もGeH4、Ge2H
6、Ge3H8、GeF4、GeCl4、GeHF3、GeH2F2、GeH3F、GeHCl
3、GeH2Cl2、GeH3Cl等のガスを上記Si原子の原料ガスと
混合しプラズマCVD法によって形成することも出来る。
さらに、本発明において、上記のa−Si(:H:X),a−Si
1-yCy(:H:X)(0<y<1)、a−Si1-yOy(:H:X)
(0<y<1)、a−Si1-yNy(:H:X)(0<y<
1)、あるいはこれらにGe添加のこれらの膜中に、不純
物を添加することにより伝導性を制御し、所望の電子写
真特性を得ることができる。p型伝導性を与えるp型不
純物としては、周期律表第III族bに属するB、Al、G
a、In等があり、好適にはB、Al、Gaが用いられ、n型
伝導性を与えるn型不純物としては、周期律表第V族b
に属するN、P、As、Sb等が有り、好適にはP、Asが用
いられる。
In addition, when Ge is added to a-Si (: H: X), GeH 4 , Ge 2 H
6 , Ge 3 H 8 , GeF 4 , GeCl 4 , GeHF 3 , GeH 2 F 2 , GeH 3 F, GeHCl
A gas such as 3 , GeH 2 Cl 2 or GeH 3 Cl may be mixed with the above Si atom source gas to form the plasma CVD method.
Further, in the present invention, the above-mentioned a-Si (: H: X), a-Si
1-y C y (: H: X) (0 <y <1), a-Si 1-y O y (: H: X)
(0 <y <1), a-Si 1-y N y (: H: X) (0 <y <
1), or by adding impurities to these films in which Ge is added, the conductivity can be controlled and desired electrophotographic characteristics can be obtained. P-type impurities that give p-type conductivity include B, Al, and G belonging to Group IIIb of the periodic table.
a, In, etc., preferably B, Al, or Ga are used, and as the n-type impurity imparting n-type conductivity, Group V group b of the periodic table is used.
There are N, P, As, Sb, etc., which are preferably used.

これらの不純物を添加する方法として、p型不純物の場
合、B2H6、B4H10、B5H9、B5H11、B6H12、B6H14、BF3、B
Cl3、BBr3、AlCl3、(CH3)3Al、(C2H5)3Al、(i-C4H9)3A
l、(CH3)3Ga、(C2H5)3Ga、InCl3、(C2H5)2Inを、n型不
純物の場合、N2、NH3、NO、N2O、NO2、PH3、P2H4、PH
4I、PF3、PF5、PCl3、PCl5、PBr3,PBr5、PI3、AsH3、A
sF3、AsCl3、AsBr3、SbH3、SbF3、SbF5、SbCl3、SbCl5
等のガスを、あるいはこれらのガスをH2,He、Arで希釈
したガスを、プラズマCVD法では、それぞれの膜形成時
において、使用する上記のC原子,Si原子等の原料ガス
と混合して用いれば良く、反応性スパッタ法では、Arま
たはH2あるいはF2、Cl2に混合して用いれば良い。以下
実施例について述べる。
As a method for adding these impurities, in the case of p-type impurities, B 2 H 6 , B 4 H 10 , B 5 H 9 , B 5 H 11 , B 6 H 12 , B 6 H 14 , BF 3 , B
Cl 3, BBr 3, AlCl 3 , (CH 3) 3 Al, (C 2 H 5) 3 Al, (iC 4 H 9) 3 A
l, (CH 3) 3 Ga , (C 2 H 5) 3 Ga, InCl 3, a (C 2 H 5) 2 In , the case of n-type impurity, N 2, NH 3, NO , N 2 O, NO 2 , PH 3 , P 2 H 4 , PH
4 I, PF 3 , PF 5 , PCl 3 , PCl 5 , PBr 3 , PBr 5 , PI 3 , AsH 3 , A
sF 3 , AsCl 3 , AsBr 3 , SbH 3 , SbF 3 , SbF 5 , SbCl 3 , SbCl 5
In the plasma CVD method, a gas obtained by diluting these gases with H 2 , He, or Ar is mixed with the above-mentioned raw material gas such as C atom or Si atom used in forming each film in the plasma CVD method. In the reactive sputtering method, Ar, H 2, F 2 , or Cl 2 may be mixed and used. Examples will be described below.

実施例1 鏡面研磨したアルミニウム基板上に、VI族としてSを有
するフィルム形状のPPS(ポリp−フェニレンスルフィ
ド)を、貼りつけ、フッ素樹脂シートをフィルムの上側
より巻き付け熱処理炉において加熱し、PPSフィルム
を、アルミニウム基板上に融着させた。加熱温度は、PP
Sの、融解温度である285℃より高い290℃とし、加熱雰
囲気は、大気中である。熱処理炉より基板を取り出した
後、フッ素樹脂シートを取り外し、再び熱処理炉に設置
し、酸素雰囲気で、加熱処理を、施した。加熱温度は、
285℃〜350℃の範囲内で、制御し、加熱処理時間は、3
時間一定とした。この処理後、PPSフィルムの膜厚は、1
0〜25μmとした。この層を、電荷輸送層とし、電荷発
生層として、量子効率が大きく可視光全域に渡って良好
な感度を有するa−Si:Hを、採用した。a−Si:Hの製膜
は、プラズマCVD法で行った。PPSフィルムを、貼りつけ
た基板を、6インチの放電電極を有する平行平板型の容
量結合方式プラズマCVD装置内に設置し、反応容器内を
5×10-6Torr以下に排気後基板を150〜200℃の温度範囲
の一定温度に加熱制御した。反応容器内にSiH4ガスを、
50sccm,H2ガスを250sccm混合導入し、容器内圧力を0.2
〜1.0Torr、13.56MHZの高周波を電力40〜80Wの条件で成
膜し、a−Si:H層を光導電層として0.5〜5.0μ燕形成し
た。
Example 1 A film-shaped PPS (poly-p-phenylene sulfide) having S as a VI group was attached on a mirror-polished aluminum substrate, and a fluororesin sheet was wound from the upper side of the film and heated in a heat treatment furnace to form a PPS film. Was fused on an aluminum substrate. The heating temperature is PP
S is 290 ° C., which is higher than the melting temperature of 285 ° C., and the heating atmosphere is the atmosphere. After taking out the substrate from the heat treatment furnace, the fluororesin sheet was removed, the substrate was placed again in the heat treatment furnace, and heat treatment was performed in an oxygen atmosphere. The heating temperature is
Controlled within the range of 285 ℃ -350 ℃, heat treatment time is 3
The time was fixed. After this treatment, the thickness of PPS film is 1
It was set to 0 to 25 μm. This layer was used as a charge transport layer, and as a charge generation layer, a-Si: H, which has a large quantum efficiency and a good sensitivity over the entire visible light range, was adopted. The film formation of a-Si: H was performed by the plasma CVD method. The substrate on which the PPS film was attached was placed in a parallel plate type capacitively coupled plasma CVD apparatus having a 6-inch discharge electrode, the reaction vessel was evacuated to 5 × 10 −6 Torr or less, and the substrate was heated to 150 to The heating was controlled to a constant temperature in the temperature range of 200 ° C. SiH 4 gas in the reaction vessel,
Introduce 50 sccm, H 2 gas mixed at 250 sccm, and set the container pressure to 0.2
A high frequency of ˜1.0 Torr, 13.56 MHZ was formed under the condition of an electric power of 40 to 80 W, and an a-Si: H layer was formed as a photoconductive layer to form a 0.5 to 5.0 μ swallow.

この電子写真感光体を6.0kVでコロナ帯電させたとこ
ろ、電荷輸送層の膜厚が20μ燕のもので+1500Vの表面
電位を得ることができ、白色光で露光したところ、残留
電位+50V以下、半減露光量は1.01x・s以下と非常に優
れた電子写真特性を示した。この電子写真感光体の組成
分析をしたところ、電荷輸送層中に含まれるO原子のC
原子に対する組成比率は、12atm%であった。
When this electrophotographic photosensitive member was corona-charged at 6.0 kV, a surface potential of +1500 V could be obtained with a charge transport layer having a thickness of 20 μm, and when exposed to white light, the residual potential was +50 V or less, half the potential. The exposure amount was 1.01 x · s or less, which showed very excellent electrophotographic characteristics. When the composition of this electrophotographic photosensitive member was analyzed, C of O atoms contained in the charge transport layer was analyzed.
The composition ratio to the atoms was 12 atm%.

比較としてPPSフィルムの融着後の加熱処理を、0.1Torr
以下の減圧下で行い、O原子数がC原子に対して1atm%
以下である電荷輸送層を得、前述同様a−Si;H層を電荷
発生層として形成した。この電子写真感光体の特性は、
残留電位+400V以上、半減露光量1501x・s以上と劣っ
ていた。更に膜中のO原子数を酸素雰囲気中の加熱処理
の加熱時間で50atm%まで変化させたところ1〜35atm%
までは、残留電位+50V以下と実用上問題のない電子写
真特性を示した。
As a comparison, heat treatment after fusion of PPS film was 0.1 Torr.
Performed under the following reduced pressure, O atom number is 1 atm% to C atom
The following charge transport layer was obtained, and the a-Si; H layer was formed as the charge generation layer as described above. The characteristics of this electrophotographic photoreceptor are
The residual potential was +400 V or more, and the half-exposure amount was 1501x · s or more, which was inferior. Further, when the number of O atoms in the film was changed to 50 atm% by the heating time of the heat treatment in the oxygen atmosphere, the number was 1 to 35 atm%
Up to 50 V, the residual potential was less than +50 V, showing electrophotographic characteristics with no practical problems.

実施例2 電荷発生層を、形成する際、融着処理と同時に電子受容
体として、TCNQ(7,7,8,8,−テトラシアノキノジメタ
ン)を添加した。原料であるPPSフィルムに対して5重
量%の添加量で膜厚25μmとして実施例1と同じ条件で
酸素雰囲気での熱処理を施し電荷輸送層とした。電荷発
生層には、a−Si:H層及びa−SiCx:H(アモルファスシ
リコンカーバイト)層を採用し、それぞれ電子写真特性
の評価を行った。その結果電荷発生層が、a−Si:H層の
場合、残留電位+30V以下、半減露光量0.61x・s以下と
良好な特性を示した。又電荷発生層が、a−SiCx:H層の
場合でも同等の電子写真特性を得た。尚、a−SiCx:H層
の製膜は、導入ガスをC2H2とSiH4の混合としプラズマCV
D法で行った。
Example 2 When forming the charge generation layer, TCNQ (7,7,8,8, -tetracyanoquinodimethane) was added as an electron acceptor simultaneously with the fusion treatment. A charge transport layer was formed by heat treatment in an oxygen atmosphere under the same conditions as in Example 1 with a film thickness of 25 μm added to the PPS film as the raw material at a content of 5% by weight. An a-Si: H layer and an a-SiCx: H (amorphous silicon carbide) layer were adopted as the charge generation layer, and the electrophotographic characteristics were evaluated. As a result, when the charge generation layer was an a-Si: H layer, the residual potential was +30 V or less, and the half-exposure amount was 0.61 x · s or less, which showed favorable characteristics. Even when the charge generation layer was an a-SiCx: H layer, the same electrophotographic characteristics were obtained. The film formation of the a-SiCx: H layer was performed by using plasma CV with the introduction gas being a mixture of C 2 H 2 and SiH 4.
D method was used.

発明の効果 本発明によれば、光励起によってキャリアを発生する光
導電層と、そのキャリアを輸送する電荷輸送層からなる
機能分離型電子写真感光体において、電荷輸送層がP−
フェニレンを有し、パラ位にVIb族元素を有する直鎖状
化合物高分子層であり、VIb族元素としてS,Se、Te、の
少なくともいずれか一つを含有し、更にO原子を含有す
ることで、高感度、低残留電位の電子写真感光体を得る
ことができる。又、表面に高い硬度を持つ非晶質層を設
けることで高耐刷性を持ち得る。更に電荷輸送層層の製
造が、高分子の融着で行えることで、安価な電子写真感
光体を提供でき得る。
EFFECTS OF THE INVENTION According to the present invention, in a function-separated electrophotographic photosensitive member including a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transports the carriers, the charge transport layer is P-
A linear compound polymer layer having phenylene and a VIb group element in the para position, containing at least one of S, Se, and Te as a VIb group element, and further containing an O atom Thus, an electrophotographic photoreceptor having high sensitivity and low residual potential can be obtained. Further, by providing an amorphous layer having high hardness on the surface, high printing durability can be obtained. Furthermore, since the charge transport layer layer can be produced by fusing a polymer, an inexpensive electrophotographic photoreceptor can be provided.

【図面の簡単な説明】[Brief description of drawings]

図は、本発明の実施例における電子写真感光体の断面図
である。 1……支持体、2……電荷輸送層、3……電荷発生層、
4……自由表面。
The drawing is a cross-sectional view of an electrophotographic photosensitive member according to an embodiment of the present invention. 1 ... Support, 2 ... Charge transport layer, 3 ... Charge generation layer,
4 ... Free surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−59353(JP,A) 特開 昭55−90954(JP,A) 特開 昭59−224846(JP,A) 特開 昭62−113156(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Koji Akiyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masanori Watanabe 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References JP-A-60-59353 (JP, A) JP-A-55-90954 (JP, A) JP-A-59-224846 (JP, A) JP-A-62-113156 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光励起によってキャリアを発生する光導電
層と、そのキャリアを輸送する電荷輸送層からなる機能
分離型電子写真感光体において、前記電荷輸送層がP−
フェニレンを有し、パラ位にVIb族元素を有する直鎖状
化合物高分子層であり、VIb族元素としてS,Se、Te、の
少なくともいずれか一つを含有し、更にO原子を該VIb
族とは別に高分子鎖上外に含有することを特徴とする電
子写真感光体。
1. A function-separated electrophotographic photosensitive member comprising a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transports the carriers, wherein the charge transport layer is P-.
A linear compound polymer layer having phenylene and a VIb group element in the para position, containing at least one of S, Se, and Te as a VIb group element, and further containing an O atom in the VIb group.
An electrophotographic photoreceptor characterized in that it is contained outside and above the polymer chain separately from the group.
【請求項2】電荷輸送層中のO原子のC原子に対する原
子数比率が、1〜35atm%であることを特徴とする特許
請求の範囲第1項記載の電子写真感光体。
2. The electrophotographic photoreceptor according to claim 1, wherein the ratio of the number of O atoms to the number of C atoms in the charge transport layer is 1 to 35 atm%.
【請求項3】光励起によってキャリアを発生する光導電
層と、そのキャリアを輸送する電荷輸送層からなる機能
分離型電子写真感光体において、前記電荷輸送層がP−
フェニレンを有し、パラ位にVIb族元素を有する直鎖状
化合物高分子層であり、VIb族元素としてS,Se、Te、の
少なくともいずれか一つを含有し、更にO原子を該VIb
族とは別に高分子鎖上外に含有する電子写真感光体の製
造方法において、前記電荷輸送層を形成する工程に、酸
素雰囲気中における加熱処理を含むことを特徴とする電
子写真感光体の製造方法。
3. A function-separated electrophotographic photosensitive member comprising a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transports the carriers, wherein the charge transport layer is P-.
A linear compound polymer layer having phenylene and a VIb group element in the para position, containing at least one of S, Se, and Te as a VIb group element, and further containing an O atom in the VIb group.
In the method for producing an electrophotographic photosensitive member which is contained outside the polymer chain in addition to the polymer group, the step of forming the charge transport layer includes a heat treatment in an oxygen atmosphere. Method.
【請求項4】酸素雰囲気中における加熱処理の加熱温度
が、250〜350℃の範囲であることを特徴とする特許請求
の範囲第3項記載の電子写真感光体の製造方法。
4. The method for producing an electrophotographic photosensitive member according to claim 3, wherein the heating temperature of the heat treatment in an oxygen atmosphere is in the range of 250 to 350 ° C.
JP62164556A 1987-05-07 1987-07-01 Electrophotographic photoreceptor and manufacturing method thereof Expired - Fee Related JPH0797226B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62164556A JPH0797226B2 (en) 1987-07-01 1987-07-01 Electrophotographic photoreceptor and manufacturing method thereof
US07/190,093 US4886719A (en) 1987-05-07 1988-05-04 Electrophotography photosensitive member and a method for fabricating same
DE3855975T DE3855975T2 (en) 1987-05-07 1988-05-06 Photosensitive, electrophotographic element and process for its manufacture
EP88304123A EP0290270B1 (en) 1987-05-07 1988-05-06 Electrophotography photosensitive member and a method for fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62164556A JPH0797226B2 (en) 1987-07-01 1987-07-01 Electrophotographic photoreceptor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS649460A JPS649460A (en) 1989-01-12
JPH0797226B2 true JPH0797226B2 (en) 1995-10-18

Family

ID=15795406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62164556A Expired - Fee Related JPH0797226B2 (en) 1987-05-07 1987-07-01 Electrophotographic photoreceptor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0797226B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725414B2 (en) * 2006-05-22 2011-07-13 パナソニック株式会社 Electric motor with output terminal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590954A (en) * 1978-12-29 1980-07-10 Toray Ind Inc Photoconductor
JPS59224846A (en) * 1983-06-06 1984-12-17 Dainippon Ink & Chem Inc Electrophotographic sensitive body
JPS6059353A (en) * 1983-09-13 1985-04-05 Toshiba Corp Electrophotographic sensitive body
JPH0715584B2 (en) * 1985-11-13 1995-02-22 松下電器産業株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS649460A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
US4600671A (en) Photoconductive member having light receiving layer of A-(Si-Ge) and N
US5303007A (en) Printing apparatus for electrostatic photocopying
EP0616260B1 (en) Electrophotographic light-receiving member
US4889782A (en) Electrostatic photocopying machine
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0797226B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JP2553558B2 (en) Electrophotographic photoreceptor
JPH0752301B2 (en) Electrophotographic photoreceptor
JP2595536B2 (en) Electrophotographic photoreceptor
US5094929A (en) Electrophotographic photoreceptor with amorphous carbon containing germanium
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
EP0290270B1 (en) Electrophotography photosensitive member and a method for fabricating same
EP0211421A1 (en) Electrophotographic photoreceptor
US5103262A (en) Printing member for electrostatic photocopying
JPH07120057B2 (en) Method for manufacturing electrophotographic photoreceptor
US4999270A (en) Printing member for electrostatic photocopying
JPH0752302B2 (en) Electrophotographic photoreceptor
US5008171A (en) Printing member for electrostatic photocopying
JP2562583B2 (en) Electrophotographic photoreceptor
JPS62242948A (en) Electrophotographic sensitive body
JPH0727246B2 (en) Electrophotographic photoreceptor
US5143808A (en) Printing member for electrostatic photocopying
JPH11305471A (en) Electrophotographic photoreceptor
JPS6261056A (en) Photoconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees