JPH0727246B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH0727246B2
JPH0727246B2 JP60217061A JP21706185A JPH0727246B2 JP H0727246 B2 JPH0727246 B2 JP H0727246B2 JP 60217061 A JP60217061 A JP 60217061A JP 21706185 A JP21706185 A JP 21706185A JP H0727246 B2 JPH0727246 B2 JP H0727246B2
Authority
JP
Japan
Prior art keywords
layer
photosensitive member
sige
electrophotographic photosensitive
inorganic photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60217061A
Other languages
Japanese (ja)
Other versions
JPS6275538A (en
Inventor
浩二 秋山
栄一郎 田中
昭雄 滝本
京子 尾道
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60217061A priority Critical patent/JPH0727246B2/en
Priority to EP19860110686 priority patent/EP0211421B1/en
Priority to DE8686110686T priority patent/DE3681655D1/en
Publication of JPS6275538A publication Critical patent/JPS6275538A/en
Publication of JPH0727246B2 publication Critical patent/JPH0727246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式による複写機あるいはプリンタ
に使用される電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member used in an electrophotographic copying machine or printer.

従来の技術 従来、可視光および近赤外線に光感度を持たせるため
に、水素化非晶質シリコン(以下a−Si:Hと略記する)
および水素化非晶質ゲルマニウム(以下a−Ge:Hと略記
する)の積層構造(特開昭56−150753号公報)、a−S
i:Hおよびa−SiGe:Hの積層構造(特開昭57−115552号
公報)、ホウ素および酸素添加したa−SiGe:Hの単層構
造(特開昭57−172344号公報)等の電子写真感光体が提
案されている。
2. Description of the Related Art Conventionally, hydrogenated amorphous silicon (hereinafter abbreviated as a-Si: H) has been used to provide photosensitivity to visible light and near infrared light.
And a laminated structure of hydrogenated amorphous germanium (hereinafter abbreviated as a-Ge: H) (JP-A-56-150753), a-S
Electrons such as a laminated structure of i: H and a-SiGe: H (JP-A-57-115552), a single-layer structure of a-SiGe: H doped with boron and oxygen (JP-A-57-172344) A photographic photoreceptor has been proposed.

発明が解決しようとする問題点 a−Si:H,a−SiGe:Hあるいはa−Ge:Hから構成される電
子写真感光体は、これらの材料の比誘電率が10〜15と大
きく、感光体の静電容量が大きいため、帯電時に大きい
コロナ電流が必要である。また表面電荷量が多いため、
この電荷を消滅させるために多くの露光量が必要にな
り、使用される光源の制約および消費電力の増加、ある
いは露光時間の増加による動作速度の低下を生じる問題
があった。
Problems to be Solved by the Invention An electrophotographic photosensitive member composed of a-Si: H, a-SiGe: H or a-Ge: H has a large relative dielectric constant of these materials of 10 to 15, Due to the large body capacitance, a large corona current is required during charging. Also, since the surface charge amount is large,
A large amount of exposure is required to extinguish this charge, and there is a problem in that the operating speed is reduced due to restrictions on the light source used and power consumption increase, or an increase in exposure time.

さらに、a−Si:H,a−SiGe:Hおよびa−Ge:Hの成膜に最
も一般的なプラズマCVD法を使用する場合、原料ガスと
してSiH4およびGeH4が用いられるが、これらのガスは高
価であり、製造コストの低減が困難であった。また、プ
ラズマCVD法で成膜したa−Si:H,a−SiGe:Hおよびa−G
e:Hにはピンホールを生じ易く、感光体を構成して画像
評価を行った際、白点キズとして表われる問題があっ
た。
Further, when the most general plasma CVD method is used for forming a-Si: H, a-SiGe: H and a-Ge: H, SiH 4 and GeH 4 are used as the source gas. Gas is expensive and it is difficult to reduce the manufacturing cost. In addition, a-Si: H, a-SiGe: H and a-G formed by plasma CVD method
e: H had a problem that pinholes were apt to occur and white spots appeared when the image was evaluated with the photoconductor.

問題点を解決するための手段 シリコンおよびゲルマニウムの少くとも一方を主成分と
する無機光導電層と酸素,硫黄および窒素の少くとも1
つを含有する非晶質カーボンを主成分とする電荷輸送層
を積層する。
Means for Solving the Problems Inorganic photoconductive layer containing at least one of silicon and germanium as main components and at least 1 of oxygen, sulfur and nitrogen
A charge-transporting layer whose main component is amorphous carbon containing titanium is laminated.

作用 非晶質カーボンの比誘電率は3〜6と、a−Si:H,a−Si
Ge:Hおよびa−Ge:Hの比誘電率に比べてかなり小さく、
非晶質カーボンをこれらの材料から構成される光導電層
の電荷輸送層として用いた多層の電子写真感光体の静電
容量は、a−Si:Hあるいはa−SiGe:Hの単層感光体、ま
たはa−Si:Hとa−SiGe:Hの積層感光体、a−Si:Hとa
−Ge:Hの積層感光体の静電容量より小さくなる。従っ
て、帯電時のコロナ電流が減少し、また表面電荷量が少
ないため光感度が高くなり、動作速度を向上させること
が可能になる。また、非晶質カーボンに酸素,硫黄ある
いは窒素を含有させると、非晶質カーボン内に含まれる
欠陥が減少し、電荷輸送の効率が向上するばかりでな
く、比誘電率がさらに減少するため、上記の効果をより
一層高めることが可能になる。
Action Amorphous carbon has a relative permittivity of 3 to 6, a-Si: H, a-Si
It is considerably smaller than the relative permittivity of Ge: H and a-Ge: H,
The electrostatic capacity of a multi-layer electrophotographic photosensitive member using amorphous carbon as a charge transport layer of a photoconductive layer composed of these materials is a-Si: H or a-SiGe: H single-layer photosensitive member. Or a laminated photoreceptor of a-Si: H and a-SiGe: H, a-Si: H and a
It is smaller than the capacitance of the laminated photoconductor of -Ge: H. Therefore, the corona current at the time of charging is reduced, and since the surface charge amount is small, the photosensitivity is increased and the operation speed can be improved. Further, when oxygen, sulfur or nitrogen is contained in the amorphous carbon, defects contained in the amorphous carbon are reduced and not only the efficiency of charge transport is improved but also the relative dielectric constant is further reduced. It is possible to further enhance the above effect.

また、比誘電率の小さい非晶質カーボンを積層すること
により、a−Si:H,a−SiGe:Hあるいはa−Ge:Hだけで構
成される感光体の1/3〜1/2の膜厚でこれらの感光体と同
程度の特性が得られる。さらに、非晶質カーボンの成膜
にプラズマCVD法を使用した場合、原料ガスとしてSiH4,
GeH4に比べて安価なCH4,C2H6,C3H8,C2H4などの使用が可
能なため、感光体の製造コストを大幅に低減できる。ま
た、プラズマCVD法で製作した非晶質カーボンにはピン
ホールの発生がないため、白点キズのない良好な画像を
得ることができる。
In addition, by stacking amorphous carbon having a small relative dielectric constant, 1/3 to 1/2 of that of a photoconductor composed only of a-Si: H, a-SiGe: H or a-Ge: H can be obtained. The same thickness characteristics as those of these photoreceptors can be obtained. Furthermore, when the plasma CVD method is used for forming the amorphous carbon film, SiH 4 ,
Inexpensive CH 4 as compared with GeH 4, C 2 H 6, C 3 H 8, for C 2 H 4 which can be used, such as, can be greatly reduced manufacturing cost of the photoconductor. In addition, since the amorphous carbon produced by the plasma CVD method has no pinholes, it is possible to obtain a good image without white spots.

実施例 第1図は、本発明における最も基本的な電子写真感光体
の一実施例の断面を模式的に示したものである。
EXAMPLE FIG. 1 is a schematic cross-sectional view of an example of the most basic electrophotographic photosensitive member according to the present invention.

第1図に示す電子写真感光体1は、電子写真感光体とし
ての支持体2上に、電荷輸送層3と無機光導電層4とを
有し、前記無機光導電層4は自由表面5を一方の端面に
有している。電荷輸送層3は、少くとも水素またはハロ
ゲン原子を含有する非晶質カーボン〔以下a−C(:H:
X)(但し、X=F,Cl,Br,I)と略記する〕で構成され、
無機光導電層4は、少くとも水素またはハロゲン原子を
含有し、かつシリコンおよびゲルマニウムの少くとも一
方を主成分とする材料で構成される。また、電荷輸送層
3を構成するa−C(:H:X)膜は、a−C(:H:X)の比
誘電率および膜中の欠陥を減少させ、膜の経時変化をな
くし安定性を向上させるために、酸素,硫黄および窒素
の少くとも1つを含有する。
The electrophotographic photosensitive member 1 shown in FIG. 1 has a charge transport layer 3 and an inorganic photoconductive layer 4 on a support 2 as an electrophotographic photosensitive member, and the inorganic photoconductive layer 4 has a free surface 5. It has one end face. The charge transport layer 3 is made of amorphous carbon [hereinafter a-C (: H:
X) (however, abbreviated as X = F, Cl, Br, I)],
The inorganic photoconductive layer 4 is made of a material containing at least hydrogen or a halogen atom and containing at least one of silicon and germanium as a main component. Further, the aC (: H: X) film constituting the charge transport layer 3 reduces the relative permittivity of aC (: H: X) and defects in the film, and eliminates the time-dependent change of the film and stabilizes it. It contains at least one of oxygen, sulfur and nitrogen to improve its properties.

第1図では支持体2上にa−C(:H:X)からなる電荷輸
送層3、無機光導電層4を順に積層しているが、第2図
に示すように支持体2上に無機光導電層4、a−C(:
H:X)からなる電荷輸送層3の順に積層して電子写真感
光体6を構成しても、a−C(:H:X)は可視光に対して
ほとんど透明であるため、自由表面5から入射した光の
大部分は無機光導電層4に到達することができ、第1図
の構成と同様な特性を得ることができる。
In FIG. 1, the charge transport layer 3 made of aC (: H: X) and the inorganic photoconductive layer 4 are laminated in this order on the support 2, but as shown in FIG. Inorganic photoconductive layer 4, aC (:
(C: H: X) is almost transparent to visible light, even if the charge transport layer 3 composed of (H: X) is laminated in this order to form the electrophotographic photoreceptor 6. Most of the light incident from the light source can reach the inorganic photoconductive layer 4, and the characteristics similar to those of the configuration shown in FIG. 1 can be obtained.

本発明において、少くとも水素またはハロゲン原子を含
有し、かつシリコンおよびゲルマニウムの少くとも一方
を主成分とする無機光導電層4を構成する材料として
は、a−Si(:H:X)単層,a−SiGe(:H:X)単層,a−G
e(:H:X)単層,a−Ge(:H:X)とa−Si(:H:X)の積層,
a−SiGe(:H:X)とa−Si(:H:X)の積層,a−Ge(:H:
X)とa−SiGe(:H:X)の積層などが選択して使用され
る。
In the present invention, the material for forming the inorganic photoconductive layer 4 containing at least hydrogen or a halogen atom and containing at least one of silicon and germanium as a main component is an a-Si (: H: X) single layer. , a−SiGe (: H: X) single layer, a−G
e (: H: X) single layer, a-Ge (: H: X) and a-Si (: H: X) stack,
Lamination of a-SiGe (: H: X) and a-Si (: H: X), a-Ge (: H: X:
X) and a-SiGe (: H: X) are laminated and used.

本発明において、さらに電子写真特性を向上させるため
に、第1図において、支持体2と電荷輸送層3の間に、
支持体2から電荷輸送層3に注入するキャリヤを有効に
阻止する障壁層を設けても良い。障壁層を形成する材料
としては、Al2O3,BaO,BaO2,BeO,Bi2O3,CaO,CeO2,Ce2O3,
La2O3,Dy2O3,Lu2O3,Cr2O3,CuO,Cu2O,FeO,PbO,MgO,SrO2,
Ta2O5,ThO2,ZrO2,HfO2,Y2O3,TiO2,MgO・Al2O3,SiO2・Mg
Oなどの金属酸化物またはTiN,AlN,SnN,NbN,TaN,GaNなど
の金属窒化物またはWC,SnC,TiCなどの金属炭化物または
Si1-XOX,Si1-XNX,Si1-XCX,Ge1-XOX,Ge1-XNX,Ge1-XCX,B
1-XNX,B1-XCX(0<X<1)などの絶縁物またはポリエ
チレン,ポリカーボネート,ポリウレタン,ポリパラキ
シレンなどの絶縁性有機化合物が使用され、自由表面5
側に正電荷を帯電させる場合にはp型半導体、例えばB,
Al,Gaなどの周期表第III族元素を添加したa−Si(:H:
X),a−SiGe(:H:X),a−Ge(:H:X),a−C(:H:X),a
−SiC(:H:X),a−GeC(:H:X)を使用しても良い。ま
た、自由表面5に負電荷を帯電させる場合、障壁層とし
てn型半導体、例えば周期表第V族元素のN,P,Asを添加
したa−Si(:H:X),a−SiGe(:H:X),a−Ge(:H:X),a
−C(:H:X),a−SiC(:H:X)またはa−GeC(:H:X)の
使用が好ましい。
In the present invention, in order to further improve the electrophotographic characteristics, in FIG. 1, between the support 2 and the charge transport layer 3,
A barrier layer that effectively blocks carriers injected from the support 2 to the charge transport layer 3 may be provided. As a material for forming the barrier layer, Al 2 O 3 , BaO, BaO 2 , BeO, Bi 2 O 3 , CaO, CeO 2 , Ce 2 O 3 ,
La 2 O 3 ,, Dy 2 O 3 ,, Lu 2 O 3 ,, Cr 2 O 3 ,, CuO, Cu 2 O, FeO, PbO, MgO, SrO 2 ,
Ta 2 O 5 ,, ThO 2 , ZrO 2 , HfO 2 , Y 2 O 3 , TiO 2 , MgO ・ Al 2 O 3 , SiO 2・ Mg
Metal oxide such as O or metal nitride such as TiN, AlN, SnN, NbN, TaN, GaN or metal carbide such as WC, SnC, TiC or
Si 1-X O X , Si 1-X N X , Si 1-X C X , Ge 1-X O X , Ge 1-X N X , Ge 1-X C X , B
Insulators such as 1-X N X , B 1-X C X (0 <X <1) or insulating organic compounds such as polyethylene, polycarbonate, polyurethane, polyparaxylene are used, and free surface 5
When a positive charge is applied to the side, a p-type semiconductor such as B,
A-Si (: H:
X), a-SiGe (: H: X), a-Ge (: H: X), a-C (: H: X), a
-SiC (: H: X), a-GeC (: H: X) may be used. When negative charges are charged on the free surface 5, an n-type semiconductor, for example, a-Si (: H: X), a-SiGe (a-SiGe ( : H: X), a−Ge (: H: X), a
The use of -C (: H: X), a-SiC (: H: X) or a-GeC (: H: X) is preferred.

さらに、第2図に示すように電荷輸送層3が自由表面5
を有する場合においても、支持体2と無機光導電層4と
の間に、上記の金属酸化物,金属窒化物,金属炭化物,
絶縁物または絶縁性有機化合物からなる障壁層を形成し
ても良く、また特に自由表面5に正電荷を帯電させる場
合は、上記のp型半導体で障壁層を形成し、自由表面5
に負電荷を帯電させる場合は、上記のn型半導体で形成
するのが好適である。
Further, as shown in FIG. 2, the charge transport layer 3 has a free surface 5.
Even in the case of having the above-mentioned metal oxide, metal nitride, metal carbide, or the like between the support 2 and the inorganic photoconductive layer 4,
A barrier layer made of an insulating material or an insulating organic compound may be formed. In particular, when the free surface 5 is charged with a positive charge, the barrier layer may be formed of the above-mentioned p-type semiconductor to form the free surface 5.
When negatively charged, it is preferable to form the above n-type semiconductor.

本発明において、感光体の耐摩耗性,耐湿性およびクリ
ーニング性を向上させるために第1図および第2図にお
いて、自由表面5上に表面被覆層が形成される。表面被
覆層形成材料として有効に使用されるものとして、Si
1-XOX,Si1-XCX,Si1-XNX,Ge1-XOX,Ge1-XCX,Ge1-XNX,B1-X
NX,B1-XCX,Al1-XNX,Sn1-XNX,Sn1-XCXなどの無機絶縁物
あるいはポリエチレンテレフタレート,ポリカーボネー
ト,ポリプロピレン,ポリ塩化ビニル,ポリ塩化ビニリ
デン,ポリビニルアルコール,ポリスチレン,ポリアミ
ド,ポリ四弗化エチレン,ポリ三弗化塩化エチレン,ポ
リ弗化ビニリデン,六弗化プロピレン−四弗化エチレン
コポリマー,三弗化エチレン−弗化ビニリデンコポリマ
ー,ポリブテン,ポリビニルブチラール,ポリウレタン
などの合成樹脂などが挙げられる。
In the present invention, a surface coating layer is formed on the free surface 5 in FIGS. 1 and 2 in order to improve the abrasion resistance, moisture resistance and cleaning property of the photoreceptor. Si can be effectively used as a surface coating layer forming material.
1-X O X , Si 1-X C X , Si 1-X N X , Ge 1-X O X , Ge 1-X C X , Ge 1-X N X , B 1-X
N X , B 1-X C X , Al 1-X N X , Sn 1-X N X , Sn 1-X C X Inorganic insulation or polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polyvinylidene chloride , Polyvinyl alcohol, polystyrene, polyamide, polytetrafluoroethylene, polytrifluoroethylene chloride, polyvinylidene fluoride, propylene hexafluoride-tetrafluoroethylene copolymer, ethylene trifluoride-vinylidene fluoride copolymer, polybutene, polyvinyl Examples include butyral and synthetic resins such as polyurethane.

a−C(:H:X)の作成には、CH4,C2H6,C3H8,C4H10,C
2H4,C3H6,C4H8,C2H2,C3H4,C4H6,C6H6などの炭化水素、C
H3F,CH3Cl,CH3Br,CH3I,C2H5Cl,C2H5Br,C2H5Iなどのハロ
ゲン化アルキル、C3H5F,C3H5Cl,C3H5Brなどのハロゲン
化アリル、CClF3,CF4,CHF3,C2F6,C3F8などのフロンガ
ス、C6H6-mFm(m=1〜6)の弗化ベンゼンなどのC原
子の原料ガスを用いたプラズマCVD法、または、グラフ
ァイトをターゲットとし、Ar,H2,F2,Cl2,CH4,C2H4,C2H2
中での反応性スパッタ法が使用される。また、a−
C(:H:X)に酸素O,硫黄Sあるいは窒素Nを含有させる
には、O原子の原料ガスとしてO2,O3,CO,CO2,NO,NO2,N2
O,N2O3,N2O4,N2O5,NO3,S原子の原料ガスとして、CS2,H2
S,S2O,SO2,SO3,N原子の原料ガスとしてN2,NH3,H2NNH2,H
N3,NH4N3,F3N,F4N2などのガスを、プラズマCVD法では上
記のC原子の原料ガスに混合して用いれば良く、反応性
スパッタ法ではAr,H2,F2,Cl2などに混合して用いれば良
い。
To create aC (: H: X), CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , C
2 H 4 , C 3 H 6 , C 4 H 8 , C 2 H 2 , C 3 H 4 , C 4 H 6 , C 6 H 6 and other hydrocarbons, C
Alkyl halides such as H 3 F, CH 3 Cl, CH 3 Br, CH 3 I, C 2 H 5 Cl, C 2 H 5 Br, C 2 H 5 I, C 3 H 5 F, C 3 H 5 Cl , C 3 H 5 Br etc. allyl halides, CClF 3 , CF 4 , CHF 3 , C 2 F 6 , C 3 F 8 etc. fluorocarbons, C 6 H 6- mFm (m = 1-6) fluorination Plasma CVD method using C atom source gas such as benzene, or targeting graphite, Ar, H 2 , F 2 , Cl 2 , CH 4 , C 2 H 4 , C 2 H 2
The reactive sputtering method in is used. Also, a-
In order to make oxygen (O), sulfur (S) or nitrogen (N) contained in C (: H: X), O 2 , O 3 , CO, CO 2 , NO, NO 2 , N 2 as a source gas of O atom is used.
O, as a source gas of N 2 O 3, N 2 O 4, N 2 O 5, NO 3, S atom, CS 2, H 2
S, S 2 O, SO 2 , SO 3 , N N 2 , NH 3 , H 2 NNH 2 , H
Gases such as N 3 , NH 4 N 3 , F 3 N, and F 4 N 2 may be mixed with the above-mentioned C atom source gas in the plasma CVD method and used, and in the reactive sputtering method, Ar, H 2 , It may be used by mixing with F 2 , Cl 2 or the like.

少くとも水素またはハロゲン原子を含有し、かつ、シリ
コンおよびゲルマニウムの少くとも一方を主成分とする
無機光導電層の構成材料であるa−Si(:H:X),a−G
e(:H:X),a−SiGe(:H:X)の作成には、先ずa−Si(:
H:X)の場合、SiH4,Si2H6,Si3H8,SiF4,SiCl4,SiHF3,SiH
2F2,SiH3F,SiHCl3,SiH2Cl2,SiH3ClなどのSi原子の原料
ガスを用いたプラズマCVD法、または多結晶シリコンを
ターゲットとしArとH2(さらにF2またはCl2を混合して
も良い)の混合ガス中での反応性スパッタ法が用いら
れ、a−Ge(:H:X)の場合、GeH4,Ge2H6,Ge3H8,GeF4,Ge
Cl4,GeBr4,GeI4,GeF2,GeCl2,GeBr2,GeI2,GeHF3,GeH2F2,
GeH3F,GeHCl3,GeH2Cl2,GeH3Cl,GeHBr3,GeH2Br2,GeH3Br,
GeHI3,GeH2I2,GeH3IなどのGe原子の原料ガスを用いたプ
ラズマCVD法、または多結晶ゲルマニウムをターゲット
とし、ArとH2(さらにF2またはCl2を混合しても良い)
の混合ガス中での反応性スパッタ法が用いられる。a−
SiGe(:H:X)の場合も同様に、上記のSi原子の原料ガス
およびGe原子の原料ガスの混合ガスを用いたプラズマCV
D法、あるいはSiとGeの混合されたターゲットまたはSi
とGeの2枚のターゲットを用いたArとH2(さらにF2また
はCl2を混合しても良い)の混合ガス中での反応性スパ
ッタ法により形成される。
A-Si (: H: X), a-G, which is a constituent material of an inorganic photoconductive layer containing at least hydrogen or a halogen atom and containing at least one of silicon and germanium as a main component.
To create e (: H: X), a-SiGe (: H: X), first, a-Si (:
H: X), SiH 4 ,, Si 2 H 6 ,, Si 3 H 8 ,, SiF 4 ,, SiCl 4 ,, SiHF 3 ,, SiH
2 F 2, SiH 3 F, SiHCl 3, SiH 2 Cl 2, SiH 3 plasma CVD method using a source gas of Si atoms, such as Cl, or polycrystalline silicon as a target Ar and H 2 (more F 2 or Cl 2 may be mixed) in a mixed gas of a), and in the case of a-Ge (: H: X), GeH 4 , Ge 2 H 6 , Ge 3 H 8 , GeF 4 , Ge
Cl 4 , GeBr 4 , GeI 4 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , GeHF 3 , GeH 2 F 2 ,
GeH 3 F, GeHCl 3 , GeH 2 Cl 2 , GeH 3 Cl, GeHBr 3 , GeH 2 Br 2 , GeH 3 Br,
Plasma CVD method using source gas of Ge atoms such as GeHI 3 , GeH 2 I 2 , GeH 3 I, or targeting polycrystalline germanium, Ar and H 2 (F 2 or Cl 2 may be mixed) )
The reactive sputtering method in the mixed gas is used. a-
Similarly, in the case of SiGe (: H: X), plasma CV using the mixed gas of the above Si atom source gas and Ge atom source gas
D method, or mixed target of Si and Ge or Si
It is formed by the reactive sputtering method in a mixed gas of Ar and H 2 (further, F 2 or Cl 2 may be mixed) using two targets of Ge and Ge.

また、無機光導電層の構成材料のa−Si(:H:X),a−Ge
(:H:X)およびa−SiGe(:H:X)に炭素,酸素,硫黄あ
るいは窒素を含有させることにより、無機光導電層中の
高抵抗化,高光感度化,高安定化を図ることができる。
炭素,酸素,硫黄および窒素を含有させる方法として
は、それぞれ上記のC原子の原料ガス,O原子の原料ガ
ス,S原子の原料ガスおよびN原子の原料ガスを、プラズ
マCVD法では上記のSi原子の原料ガスあるいはGe原子の
原料ガスに混合して使用すれば良く、反応性スパッタ法
ではArまたはH2に混合して使用すれば良い(F2またはCl
2に混合しても良い)。
In addition, a-Si (: H: X), a-Ge which is a constituent material of the inorganic photoconductive layer
(: H: X) and a-SiGe (: H: X) containing carbon, oxygen, sulfur, or nitrogen to achieve high resistance, high photosensitivity, and high stability in the inorganic photoconductive layer. You can
Carbon, oxygen, sulfur, and nitrogen can be contained by using the above-mentioned C atom source gas, O atom source gas, S atom source gas, and N atom source gas, respectively. It may be used by mixing it with the raw material gas of Ge or the raw material gas of Ge atoms, and in the reactive sputtering method, it may be mixed with Ar or H 2 and used (F 2 or Cl
May be mixed in 2. )

さらに、本発明において上記のa−Si(:H:X),a−G
e(:H:X),a−SiGe(:H:X),a−C(:H:X)に不純物を
添加することにより、伝導性を制御し、所望の電子写真
特性を得ることができる。特に、電荷輸送層を形成する
a−C(:H:X)は、この不純物の添加により大きくキャ
リア輸送の特性が変化する。p型伝導性を与えるp型不
純物としては、周期表第III族に属するB,Al,Ga,Inなど
が有り、好適にはB,Al,Gaが用いられ、n型伝導性を与
えるn型不純物としては、周期表第V族に属するP,As,S
bなどが有り、好適にはP,Asが用いられる。また、これ
らの不純物を添加する方法として、p型不純物の場合、
B2H6,B4H10,B5H9,B5H11,B6H10,B6H12,B6H14,BF3,BCl3,B
Br3,AlCl3,(CH33Al,(C2H53Al,(iC4H93Al,(CH
33Ga,(C2H53Ga,InCl3,(C2H53In、n型不純物の
場合、PH3,P2H4,PH4I,PF3,PF5,PCl3,PCl5,PBr3,PBr5,PI
3,AsH3,AsF3,AsCl3,AsBr3,AsF5,SbH3,SbF3,SbF5,SbCl3,
SbCl5のガスあるいはこれらのガスをH2,He,Arで希釈し
たガスを、プラズマCVD法では、それぞれの材料形成時
において使用する上記のC原子,Si原子またはGe原子の
原料ガスに混合して用いれば良く、反応性スパッタ法で
は、ArまたはH2に混合して用いれば良い(F2またはCl2
に混合しても良い)。
Further, in the present invention, the above-mentioned a-Si (: H: X), a-G
By adding impurities to e (: H: X), a-SiGe (: H: X), a-C (: H: X), conductivity can be controlled and desired electrophotographic characteristics can be obtained. it can. In particular, the carrier transport characteristics of aC (: H: X) forming the charge transport layer are significantly changed by the addition of this impurity. Examples of p-type impurities that give p-type conductivity include B, Al, Ga, and In belonging to Group III of the periodic table. B, Al, and Ga are preferably used, and n-type that gives n-type conductivity is used. Impurities include P, As, S belonging to Group V of the periodic table.
b, etc., and P and As are preferably used. As a method of adding these impurities, in the case of p-type impurities,
B 2 H 6 , B 4 H 10 , B 5 H 9 , B 5 H 11 , B 6 H 10 , B 6 H 12 , B 6 H 14 , BF 3 , BCl 3 , B
Br 3, AlCl 3, (CH 3) 3 Al, (C 2 H 5) 3 Al, (iC 4 H 9) 3 Al, (CH
3 ) 3 Ga, (C 2 H 5 ) 3 Ga, InCl 3 ,, (C 2 H 5 ) 3 In, in the case of n-type impurities, PH 3 , P 2 H 4 , PH 4 I, PF 3 , PF 5 , PCl 3 , PCl 5 , PBr 3 , PBr 5 , PI
3 , AsH 3 , AsF 3 , AsCl 3 , AsBr 3 , AsF 5 , SbH 3 , SbF 3 , SbF 5 , SbCl 3 ,
In the plasma CVD method, a gas of SbCl 5 or a gas obtained by diluting these gases with H 2 , He, and Ar is mixed with the above-mentioned source gas of C atom, Si atom, or Ge atom used for forming each material. Mixed with Ar or H 2 in the reactive sputtering method (F 2 or Cl 2
May be mixed with).

以下、実施例について述べる。Examples will be described below.

実施例1 鏡面研磨したAl基板を容量結合方式プラズマCVD装置内
に配置し、反応容器内を5×10-6Torr以下に排気後、基
板を150〜250℃に加熱した。C2H4:10〜80sccm,H2希釈し
た濃度0.1%のB2H6:0.5〜20sccm,CO:0.1〜0.5sccmを装
置内に導入し、反応容器内の圧力を0.1〜1.0Torrに調整
後、13.56MHzの高周波電力20〜200Wでホウ素および酸素
添加したa−C:H層を15μm形成し、次にSiF4:2〜10scc
m,SiH4:10〜40sccmを導入し、圧力0.2〜1.0Torr、高周
波電力20〜150Wでアンドープa−Si:H:F層を0.5〜2μ
m形成して電子写真感光体を作製した。この電子写真感
光体を+6.3KVでコロナ帯電させたところ、+3500Vの表
面電位を得、白色光で露光したところ残留電位+20V以
下であった。次に表面電位を+400Vに帯電させたとこ
ろ、同一膜厚のa−Si:H:F層のみの時よりも帯電時のコ
ロナ電流は減少し、光感度は増大した。これは、ホウ素
および酸素添加したa−C:H層が正孔の電荷輸送層とし
て機能し、電子写真感光体の誘電率を減少させているた
めである。
Example 1 A mirror-polished Al substrate was placed in a capacitively coupled plasma CVD apparatus, the reaction vessel was evacuated to 5 × 10 −6 Torr or less, and then the substrate was heated to 150 to 250 ° C. C 2 H 4 : 10 to 80 sccm, H 2 diluted 0.1% concentration of B 2 H 6 : 0.5 to 20 sccm, CO: 0.1 to 0.5 sccm was introduced into the apparatus, and the pressure in the reaction vessel was adjusted to 0.1 to 1.0 Torr. After the adjustment, an aC: H layer doped with boron and oxygen was formed to a thickness of 15 μm with a high-frequency power of 13.56 MHz of 20 to 200 W, and then SiF 4 : 2 to 10 scc.
m, SiH 4 : 10-40 sccm was introduced, the pressure was 0.2-1.0 Torr, the high-frequency power was 20-150 W, and the undoped a-Si: H: F layer was 0.5-2 μ.
m to form an electrophotographic photosensitive member. When this electrophotographic photosensitive member was corona-charged at +6.3 KV, a surface potential of +3500 V was obtained, and when exposed to white light, the residual potential was +20 V or less. Next, when the surface potential was charged to +400 V, the corona current at the time of charging was decreased and the photosensitivity was increased as compared with the case of only the a-Si: H: F layer having the same film thickness. This is because the aC: H layer added with boron and oxygen functions as a charge transport layer for holes and reduces the dielectric constant of the electrophotographic photoreceptor.

実施例2 鏡面研磨したAlドラムを容量結合方式プラズマCVD装置
内に配置し、反応容器内を5×10-6Torr以下に排気後、
Alドラムを150〜250℃に加熱した。次に、GeF4:1〜5scc
m,SiH4:100〜200sccm,H2希釈した20ppm濃度のPH3:1〜5s
ccm導入し、圧力:0.2〜1.0Torr、高周波電力:100〜300W
でリン添加したa−SiGe:H:F層0.5〜1μm形成し、続
いてGeF4の導入を止め、代わりにCH4:5〜20sccm導入
し、リン添加したa−SiC:H層0.5〜1μm形成した。次
に、CH4:70〜150sccm,CF4:30〜50sccm,N2:1〜5sccmを導
入し、圧力:0.1〜1.0Torr、高周波電力:100〜500Wで窒
素添加したa−C:H:F層3〜5μmを積層し、更にGeH4:
5〜10sccm,C2H4:50〜100sccm,圧力:0.1〜1.0Torr,高周
波電力:100〜500Wの製作条件でGe1-XCXを1000〜5000Å
形成し、電子写真感光体を作製した。この感光体を発振
波長800nmの半導体レーザを光源とするレーザビームプ
リンタに実装し、負帯電において鮮明な印字および白点
キズのないことを確認した。また、80万枚の刷耐性およ
び多湿雰囲気中での画像流れのないことも確認した。
Example 2 A mirror-polished Al drum was placed in a capacitively coupled plasma CVD apparatus, and the reaction vessel was evacuated to 5 × 10 −6 Torr or less.
The Al drum was heated to 150-250 ° C. Then GeF 4 : 1-5scc
m, SiH 4 : 100 to 200 sccm, H 2 diluted 20 ppm PH 3 : 1 to 5 s
Introduced ccm, pressure: 0.2 ~ 1.0Torr, high frequency power: 100 ~ 300W
The a-SiGe: H: F layer 0.5 to 1 μm in which phosphorus is added, then the introduction of GeF 4 is stopped, CH 4 : 5 to 20 sccm is introduced instead, and the a-SiC: H layer in which phosphorus is added is 0.5 to 1 μm Formed. Then, CH 4: 70~150sccm, CF 4 : 30~50sccm, N 2: 1~5sccm introduced, pressure: 0.1~1.0Torr, high frequency power: the addition of nitrogen in the 100 to 500 W a-C: H: F layer 3-5 μm is laminated, and GeH 4 :
5 to 10 sccm, C 2 H 4 : 50 to 100 sccm, pressure: 0.1 to 1.0 Torr, high frequency power: 100 to 500 W Ge 1-X C X 1000 to 5000 Å
Then, an electrophotographic photosensitive member was prepared. This photoconductor was mounted on a laser beam printer using a semiconductor laser with an oscillation wavelength of 800 nm as a light source, and it was confirmed that there was no clear printing and no white spot flaws in negative charging. It was also confirmed that the printing durability of 800,000 sheets and the absence of image deletion in a high humidity atmosphere.

さらに、光導電層のリン添加したa−SiGe:H:F層とリン
添加したa−SiC:H層の代わりに、a−Ge:H(:F)単層,
a−GeC:H(:F)単層,a−SiGe:H(:F)単層,または支持
体側からa−GeC:H(:F)とa−Si:H(:F)の積層,a−G
e:H(:F)とa−GeC:H(:F)の積層,a−Ge:H(:F)とa
−Si:H(:F)の積層,a−GeC:H(:F)とa−SiC:H:(:
F)の積層,a−GeC:H(:F)とa−SiGe:H(:F)の積層,a
−SiGe:H(:F)とa−Si:H(:F)の積層,a−Ge:H(:F)
とa−SiGe:H(:F)の積層,a−GeC:H(:F)とa−SiGe:
H(:F)の積層を使用した場合においても、上記と同様
な特性を示す電子写真感光体を形成できた。
Further, instead of the phosphorus-doped a-SiGe: H: F layer and the phosphorus-doped a-SiC: H layer of the photoconductive layer, an a-Ge: H (: F) single layer,
a-GeC: H (: F) single layer, a-SiGe: H (: F) single layer, or a-GeC: H (: F) and a-Si: H (: F) laminated from the support side, a−G
Stacking of e: H (: F) and a-GeC: H (: F), a-Ge: H (: F) and a
-Si: H (: F) stack, a-GeC: H (: F) and a-SiC: H: (:
F), a-GeC: H (: F) and a-SiGe: H (: F), a
-SiGe: H (: F) and a-Si: H (: F) stack, a-Ge: H (: F)
And a-SiGe: H (: F) stack, a-GeC: H (: F) and a-SiGe:
Even when the H (: F) layer was used, an electrophotographic photosensitive member having the same characteristics as described above could be formed.

実施例3 Moを蒸着したガラス基板をマグネトロンスパッタ装置内
に配置し、基板温度を150〜250℃とし、Dy2O3焼結体を
ターゲットとし、Ar:3〜20mTorr,O2:10〜40mTorr、高周
波電力:100〜300Wの条件でDy2O3層を1000〜5000Å形成
し、次にグラファイトをターゲットとし、Ar:1〜10mTor
r,H2:9〜90mTorr,NO:0.1〜1mTorr,高周波電力100〜600W
の条件で窒素および酸素添加したa−C:H層を5μm形
成した。続いて、多結晶シリコンをターゲットとし、A
r:2〜5mTorr,H2:3〜5mTorr,NO:0.1〜0.5mTorr,高周波電
力100〜500Wの条件で窒素および酸素添加したa−Si:H
層0.5〜2μm形成して電子写真感光体を形成した。こ
の感光体を+6.3KVでコロナ帯電したところ、表面電位
+1000Vを得、波長400〜700nmの光に対して高感度で、
残留電位も+20V以下であった。
Example 3 A glass substrate on which Mo is deposited is placed in a magnetron sputtering apparatus, the substrate temperature is set to 150 to 250 ° C., a Dy 2 O 3 sintered body is targeted, and Ar: 3 to 20 mTorr, O 2 : 10 to 40 mTorr. , High frequency power: 1000 ~ 5000Å Dy 2 O 3 layer is formed under the condition of 100 ~ 300W, then target graphite and Ar: 1 ~ 10mTor
r, H 2 : 9 to 90 mTorr, NO: 0.1 to 1 mTorr, high frequency power 100 to 600 W
Under the above conditions, an aC: H layer added with nitrogen and oxygen was formed to a thickness of 5 μm. Then, using polycrystalline silicon as a target,
r: 2 to 5mTorr, H 2 : 3 to 5mTorr, NO: 0.1 to 0.5mTorr, a-Si: H with nitrogen and oxygen added under conditions of high frequency power 100 to 500W
A layer of 0.5 to 2 μm was formed to form an electrophotographic photoreceptor. When this photoreceptor was corona-charged at + 6.3KV, surface potential + 1000V was obtained, and it was highly sensitive to light with wavelength of 400-700nm.
The residual potential was also less than + 20V.

実施例4 表面にAlを蒸着したガラス基板上に、プラズマCVD法に
よりホウ素添加したa−Si:Hを1000〜5000Å障壁層とし
て形成し、更に、酸素およびホウ素を添加したa−C:H
層3μm、酸素およびホウ素添加したa−Si:H層0.5〜
2μm、表面被覆層としてSi1-XCX層1000〜5000Åを順
次積層して電子写真感光体を作製した。この感光体に+
6.3KVのコロナ帯電を行い、白色光で露光したところ、
帯電電位が高く、しかも高感度であった。
Example 4 A-Si: H doped with boron was formed as a 1000 to 5000Å barrier layer by a plasma CVD method on a glass substrate having Al vapor-deposited on its surface, and a-C: H doped with oxygen and boron was further added.
Layer 3 μm, oxygen- and boron-added a-Si: H layer 0.5-
An electrophotographic photosensitive member was prepared by sequentially laminating 2 μm and Si 1-X C X layers 1000 to 5000 Å as a surface coating layer. + On this photoconductor
After performing corona charging of 6.3KV and exposing with white light,
The charging potential was high and the sensitivity was high.

発明の効果 本発明による電子写真感光体は、帯電時のコロナ電流が
小さく、高光感度で、画像に白点キズがなく、しかも低
コストである。
EFFECTS OF THE INVENTION The electrophotographic photosensitive member according to the present invention has a small corona current at the time of charging, high photosensitivity, no white spots on an image, and low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、それぞれ本発明における電子写
真感光体の実施例の断面図である。 1,6……電子写真感光体、2……支持体、3……電荷輸
送層、4……無機光導電層、5……自由表面。
1 and 2 are cross-sectional views of an embodiment of the electrophotographic photosensitive member according to the present invention. 1, 6 ... Electrophotographic photoreceptor, 2 ... Support, 3 ... Charge transport layer, 4 ... Inorganic photoconductive layer, 5 ... Free surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾道 京子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭62−9355(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoko Onomichi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masanori Watanabe 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References Japanese Patent Laid-Open No. 62-9355 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】少なくとも水素またはハロゲン原子を含有
し、かつシリコンおよびゲルマニウムの少なくとも一方
を主成分とする無機光導電層と、前記無機光導電層に接
しており、少なくとも水素またはハロゲン原子を含有
し、かつ酸素,硫黄,および窒素の少なくとも一つを含
有する非晶質カーボンを主成分とする電荷輸送層とを備
えたことを特徴とする電子写真感光体。
1. An inorganic photoconductive layer containing at least hydrogen or a halogen atom and having at least one of silicon and germanium as a main component, and in contact with the inorganic photoconductive layer, containing at least a hydrogen or halogen atom. And a charge transport layer containing amorphous carbon containing at least one of oxygen, sulfur and nitrogen as a main component.
【請求項2】無機光導電層が、炭素,酸素,硫黄,およ
び窒素の少なくとも何れか1つを含有することを特徴と
する特許請求の範囲第1項に記載の電子写真感光体。
2. The electrophotographic photosensitive member according to claim 1, wherein the inorganic photoconductive layer contains at least one of carbon, oxygen, sulfur, and nitrogen.
【請求項3】無機光導電層および電荷輸送層の少なくと
もいずれか一方が、周期表第III族元素あるいは第V族
元素を含有することを特徴とする特許請求の範囲第1項
または第2項に記載の電子写真感光体。
3. At least one of an inorganic photoconductive layer and a charge transport layer contains a Group III element or a Group V element of the periodic table. The electrophotographic photosensitive member according to 1.
【請求項4】表面被覆層を有することを特徴とする特許
請求の範囲第1項に記載の電子写真感光体。
4. The electrophotographic photosensitive member according to claim 1, which has a surface coating layer.
【請求項5】支持体と無機光導電層あるいは電荷輸送層
との間に障壁層を有することを特徴とする特許請求の範
囲第1項に記載の電子写真感光体。
5. The electrophotographic photosensitive member according to claim 1, further comprising a barrier layer between the support and the inorganic photoconductive layer or the charge transport layer.
JP60217061A 1985-08-03 1985-09-30 Electrophotographic photoreceptor Expired - Fee Related JPH0727246B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60217061A JPH0727246B2 (en) 1985-09-30 1985-09-30 Electrophotographic photoreceptor
EP19860110686 EP0211421B1 (en) 1985-08-03 1986-08-01 Electrophotographic photoreceptor
DE8686110686T DE3681655D1 (en) 1985-08-03 1986-08-01 Elektrophotographischer photorezeptor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217061A JPH0727246B2 (en) 1985-09-30 1985-09-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS6275538A JPS6275538A (en) 1987-04-07
JPH0727246B2 true JPH0727246B2 (en) 1995-03-29

Family

ID=16698214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217061A Expired - Fee Related JPH0727246B2 (en) 1985-08-03 1985-09-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0727246B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343156A (en) * 1986-08-11 1988-02-24 Stanley Electric Co Ltd Electrophotographic sensitive body
US4898798A (en) * 1986-09-26 1990-02-06 Canon Kabushiki Kaisha Photosensitive member having a light receiving layer comprising a carbonic film for use in electrophotography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544617A (en) * 1983-11-02 1985-10-01 Xerox Corporation Electrophotographic devices containing overcoated amorphous silicon compositions
JPS61223748A (en) * 1985-03-28 1986-10-04 Fuji Electric Co Ltd Electrophotographic sensitive body
US4634648A (en) * 1985-07-05 1987-01-06 Xerox Corporation Electrophotographic imaging members with amorphous carbon

Also Published As

Publication number Publication date
JPS6275538A (en) 1987-04-07

Similar Documents

Publication Publication Date Title
US4557987A (en) Photoconductive member having barrier layer and amorphous silicon charge generation and charge transport layers
JPS639219B2 (en)
EP0137516B1 (en) Amorphous silicon photoreceptor
JPH0752301B2 (en) Electrophotographic photoreceptor
JPH0727246B2 (en) Electrophotographic photoreceptor
US5303007A (en) Printing apparatus for electrostatic photocopying
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2553558B2 (en) Electrophotographic photoreceptor
JP2595536B2 (en) Electrophotographic photoreceptor
JPS63121854A (en) Electrophotographic sensitive body
JPS62173474A (en) Electrophotographic sensitive body
JPH0752302B2 (en) Electrophotographic photoreceptor
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
US6322942B1 (en) Xerographic photoreceptor primarily formed by the hydrogenated amorphous silicon material and the method for manufacturing the same
JPH07120057B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS6313050A (en) Electrophotographic sensitive body
EP0211421A1 (en) Electrophotographic photoreceptor
JPS62242948A (en) Electrophotographic sensitive body
JPS6331552B2 (en)
JPS6313051A (en) Electrophotographic sensitive body
JPH0797226B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
US4569893A (en) Amorphous matrix of silicon and germanium having controlled conductivity
JPH0715586B2 (en) Photoconductor
JPS6325069B2 (en)
JPH0715584B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees