JPH0752301B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH0752301B2
JPH0752301B2 JP60217050A JP21705085A JPH0752301B2 JP H0752301 B2 JPH0752301 B2 JP H0752301B2 JP 60217050 A JP60217050 A JP 60217050A JP 21705085 A JP21705085 A JP 21705085A JP H0752301 B2 JPH0752301 B2 JP H0752301B2
Authority
JP
Japan
Prior art keywords
layer
inorganic photoconductive
photoconductive layer
photosensitive member
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60217050A
Other languages
Japanese (ja)
Other versions
JPS6275536A (en
Inventor
浩二 秋山
栄一郎 田中
昭雄 滝本
京子 尾道
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60217050A priority Critical patent/JPH0752301B2/en
Priority to DE8686110686T priority patent/DE3681655D1/en
Priority to EP19860110686 priority patent/EP0211421B1/en
Publication of JPS6275536A publication Critical patent/JPS6275536A/en
Publication of JPH0752301B2 publication Critical patent/JPH0752301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式による複写機あるいはプリンタ
に使用される電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member used in an electrophotographic copying machine or printer.

従来の技術 従来、可視光および近赤外線に光感度を持たせるため
に、水素化非晶質シリコン(以下a−Si:Hと略記する)
および水素化非晶質ゲルマニウム(以下a−Ge:Hと略記
する)の積層構造(特開昭56-150753号公報)、a−Si:
Hおよびa−SiGe:Hの積層構造(特開昭57-115552号公
報)、ホウ素および酸素添加したa−SiGe:Hの単層構造
(特開昭57-172344号公報)等の電子写真感光体が提案
されている。
2. Description of the Related Art Conventionally, hydrogenated amorphous silicon (hereinafter abbreviated as a-Si: H) has been used to provide photosensitivity to visible light and near infrared light.
And a laminated structure of hydrogenated amorphous germanium (hereinafter abbreviated as a-Ge: H) (JP-A-56-150753), a-Si:
Electrophotographic sensitizations such as a laminated structure of H and a-SiGe: H (JP-A-57-115552), a single layer structure of a-SiGe: H doped with boron and oxygen (JP-A-57-172344) The body is proposed.

発明が解決しようとする問題点 a−Si:H,a−SiGe:Hあるいはa−Ge:Hから構成される電
子写真感光体は、これらの材料の比誘電率が10〜15と大
きく、感光体の静電容量が大きいため、帯電時に大きい
コロナ電流が必要である。また表面電荷量が多いため、
この電荷を消滅させるために多くの露光量が必要にな
り、使用される光源の制約および消費電力の増加、ある
いは露光時間の増加による動作速度の低下を生じる問題
があった。
Problems to be Solved by the Invention An electrophotographic photosensitive member composed of a-Si: H, a-SiGe: H or a-Ge: H has a large relative dielectric constant of these materials of 10 to 15, Due to the large body capacitance, a large corona current is required during charging. Also, since the surface charge amount is large,
A large amount of exposure is required to extinguish this charge, and there is a problem in that the operating speed is reduced due to restrictions on the light source used and power consumption increase, or an increase in exposure time.

さらに、a−Si:Hおよびa−Ge:Hの成膜に最も一般的な
プラズマ法を使用する場合、原料ガスとしてSiH4および
GeH4が用られるが、これらのガスは高価であり、製造コ
ストの低減が困難であった。
Furthermore, when the most general plasma method is used for forming a-Si: H and a-Ge: H, SiH 4 and
GeH 4 is used, but these gases are expensive and it is difficult to reduce the manufacturing cost.

問題点を解決するための手段 ゲルマニウムを含む無機光導電層と非晶質カーボンを主
成分とする電荷輸送層を積層する。
Means for Solving the Problems An inorganic photoconductive layer containing germanium and a charge transport layer containing amorphous carbon as a main component are laminated.

作用 非晶質カーボンの比誘電率は3〜6と、a−Ge:Hおよび
a−SiGe:Hの比誘電率に比べてかなり小さく、非晶質カ
ーホンをa−Ge:Hあるいはa−SiGe:H光導電層の電荷輸
送層として用いた多層の電子写真感光体の誘電率は、a
−Ge:Hあるいはa−SiGe:Hの単層感光体、またはa−G
e:Hおよびa−SiGe:Hの積層感光体の誘電率より小さく
なる。従って、帯電時のコロナ電流が減少し、また表面
電荷量が少ないため光感光度が高くなり、動作速度を向
上させること可能になる。
Action The relative permittivity of amorphous carbon is 3 to 6, which is considerably smaller than the relative permittivity of a-Ge: H and a-SiGe: H. The dielectric constant of the multi-layer electrophotographic photosensitive member used as the charge transport layer of the: H photoconductive layer is a
-Ge: H or a-SiGe: H single layer photoreceptor, or a-G
It is smaller than the dielectric constant of the laminated photoconductor of e: H and a-SiGe: H. Therefore, the corona current at the time of charging is reduced, and since the surface charge amount is small, the photosensitivity is increased and the operation speed can be improved.

また、比誘電率の小さい非晶質カーボンを積層すること
により、a−Ge:Hおよび/またはa−SiGe:Hの膜厚を従
来の単層感光体に比べて1/10〜1/5程度にすることがで
き、感光体全体の膜厚も従来の単層感光体に比べて1/3
〜1/2程度にすることが出来る。また、a−Ge:Hのよう
な光導電層にSiを含まない、禁止体幅の狭い層を設ける
ことにより、光り導電層の膜厚が薄くなっても露光の光
を完全に吸収でき、支持体表面での反射による解像度劣
化を防ぐことが出来る。さらに、非晶質カーボンの成膜
にプラズマCVD法を使用した場合、原料ガスとしてSiH4,
GeH4に比べて安価なCH4,C2H6,C3H8,C2H4などの使用が可
能なため、感光体の製造コストを大幅に低減できる。
In addition, by stacking amorphous carbon having a small relative dielectric constant, the film thickness of a-Ge: H and / or a-SiGe: H is 1/10 to 1/5 that of a conventional single-layer photoconductor. The overall film thickness of the photoconductor is 1/3 compared to conventional single-layer photoconductors.
It can be reduced to about 1/2. Further, by providing a layer of a photoconductive layer such as a-Ge: H that does not contain Si and has a narrow inhibitor width, it is possible to completely absorb the exposure light even if the thickness of the photoconductive layer becomes thin, It is possible to prevent deterioration of resolution due to reflection on the surface of the support. Furthermore, when the plasma CVD method is used for forming the amorphous carbon film, SiH 4 ,
Inexpensive CH 4 as compared with GeH 4, C 2 H 6, C 3 H 8, for C 2 H 4 which can be used, such as, can be greatly reduced manufacturing cost of the photoconductor.

実施例 第1図は、本発明における最も基本的な電子写真感光体
の一実施例の断面を模式的に示したものである。
EXAMPLE FIG. 1 is a schematic cross-sectional view of an example of the most basic electrophotographic photosensitive member according to the present invention.

第1図に示す電子写真感光体は、電子写真感光体として
の支持体1上に、少なくとも水素またはハロゲン原子
(X)を含有する非晶質カーボン(以下a−C(:H:X)
(但しX=F,Cl,Br,I)と略記する)からなる電荷輸送
層2とゲルマニウムを含有する無機光導電層3とを有
し、前記無機光導電層3は自由表面4を一方の端面に有
している。第1図では支持体1上にa−C(:H:X)から
なる電荷輸送層2、ゲルマニウムを含有する無機光導電
層3を順に積層しているが、第2図に示すように支持体
1上にゲルマニウムを含有する無機光導電層3、a−C
(:H:X)からなる電荷輸送層2の順に積層しても、a−
C(:H:X)は、可視光に対してほとんど透明であるた
め、自由表面4から入射した光の大部分は無機光導電層
3に到達することができ、第1図の構成と同様な特性を
得ることができる。
The electrophotographic photoreceptor shown in FIG. 1 comprises an amorphous carbon (hereinafter a-C (: H: X)) containing at least hydrogen or a halogen atom (X) on a support 1 as an electrophotographic photoreceptor.
(However, abbreviated as X = F, Cl, Br, I)) and an inorganic photoconductive layer 3 containing germanium. The inorganic photoconductive layer 3 has a free surface 4 on one side. It has on the end face. In FIG. 1, a charge transport layer 2 made of aC (: H: X) and an inorganic photoconductive layer 3 containing germanium are laminated in this order on a support 1, but as shown in FIG. Inorganic photoconductive layer 3 containing germanium on body 1, aC
Even if the charge transport layer 2 composed of (: H: X) is laminated in this order, a-
Since C (: H: X) is almost transparent to visible light, most of the light incident from the free surface 4 can reach the inorganic photoconductive layer 3, which is similar to the structure shown in FIG. It is possible to obtain various characteristics.

本発明において、ゲルマニウムを含有する無機光導電層
3にはシリコンを含まない層が有り、具体的な構成とし
ては、a−Ge(:H:X)単層a−Ge(:H:X)とa−SiG
e(:H:X)の単層a−Ge(:H:X)とa−Si(:H:X)の積
層a−GeC(:H:X)単層a−GeC(:H:X)とa−Si(:H:
X)の積層a−Ge(:H:X)とa−GeC(:H:C)の積層a−
GeC(:H:X)とa−SiGe(:H:X)の積層a−Ge(:H:X)
とa−SiC(:H:X)の積層またはa−GeC(H:X)とa−S
iC(:H:X)の積層などが選択して使用される。また無機
光導電層3として上記以外の有効な材料としては、少な
くともSe,Te,Sあるいはこれらの中の2種以上からなる
材料にGeを含有させたカルコゲナイドガラス、例えばGe
−S,Ge-Se,Ge-Te,Ge−P−S,Ge−P−Se,Ge−P−Te,Ge
-As−S,Ge-As-Se,Ge-As-Te,Ge-Sb-Se,Ge-Te-Sb,Ge-Te−
P,Ge-Te-As,Ga-Ge-As-Te,Ge-As−S−Te,Ge-As-Se-Te,K
−Ca-Ge−S,Ge-Te-Sb−Sなどが挙げられる。
In the present invention, the inorganic photoconductive layer 3 containing germanium has a layer not containing silicon, and as a specific constitution, a-Ge (: H: X) single layer a-Ge (: H: X) And a-SiG
e (: H: X) single layer a-Ge (: H: X) and a-Si (: H: X) layered a-GeC (: H: X) single layer a-GeC (: H: X) ) And a-Si (: H:
X) laminated a-Ge (: H: X) and a-GeC (: H: C) laminated a-
Stacked a-Ge (: H: X) of GeC (: H: X) and a-SiGe (: H: X)
And a-SiC (: H: X) stack or a-GeC (H: X) and a-S
A layer of iC (: H: X) is selected for use. In addition, as an effective material other than the above as the inorganic photoconductive layer 3, a chalcogenide glass in which Ge is contained in at least Se, Te, S or a material composed of two or more of these, for example, Ge
-S, Ge-Se, Ge-Te, Ge-P-S, Ge-P-Se, Ge-P-Te, Ge
-As-S, Ge-As-Se, Ge-As-Te, Ge-Sb-Se, Ge-Te-Sb, Ge-Te-
P, Ge-Te-As, Ga-Ge-As-Te, Ge-As-S-Te, Ge-As-Se-Te, K
-Ca-Ge-S, Ge-Te-Sb-S etc. are mentioned.

本発明において、さらに電子写真特性を向上させるため
に、第1図において、支持体1と電荷輸送層2の間に、
支持体1から電荷輸送層2に注入するキャリヤを有効に
阻止する障壁層を設けても良い。障壁層を形成する材料
としては、Al2O3,BaO,BaO2,BeO,Bi2O3,CaO,CeO2,Ce2O3,
La2O3,Dy2O3,Lu2O3,Cr2O3,CuO,Cu2O,FeO,PbO,MgO,SrO,T
a2O5,ThO2,ZrO2,HfO2,GeO2,Y2O3,TiO2,MgO,MgO・Al2O3,S
iO2・MgO等の金属酸化物またはTiN,AlN,SnN,NbN,TaN,GaN
などの金属窒化物またはWC,SnC,TiCなどの金属炭化物ま
たは、SiOx,SiNx,GeCx,GeNx,BNx,BCxなどの絶縁物、ポ
リエチレン,ポリカーボネイト,ポリウレタン,ポリパ
ラキシレンなどの絶縁性有機化合物が使用され、自由表
面4側に正電荷を帯電させる場合にはp型半導体、例え
ばB,Al,Gaなどの第III族元素を添加したa−Si(:H:
X),a−SiGe(:H:X),a−Ge(:H:X),a−C(:H:X),a
−SiC(:H:X)またはa−GeC(:H:X)を使用しても良
い。また、自由表面4に負電荷を帯電させる場合、障壁
層としてn型半導体、例えば第V族元素のN,P,Asを添加
したa−Si(:H:X),a−SiGe(:H:X),a−Ge(:H:X),a
−C(:H:X),a−SiC(:H:X)またはa−GeC(:H:X)の
使用が好ましい。さらに、第2図に示すように電荷輸送
層2が自由表面4を有する場合においても、支持体1と
無機光導電層3との間に、上記の金属酸化物、金属窒化
物、金属炭化物、絶縁物または絶縁性有機化合物からな
る障壁層を形成しても良く、また特に自由表面4に正電
荷を帯電させる場合は、上記のp型半導体で障壁層を形
成し、自由表面4に負電荷を帯電させ場合は、上記のn
型半導体で形成するのが好適である。
In the present invention, in order to further improve the electrophotographic characteristics, in FIG. 1, between the support 1 and the charge transport layer 2,
A barrier layer may be provided to effectively block carriers injected from the support 1 into the charge transport layer 2. As a material for forming the barrier layer, Al 2 O 3 , BaO, BaO 2 , BeO, Bi 2 O 3 , CaO, CeO 2 , Ce 2 O 3 ,
La 2 O 3 ,, Dy 2 O 3 ,, Lu 2 O 3 , Cr 2 O 3 , CuO, Cu 2 O, FeO, PbO, MgO, SrO, T
a 2 O 5 , ThO 2 , ZrO 2 , HfO 2 , GeO 2 , Y 2 O 3 , TiO 2 , MgO, MgO ・ Al 2 O 3 , S
Metal oxide such as iO 2・ MgO or TiN, AlN, SnN, NbN, TaN, GaN
Such as metal nitrides such as WC, SnC, TiC, etc. or insulators such as SiO x , SiN x , GeC x , GeN x , BN x , BC x , polyethylene, polycarbonate, polyurethane, polyparaxylene etc. When an insulating organic compound is used and a positive charge is charged on the free surface 4 side, a-Si (: H :: H :) containing a p-type semiconductor, for example, a group III element such as B, Al, or Ga is added.
X), a-SiGe (: H: X), a-Ge (: H: X), a-C (: H: X), a
-SiC (: H: X) or a-GeC (: H: X) may be used. Further, when the free surface 4 is charged with a negative charge, an n-type semiconductor such as a-Si (: H: X) or a-SiGe (: H) added with a group V element such as N, P or As is used as a barrier layer. : X), a−Ge (: H: X), a
The use of -C (: H: X), a-SiC (: H: X) or a-GeC (: H: X) is preferred. Further, even when the charge transport layer 2 has a free surface 4 as shown in FIG. 2, between the support 1 and the inorganic photoconductive layer 3, the above-mentioned metal oxide, metal nitride, metal carbide, A barrier layer made of an insulating material or an insulating organic compound may be formed. In particular, when the free surface 4 is charged with a positive charge, the barrier layer is formed of the above p-type semiconductor and the free surface 4 is charged with a negative charge. When charging the
It is preferably formed of a mold semiconductor.

本発明において、感光体の耐摩耗性、耐湿性、クリーニ
ング性を向上させるために第1図および第2図において
自由表面4上に表面被覆層が形成される。表面被覆形成
材料として有効に使用されるものとして、SiOx,SiCx,Si
Nx,GeOx,GeCx,GCMxBNx,BCx,AlNxなどの無機絶縁物ある
いはポリエチレンテレフタレート,ポリカーボネート,
ポリプロピレン,ポリ塩化ビニル,ポリ塩化ビニリデ
ン,ポリビニルアルコール,ポリスチレン,ポリアミ
ド,ポリ四弗化エチレン,ポリ三弗化塩化エチレン,ポ
リ弗化ピニリデン,六弗化プロピレン−四弗化エチレン
コポリマー,三弗化エチレン−弗化ビニリデンコポリマ
ー,ポリブレン,ポリビニルブチラール,ポリウレタン
などの合成樹脂などが挙げられる。
In the present invention, a surface coating layer is formed on the free surface 4 in FIGS. 1 and 2 in order to improve the wear resistance, moisture resistance and cleaning property of the photoreceptor. SiO x , SiC x , Si can be used effectively as surface coating materials.
Inorganic insulators such as N x , GeO x , GeC x , GCM x BN x , BC x , AlN x or polyethylene terephthalate, polycarbonate,
Polypropylene, Polyvinyl chloride, Polyvinylidene chloride, Polyvinyl alcohol, Polystyrene, Polyamide, Polytetrafluoride ethylene, Polytrifluoroethylene chloride, Polyphenylidene fluoride, Hexafluoropropylene-tetrafluoroethylene copolymer, Ethylene trifluoride -Synthetic resins such as vinylidene fluoride copolymer, polybrene, polyvinyl butyral and polyurethane.

a−C(:H:X)の作成には、CH4,C2H6,C3H8,C4H10,C
2H4,C3H6,C4H8,C2H2,C3H4,C4H6,C6H6,などの炭化水
素、CH3F,CH3Cl,CH3Br,CH3I,C2H5Cl,C2H5Br,C2H5I等の
ハロゲン化アルキル、C3H5F,C3H5Cl,C3H5Br等のハロゲ
ン化アリル、CClF3,CF4,CHF3,C2F6,C3F8等のフロンガ
ス、C6H6-mFm(m=1〜6)の弗化ベンゼン等のC原子
の原料ガスを用いたプラズマCVD法または、グラフィイ
トをターゲットとし、Ar,H2,F2,Cl2,CH4,C2H4,C2H2中で
の反応性スパッタ法が使用される。
To create aC (: H: X), CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , C
2 H 4 ,, C 3 H 6 ,, C 4 H 8 ,, C 2 H 2 ,, C 3 H 4 ,, C 4 H 6 ,, C 6 H 6 , and other hydrocarbons, CH 3 F, CH 3 Cl, CH 3 Br , CH 3 I, C 2 H 5 Cl, C 2 H 5 Br, C 2 H 5 I etc. alkyl halides, C 3 H 5 F, C 3 H 5 Cl, C 3 H 5 Br etc. allyl halides , CClF 3 , CF 4 , CHF 3 , C 2 F 6 , C 3 F 8 and other CFC gases, C 6 H 6-m F m (m = 1 to 6) fluorinated benzene and other C atom source gases plasma CVD method or using a graphics site targeting, Ar, H 2, F 2 , Cl 2, CH 4, C 2 H 4, a reactive sputtering method in C 2 H 2 is used.

ゲルマニウムを含有する無機光導電層の形成材料である
a−Ge(:H:X),a−Si(:H:X),a−SiGe(:H:X),a−Ge
C(:H:X),a−SiC(:H:X)の作成には、先ずa−Ge(:
H:X)の場合GeH4,Ge2H6,Ge3H8,GeF4,GeCl4,GeBr4,GeI4,
GeF2,GeCl2,GeBr2,GeI2,GeHF3,GeH2F2,GeH3F,GeHCl3,Ge
H2Cl2,GeH3Cl,GeHBr3,GeH2Br2,GeH3Br,GeHI3,GeH2I2,Ge
H3I等のGe原子の原料ガスを用いたプラズマCVD法、また
は多結晶ゲルマニウムをターゲットとし、ArとH2(さら
にF2又はCl2を混合しても良い)の混合ガス中での反応
性スパッタ法が用いられ、a−Si(:H:X)の場合、Si
H4,Si2H6,Si3H8,SiF4,SiCl4,SiHF3,SiH2F2,SiH3F,SiHCl
3,SiH2Cl2,SiH3ClなどのSi原子の原料ガスを用いたプラ
ズマCVD法、または多結晶シリコンをターゲットとしAr
とH2(さらにF2またはCl2を混合しても良い)の混合ガ
ス中での反応性スパッタ法が用いられる。a−SiGe(:
H:X)の場合も同様に、上記のGe原子の原料ガスおよびS
i原子の原料ガスの混合ガスを用いたプラズマCVD法、あ
るいはSiとGeの混合されたターゲットまたはSiとGeの2
枚のターゲットを用いたArおよびH2(さらにF2又はCl2
を混合しても良い)の混合ガス中での反応性スパッタ法
により形成される。a−GeC(:H:X)の場合、上記Ge原
子の原料ガスとCH4,C2H6,C3H8,C2H4,C3H6,C2H2,CF4,C2F
6,CHF3,CClF3,などのC原子の原料ガスの混合ガスを用
いたプラズマCVD法、あるいはGeとCの混合されたター
ゲットまたはGeとCの2枚のターゲットを用いたArおよ
びH2(さらにF2またはCl2を混合しても良い)の混合ガ
ス中での反応性スパッタ法で形成され、a−SiC(:H:
X)の場合も、a−GeC(:H:X)と同様に、上記Si原子の
原料ガスとC原子の原料ガスの混合ガスを用いたプラズ
マCVD法、あるいはSiとCの混合されたターゲットまた
はSiとCの2枚のターゲットを用いたArおよびH2(さら
にF2またはCl2を混合しても良い)の混合ガス中での反
応性スパッタ法で形成される。
Materials for forming an inorganic photoconductive layer containing germanium: a-Ge (: H: X), a-Si (: H: X), a-SiGe (: H: X), a-Ge
To create C (: H: X), a-SiC (: H: X), first, a-Ge (:
H: X) GeH 4 , Ge 2 H 6 , Ge 3 H 8 , GeF 4 , GeCl 4 , GeBr 4 , GeI 4 ,
GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , GeHF 3 , GeH 2 F 2 , GeH 3 F, GeHCl 3 , Ge
H 2 Cl 2 , GeH 3 Cl, GeHBr 3 , GeH 2 Br 2 , GeH 3 Br, GeHI 3 , GeH 2 I 2 , Ge
Plasma CVD method using a source gas of Ge atoms such as H 3 I, or reaction in a mixed gas of Ar and H 2 (F 2 or Cl 2 may be mixed) targeting polycrystalline germanium Reactive sputtering method is used, and in the case of a-Si (: H: X), Si
H 4, Si 2 H 6, Si 3 H 8, SiF 4, SiCl 4, SiHF 3, SiH 2 F 2, SiH 3 F, SiHCl
Plasma CVD method using source gas of Si atoms such as 3 , SiH 2 Cl 2 and SiH 3 Cl, or Ar targeting polycrystalline silicon
Reactive sputtering in a mixed gas of H 2 and H 2 (which may be mixed with F 2 or Cl 2 ) is used. a-SiGe (:
In the case of (H: X), similarly, the above source gas of Ge atoms and S
Plasma CVD method using a mixed gas of i atom source gas, or a target in which Si and Ge are mixed or Si and Ge
Ar and H 2 (additional F 2 or Cl 2
May be mixed) in a mixed gas of reactive sputtering method. In the case of a-GeC (: H: X), the source gas of the above Ge atom and CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 4 , C 3 H 6 , C 2 H 2 , CF 4 , C 2 F
Plasma CVD method using a mixed gas of C atom source gas such as 6 , CHF 3 , CClF 3 , or Ar and H 2 using a target mixed with Ge and C or two targets Ge and C It is formed by a reactive sputtering method in a mixed gas of (F 2 or Cl 2 may be further mixed), and a-SiC (: H:
Also in the case of X), as in the case of a-GeC (: H: X), a plasma CVD method using a mixed gas of the above Si atom source gas and C atom source gas, or a target in which Si and C are mixed Alternatively, it is formed by a reactive sputtering method in a mixed gas of Ar and H 2 (further, F 2 or Cl 2 may be mixed) using two targets of Si and C.

また、本発明において上記のa−C(:H:X),a−Ge(:
H:X),a−Si(:H:X),a−SiGe(:H:X),a−GeC(:H:
X),a−SiC(:H:X)に不純物を添加することにより、伝
導性を制御し、所望の電子写真特性を得ることができ
る。特に、電荷輸送層を形成するa−C(:H:X)は、こ
の不純物の添加により大きくキャリヤ輸送の特性が変化
する。p型伝導性を与えるp型不純物としては、周期表
第III族に属するB,Al,Ga,Inなどが有り、好適にはB,Al,
Gaが用いられ、n型伝導性を与えるn型不純物として
は、周期表第V族に属するP,As,Sbなどが有り、好適に
はP,Asが用いられる。
Further, in the present invention, the above-mentioned aC (: H: X), a-Ge (:
H: X), a-Si (: H: X), a-SiGe (: H: X), a-GeC (: H:
By adding impurities to (X), a-SiC (: H: X), the conductivity can be controlled and desired electrophotographic characteristics can be obtained. In particular, a-C (: H: X) forming the charge transport layer largely changes the carrier transport characteristics due to the addition of this impurity. Examples of p-type impurities that give p-type conductivity include B, Al, Ga, and In belonging to Group III of the periodic table.
Ga is used, and as n-type impurities that give n-type conductivity, there are P, As, Sb belonging to Group V of the periodic table, and P, As is preferably used.

また、これらの不純物を添加する方法として、p型不純
物の場合、B2H6,B4H10,B5H9,B5H11,B6H10,B6H12,B6H14,
BF3,BCl3,BBr3,AlCl3,(CH3)3Al,(C2H5)3Al,(iC4H9)3Al,
(CH3)3Ga,(C2H5)3Ga,InCl3,(C2H5)3In,n型不純物の場
合、PH3,P2H4,PH4I,PF3,PF5,PCl3,PCl5,PBr3,PBr5,PI3,
AsH3,AsF3,AsCl3,AsBr3,AsF5,SbH3,SbF3,SbF5,SbCl3,Sb
Cl5のガス、あるいはこれらのガスをH2,He,Arで希釈し
たガスを、プラズマでCVD法ではそれぞれの材料形成時
において、使用する上記のC原子,Si原子またはGe原子
の原料ガスに混合して用いれば良く、反応性スパッタ法
では、ArまたはH2あるいはF2,Cl2に混合して用いれば良
い。
Further, as a method for adding these impurities, in the case of p-type impurities, B 2 H 6 , B 4 H 10 , B 5 H 9 , B 5 H 11 , B 6 H 10 , B 6 H 12 , B 6 H 14 ,
BF 3 , BCl 3 , BBr 3 , AlCl 3 , (CH 3 ) 3 Al, (C 2 H 5 ) 3 Al, (iC 4 H 9 ) 3 Al,
(CH 3) 3 Ga, ( C 2 H 5) 3 Ga, InCl 3, (C 2 H 5) 3 In, the case of n-type impurity, PH 3, P 2 H 4 , PH 4 I, PF 3, PF 5 , PCl 3 , PCl 5 , PBr 3 , PBr 5 , PI 3 ,
AsH 3 , AsF 3 , AsCl 3 , AsBr 3 , AsF 5 , SbH 3 , SbF 3 , SbF 5 , SbCl 3 , Sb
The gas of Cl 5 or the gas obtained by diluting these gases with H 2 , He and Ar is used as the source gas of the above-mentioned C atom, Si atom or Ge atom in the formation of each material by the plasma CVD method. It may be mixed and used, and in the reactive sputtering method, it may be mixed and used with Ar or H 2 or F 2 and Cl 2 .

以下実施例について述べる。Examples will be described below.

実施例1 鏡面研磨したAl基板を容量結合方式プラズマCVD装置内
に配置し、反応容器内を5×10-6Torr以下に排気後、基
板を150〜250℃に加熱した。C2H4:10〜80sccm,H2希釈し
た濃度1%のB2H6:0.5〜20sccmを装置内に導入し、反応
容器内の圧力を0.1〜1.0Torrに調整後、13.56MHzの高周
波電力20〜150Wでホウ素添加したa−C:H層を20μm形
成し、次にGeF4:0.5〜5sccm,GeH4:10〜40sccmを導入
し、圧力0.2〜1.0Torr,高周波電力20〜100Wでアンドー
プa−Ge:H:F層を0.5〜2μm形成し、さらにSCH4:20〜
40sccm,C2H4:10〜40sccm導入し、圧力0.2〜1.0Torr,高
周波電力50〜150WでSiCx層を1000〜2000Å形成して電子
写真感光体を作製した。この電子写真感光体を+6.3KV
でコロナ帯電させたところ、+4000Vの表面電位を得、6
70nmの単色光で露光したところ、残留電位は+20V以下
であった。次に表面電位を+400Vに帯電させたところ、
同一膜厚のa−Ge:H:F光導電層のみの時よりも、帯電時
のコロナ電流は減少し、光感度は増大した。
Example 1 A mirror-polished Al substrate was placed in a capacitively coupled plasma CVD apparatus, the reaction vessel was evacuated to 5 × 10 −6 Torr or less, and then the substrate was heated to 150 to 250 ° C. C 2 H 4 : 10 to 80 sccm, H 2 diluted 1% concentration of B 2 H 6 : 0.5 to 20 sccm was introduced into the apparatus, the pressure inside the reaction vessel was adjusted to 0.1 to 1.0 Torr, and then the high frequency of 13.56 MHz. An aC: H layer doped with boron is formed to a thickness of 20 μm with an electric power of 20 to 150 W, then GeF 4 : 0.5 to 5 sccm, GeH 4 : 10 to 40 sccm is introduced, the pressure is 0.2 to 1.0 Torr, and the high frequency power is 20 to 100 W. undoped a-Ge: H: the F layer was 0.5~2μm formed, further SCH 4:. 20 to
40sccm, C 2 H 4 : 10〜40sccm was introduced, and a SiCx layer was formed by 1000〜2000Å at a pressure of 0.2〜1.0 Torr and high frequency power of 50〜150W to prepare an electrophotographic photoreceptor. This electrophotographic photoreceptor is + 6.3KV
The surface potential of + 4000V was obtained when the corona was charged with
Upon exposure to monochromatic light of 70 nm, the residual potential was +20 V or less. Next, when the surface potential was charged to + 400V,
The corona current at the time of charging was decreased and the photosensitivity was increased as compared with the case where only the a-Ge: H: F photoconductive layer having the same film thickness was used.

これは、a−C:H層が正孔の電荷輸送層として機能し、
電子写真感光体の誘電率を減少させているためである。
This is because the aC: H layer functions as a hole charge transport layer,
This is because the dielectric constant of the electrophotographic photosensitive member is reduced.

また、0.2〜2μmアンドープa−Ge:H:F光伝導層の代
わりに、支持体側から、a−Ge:H(:F)層0.1〜1μm
とa−Si:H(:F)層0.1〜1μmを積層した場合、a−G
e:H(:F)層0.1〜1μmとa−SiGe:H(:F)層0.1〜1
μmを積層した場合、a−Ge:H(:F)層0.1〜1μmと
a−SiC:H(:F)層0.1〜1μmを積層した場合において
も、上記と同様な特性を示す電子写真感光体を形成でき
た。
Further, instead of the 0.2 to 2 μm undoped a-Ge: H: F photoconductive layer, the a-Ge: H (: F) layer 0.1 to 1 μm from the support side.
And a-Si: H (: F) layer 0.1-1 μm are laminated, a-G
e: H (: F) layer 0.1 to 1 μm and a-SiGe: H (: F) layer 0.1 to 1
In the case of laminating an a-Ge: H (: F) layer of 0.1 to 1 µm and an a-SiC: H (: F) layer of 0.1 to 1 µm, an electrophotographic photosensitive member having the same characteristics as above. I was able to form my body.

実施例2 鏡面研磨したAlドラムを容量結合方式プラズマCVD装置
内に配置し、反応容器内を5×10-6Torr以下に排気後、
Alドラムを150〜250℃に加熱した。GeH4:10〜50sccm,H2
希釈した400ppm濃度のB2H6:10〜50sccm導入し、圧力:0.
2〜1.0Torr,高周波電力100〜300Wで障壁層としてp型a
−Ge:H層を0.1〜1μm形成し、次にGeH4:10〜50sccm,
圧力:0.2〜1.0Torr,高周波電力100〜300Wでアンドープ
a−Ge:H層0.5〜1μm形成し、続いてGeH4に加えてC
H4:10〜80sccm導入し、アンドープa−GeC:H層0.5〜1
μmを形成した。次にGeH4をしゃ断し、CH4のみを使用
してアンドープa−C:H層2〜3μmを積層し電子写真
感光体を構成した。この感光体を発振波長800nmの半導
体レーザを光源とするレーザビームプリンタに実装し、
正帯電において鮮明な印字を確認した。また、光導電層
のアンドープa−Ge:H層とアンドープa−GeC:H層の代
わりに、a−Ge:H(:F)単層,a−GeC:H(:F)単層,ま
たは、支持体側からa−GeC:H(:F)とa−Si:H(:F)
の積層,a−GeC:H(:F)とa−Si:H(:F)の積層,a−Ge
C:H(:F)とa−SiGe:H(:F)の積層,a−(GeC:H(:F)
とa−SiC:H(:F)の積層,またはa−Ge:H(:F)とa
−SiC:H:(:F)の積層を使用した場合,においても、上
記と同様な特性を示す電子写真感光体を形成できた。
Example 2 A mirror-polished Al drum was placed in a capacitively coupled plasma CVD apparatus, and the reaction vessel was evacuated to 5 × 10 −6 Torr or less.
The Al drum was heated to 150-250 ° C. GeH 4 : 10 ~ 50sccm, H 2
Diluted 400ppm concentration of B 2 H 6: 10~50sccm introduced, pressure: 0.
2-1.0 Torr, high-frequency power 100-300W, p-type a as a barrier layer
Forming a Ge: H layer of 0.1-1 μm, then GeH 4 : 10-50 sccm,
Undoped a-Ge: H layer 0.5 to 1 μm is formed at a pressure of 0.2 to 1.0 Torr and high frequency power of 100 to 300 W, and then C is added in addition to GeH 4.
H 4 : 10 to 80 sccm introduced, undoped a-GeC: H layer 0.5 to 1
μm formed. Next, GeH 4 was cut off, and an undoped aC: H layer of 2 to 3 μm was laminated using only CH 4 to form an electrophotographic photosensitive member. This photoconductor is mounted on a laser beam printer that uses a semiconductor laser with an oscillation wavelength of 800 nm as its light source,
A clear print was confirmed under positive charging. Further, instead of the undoped a-Ge: H layer and the undoped a-GeC: H layer of the photoconductive layer, an a-Ge: H (: F) single layer, an a-GeC: H (: F) single layer, or , A-GeC: H (: F) and a-Si: H (: F) from the support side
, A-Ge C: H (: F) and a-Si: H (: F) stack, a-Ge
Lamination of C: H (: F) and a-SiGe: H (: F), a- (GeC: H (: F)
And a-SiC: H (: F) stack, or a-Ge: H (: F) and a
In the case of using a stack of —SiC: H :(: F), an electrophotographic photosensitive member having the same characteristics as above could be formed.

実施例3 実施例2で製作した電子写真感光体に、表面被覆層とし
てGeCx層1000〜5000ÅをプラズマCVD法で形成し、実施
例2で使用したレーザビームプリンタに実装したとこ
ろ、この構成の電子写真感光体が耐熱性,耐湿性に優
れ、80万枚の耐刷性を有することを確認した。
Example 3 A GeCx layer 1000 to 5000Å was formed as a surface coating layer on the electrophotographic photosensitive member manufactured in Example 2 by a plasma CVD method and mounted on the laser beam printer used in Example 2. It was confirmed that the photographic photoreceptor has excellent heat resistance and moisture resistance, and has a printing durability of 800,000 sheets.

実施例4 表面にMoを蒸着したガラス基板上に、プラズマCVD法に
よりリンを500〜1000原子ppm含有するa−Ge:H層0.5〜
2μmと、リンを0.5〜50原子ppm含有するa−C:H層3
μmおよびSiN×1000〜2000Åを順次積層して電子写真
感光体を作製した。この感光体を−6.0KVでコロナ帯電
したところ、表面電位−800Vを得、波長400〜700nmの光
に対して高感度で、残留電位も−10V以下であった。こ
の場合、リン添加したa−C:H層は、電子の電荷輸送層
として機能している。
Example 4 An a-Ge: H layer containing phosphorus of 500 to 1000 atomic ppm by plasma CVD on a glass substrate having Mo deposited on the surface of 0.5 to 0.5
2 μm and a—C: H layer 3 containing 0.5 to 50 atomic ppm of phosphorus 3
μm and SiN × 1000 to 2000Å were sequentially laminated to prepare an electrophotographic photosensitive member. When this photoreceptor was corona-charged at -6.0 KV, a surface potential of -800 V was obtained, it was highly sensitive to light having a wavelength of 400 to 700 nm, and the residual potential was -10 V or less. In this case, the phosphorus-added aC: H layer functions as an electron charge transport layer.

実施例5 Alを蒸着したガラス基板をマグネトロンスパッタ装置内
に配置し、基板温度を150〜300℃とし、Dy2O3焼結体を
ターゲットとし、Ar:3〜20mTorr,O2:10〜40mTorr,高周
波電力100〜300Wの条件でDy2O3層を1000〜5000Å形成
し、次に、グラファイトをターゲットとし、Ar:1〜10mT
orr,H2:9〜90mTorr,高周波電力100〜600Wの条件でa−
C:H層を5μm形成した。続いて、蒸着法により、As-Se
-Ge層を1〜2μm形成し、さらに表面被覆層としてAs-
Se-Ge層上にポリカーボネート樹脂を乾燥後10μmとな
るように均一に塗布し、電子写真感光体を形成した。こ
の感光体に+6.3KVのコロナ帯電を行い、白色光で露光
したところ、帯電電位が高く、しかも高感度であること
が確認できた。
Example 5 A glass substrate on which Al was vapor-deposited was placed in a magnetron sputtering apparatus, the substrate temperature was set to 150 to 300 ° C., a Dy 2 O 3 sintered body was targeted, and Ar: 3 to 20 mTorr, O 2 : 10 to 40 mTorr. Then, a Dy 2 O 3 layer of 1000 to 5000 Å is formed under the condition of high frequency power of 100 to 300 W, then graphite is targeted, and Ar: 1 to 10 mT.
orr, H 2: 9~90mTorr, under the conditions of the high-frequency power 100~600W a-
A C: H layer having a thickness of 5 μm was formed. Then, the As-Se
-Ge layer 1-2μm is formed, and As-
A polycarbonate resin was dried and uniformly applied to the Se-Ge layer so as to have a thickness of 10 μm to form an electrophotographic photoreceptor. When this photoreceptor was subjected to +6.3 KV corona charging and exposed to white light, it was confirmed that the charging potential was high and the sensitivity was high.

発明の効果 本発明による電子写真感光体は、帯電時のコロナ電流が
小さく、可視光および近赤外線に対して高感度で、しか
も低コストである。
EFFECT OF THE INVENTION The electrophotographic photosensitive member according to the present invention has a small corona current at the time of charging, high sensitivity to visible light and near-infrared light, and low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、それぞれ本発明における電子写
真感光体の実施例の断面図である。 1……支持体、2……電荷輸送層、3……無機光導電
層。
1 and 2 are cross-sectional views of an embodiment of the electrophotographic photosensitive member according to the present invention. 1 ... Support, 2 ... Charge transport layer, 3 ... Inorganic photoconductive layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾道 京子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭62−9355(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoko Onomichi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masanori Watanabe 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References Japanese Patent Laid-Open No. 62-9355 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ゲルマニウムを含む無機光導電層と、前記
無機光導電層と接して形成された少なくとも水素または
ハロゲン原子を含有する非晶質カーボンを主成分とする
電荷輸送層とを備え、前記無機光導電層にシリコンを含
まない層を有することを特徴とする電子写真感光体。
1. An inorganic photoconductive layer containing germanium, and a charge transport layer formed in contact with the inorganic photoconductive layer, the charge transporting layer containing amorphous carbon containing at least hydrogen or halogen atoms as a main component. An electrophotographic photoreceptor having a layer containing no silicon in the inorganic photoconductive layer.
【請求項2】無機光導電層が、少なくとも水素またはハ
ロゲン原子を含有し、かつ少なくとも炭素原子を含有す
る層を有することを特徴とする特許請求の範囲第1項に
記載の電子写真感光体。
2. The electrophotographic photosensitive member according to claim 1, wherein the inorganic photoconductive layer has a layer containing at least hydrogen or halogen atoms and containing at least carbon atoms.
【請求項3】無機光導電層が、カルコゲン原子を含有す
ることを特徴とする特許請求の範囲第1項に記載の電子
写真感光体。
3. The electrophotographic photosensitive member according to claim 1, wherein the inorganic photoconductive layer contains a chalcogen atom.
【請求項4】無機光導電層および電荷輸送層の少なくと
も一方が、周期表第III族元素あるいは第V族元素を含
有することを特徴とする特許請求の範囲第1項から第3
項のいずれかに記載の電子写真感光体。
4. At least one of the inorganic photoconductive layer and the charge transport layer contains a Group III element or a Group V element of the periodic table, according to any one of claims 1 to 3.
The electrophotographic photosensitive member according to any one of items.
【請求項5】表面被覆層を有することを特徴とする特許
請求の範囲第1項に記載の電子写真感光体。
5. The electrophotographic photoreceptor according to claim 1, which has a surface coating layer.
【請求項6】支持体と無機光導電層あるいは電荷輸送層
との間に障壁層を有することを特徴とする特許請求の範
囲第1項に記載の電子写真感光体。
6. The electrophotographic photoreceptor according to claim 1, further comprising a barrier layer between the support and the inorganic photoconductive layer or the charge transport layer.
JP60217050A 1985-08-03 1985-09-30 Electrophotographic photoreceptor Expired - Lifetime JPH0752301B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60217050A JPH0752301B2 (en) 1985-09-30 1985-09-30 Electrophotographic photoreceptor
DE8686110686T DE3681655D1 (en) 1985-08-03 1986-08-01 Elektrophotographischer photorezeptor.
EP19860110686 EP0211421B1 (en) 1985-08-03 1986-08-01 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217050A JPH0752301B2 (en) 1985-09-30 1985-09-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS6275536A JPS6275536A (en) 1987-04-07
JPH0752301B2 true JPH0752301B2 (en) 1995-06-05

Family

ID=16698042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217050A Expired - Lifetime JPH0752301B2 (en) 1985-08-03 1985-09-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0752301B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242948A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS62173474A (en) * 1986-01-27 1987-07-30 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS62270961A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS6321651A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS6343156A (en) * 1986-08-11 1988-02-24 Stanley Electric Co Ltd Electrophotographic sensitive body
US4898798A (en) * 1986-09-26 1990-02-06 Canon Kabushiki Kaisha Photosensitive member having a light receiving layer comprising a carbonic film for use in electrophotography

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634648A (en) * 1985-07-05 1987-01-06 Xerox Corporation Electrophotographic imaging members with amorphous carbon

Also Published As

Publication number Publication date
JPS6275536A (en) 1987-04-07

Similar Documents

Publication Publication Date Title
US4557987A (en) Photoconductive member having barrier layer and amorphous silicon charge generation and charge transport layers
CA1153238A (en) Electrophotographic member with an amorphous silicon layer containing hidrogen
US4600671A (en) Photoconductive member having light receiving layer of A-(Si-Ge) and N
US4525442A (en) Photoconductive member containing an amorphous boron layer
JPS639219B2 (en)
JPH0752301B2 (en) Electrophotographic photoreceptor
US4595644A (en) Photoconductive member of A-Si(Ge) with nonuniformly distributed nitrogen
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPH0727246B2 (en) Electrophotographic photoreceptor
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
US4873165A (en) Electrophotographic photoreceptor having overlayer comprising carbon
JP2553558B2 (en) Electrophotographic photoreceptor
JPS63132251A (en) Electrophotographic sensitive body
JPH0220095B2 (en)
JPH0752302B2 (en) Electrophotographic photoreceptor
JP2595536B2 (en) Electrophotographic photoreceptor
JPS63121854A (en) Electrophotographic sensitive body
US4569893A (en) Amorphous matrix of silicon and germanium having controlled conductivity
CA1181629A (en) Photoconductive member including non-photoconductive layer containing amorphous silicon matrix-containing oxygen
JPS6263939A (en) Electrophotographic sensitive body
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
EP0211421A1 (en) Electrophotographic photoreceptor
JPH0797226B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPH0462379B2 (en)
US6322942B1 (en) Xerographic photoreceptor primarily formed by the hydrogenated amorphous silicon material and the method for manufacturing the same