JPS62173474A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62173474A
JPS62173474A JP1511886A JP1511886A JPS62173474A JP S62173474 A JPS62173474 A JP S62173474A JP 1511886 A JP1511886 A JP 1511886A JP 1511886 A JP1511886 A JP 1511886A JP S62173474 A JPS62173474 A JP S62173474A
Authority
JP
Japan
Prior art keywords
layer
dielectric constant
electrophotographic photoreceptor
charge transfer
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1511886A
Other languages
Japanese (ja)
Inventor
Eiichiro Tanaka
栄一郎 田中
Koji Akiyama
浩二 秋山
Akio Takimoto
昭雄 滝本
Kyoko Onomichi
尾道 京子
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1511886A priority Critical patent/JPS62173474A/en
Priority to EP19860110686 priority patent/EP0211421B1/en
Priority to DE8686110686T priority patent/DE3681655D1/en
Publication of JPS62173474A publication Critical patent/JPS62173474A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body which has high sensitivity to visible light, and is highly resistant to printing and environment at a low cost by specifying the dielectric constant of an electric charge transfer layer thereby decreasing the corona current in the stage of electrostatic charge. CONSTITUTION:The photoconductive layer which generates the carriers movable by excitation of light and the electric charge transfer layer essentially consisting of amorphous carbon are laminated and the dielectric constant of the charge transfer layer is specified to 3-6. The amorphous carbon layer having the dielectric constant as small as 3-6 has the high implantation efficiency of the electric charge from the photoconductive layer and about the same electrophotographic characteristics are obtd. with the film thickness of 1/2-1/3 the film thickness of the photosensitive body formed of only the a-Si:H film. Gases such as CH4, C2H4, C2H6, C2H2, C3H8, and C6H6 which are more inexpensive than gaseous SiH4 are usable as the gaseous raw material in the case of using a plasma CWD method for forming the film of the amorphous carbon and therefore, the cost of forming the photosensitive body is considerably reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式の複写機、光プリンタ等に用い
られる電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor used in electrophotographic copying machines, optical printers, and the like.

従来の技術 電子写真感光体における光導電体として、1゜〜40a
tm%の水素を局在化状態密度を減少せしめる修飾物質
として含む非晶質シリコン(以−a−3i:Hと記す)
が高い光感度、無公害性、及び高い硬度を有することに
より注目され利用されている。
Conventional technology As a photoconductor in an electrophotographic photoreceptor,
Amorphous silicon containing tm% of hydrogen as a modifier that reduces the localized density of states (hereinafter referred to as -a-3i:H)
is attracting attention and being used because of its high photosensitivity, non-polluting properties, and high hardness.

しかしながら、上記のa−3i:Hで構成される電子写
真感光体ではまだまだ解決すべき問題も多い。
However, there are still many problems to be solved in the electrophotographic photoreceptor composed of the above a-3i:H.

例えば、第1の問題としてa−3i:Hは、能の感光体
材料である有機光半導体(以下OPCと記す)あるいは
Se に比較して誘電率が約11と大きく(opc :
約3、Se:約6)静電容量が太きいため、表面への帯
電処理を行う際には非常に大きな帯電電流を必要とする
For example, the first problem is that a-3i:H has a dielectric constant of approximately 11, which is larger than that of organic photoconductor materials (hereinafter referred to as OPC) or Se.
approx. 3, Se: approx. 6) Since the capacitance is large, a very large charging current is required when charging the surface.

また、実用表面電位(〜400V)を得るには表面電荷
の電荷密度も高く、この電荷を光除電するためには多く
の元エネルギーを必要とするため、実際の光感度は十分
高いとい言えない。
Furthermore, in order to obtain a practical surface potential (~400V), the surface charge density is high, and a large amount of original energy is required to remove this charge with light, so it cannot be said that the actual photosensitivity is sufficiently high. .

さらに、a−3i:H膜の製膜に際して最も良く用いら
れるシラン(5IH4と記す)ガスを原料ガスとしたプ
ラズマCVD法では、堆積速度も10μm/H以下と遅
く、シラ/ガスも高価であることから、製造コストの低
減は困難である。
Furthermore, in the plasma CVD method using silane (denoted as 5IH4) gas as the raw material gas, which is most commonly used for forming a-3i:H films, the deposition rate is slow at 10 μm/H or less, and the silane/gas is expensive. Therefore, it is difficult to reduce manufacturing costs.

また、膜厚においても30μm以下で使用されることか
ら、実用の表面電位はSe感光体の800Vに比べ50
0V以下と低い電位で使用されるため、通常の2成分現
像剤では十分な画像濃度のコピーが得られないと言った
問題がある。
In addition, since the film is used with a film thickness of 30 μm or less, the practical surface potential is 50 V compared to 800 V for Se photoreceptors.
Since it is used at a low potential of 0V or less, there is a problem in that a copy with sufficient image density cannot be obtained using a normal two-component developer.

発明が解決しようとする問題点 前記の諸問題を解決する手段として、特開昭64−14
3645号公報には有機半導体材料を用いた機能分離型
の感光体が、また特開昭58−24355号公報には無
機半導体材料を用いた機能分離型感光体が開示されてい
る。
Problems to be Solved by the Invention As a means to solve the above-mentioned problems,
No. 3645 discloses a functionally separated photoreceptor using an organic semiconductor material, and Japanese Patent Application Laid-open No. 58-24355 discloses a functionally separated photoreceptor using an inorganic semiconductor material.

前者の有機半導体材料を用いた場合、誘電率の減少によ
る帯電電位の向上が望めるものの有機半導体材料は硬度
が小さいため、a−5i :H膜の持つ高い硬度の長寿
命感光体としての特長が生かせないことから、決して有
効な手段とは言えない。
When using the former organic semiconductor material, it is expected that the charging potential will be improved due to a decrease in the dielectric constant, but since the organic semiconductor material has low hardness, the high hardness of the a-5i:H film makes it possible to use it as a long-life photoreceptor. Since it cannot be used effectively, it cannot be called an effective method.

また、後者においては多結晶化しやすいカルコゲン材料
、あるいは誘電率の大きなSiC等を用いるため温度特
性の低下、あるいは表面電位の向上光励起によって移動
可能なキャリアを発生する光導電層と、非晶質カーボン
を主成分とする電荷移動層を積層し、その電荷移動層の
誘電率を3〜6とする。
In addition, in the latter case, a chalcogen material that easily becomes polycrystalline or a material such as SiC with a high dielectric constant is used, resulting in a decrease in temperature characteristics or an improvement in surface potential. A charge transfer layer containing as a main component is laminated, and the dielectric constant of the charge transfer layer is set to 3 to 6.

作  用 非晶質カーボンは誘電率は小さく、また共有結合を有す
る膜では高い硬度を有している。このため、例えばa−
3i:Hを光導電層として、非晶質カーボン層を電荷移
動層として用いた機能分離型感光体とした場合、感光体
全体として誘電率の減少により帯電時の帯電電流が減少
し、また表面電荷密度も減少することから光感度も向上
させることが可能となる。
Function Amorphous carbon has a low dielectric constant, and a film with covalent bonds has high hardness. For this reason, for example, a-
In the case of a functionally separated photoreceptor using 3i:H as a photoconductive layer and an amorphous carbon layer as a charge transfer layer, the charging current during charging decreases due to the decrease in dielectric constant of the photoreceptor as a whole, and the surface Since the charge density is also reduced, photosensitivity can also be improved.

また、誘電率が3〜6と小さい非晶質カーボン層は、光
導電層からの電荷の注入効率も高< 、a−3L:H膜
のみで形成される感光体の1/2〜1/3の膜厚で同程
度の電子写真特性を得ることができる。
In addition, the amorphous carbon layer, which has a small dielectric constant of 3 to 6, has a high charge injection efficiency from the photoconductive layer, which is 1/2 to 1/2 that of a photoconductor formed only with a-3L:H film. Comparable electrophotographic properties can be obtained with a film thickness of 3.

さらに、非晶質カーボンの製膜にはプラズマCVD法を
使用した場合、原料ガスとしてS IH4ガスに比べて
安価なα4.C2H4,C2H6,C2H2,C3H8
゜C6H6などのガスが使用可能なため、感光体の製造
コストを大幅に低減できる。
Furthermore, when plasma CVD is used to form an amorphous carbon film, α4. C2H4, C2H6, C2H2, C3H8
Since gases such as °C6H6 can be used, the manufacturing cost of the photoreceptor can be significantly reduced.

実施例 第1図は1本発明における最も基本的な電子写真感光体
の一実施例の断面を模式的に示したものである。
Embodiment FIG. 1 schematically shows a cross section of an embodiment of the most basic electrophotographic photoreceptor according to the present invention.

第1図に示す電子写真感光体は、電子写真感光体として
の支持体1上に、少なくとも水素またはハロゲン原子(
X)を含有する非晶質カーボン(以下a−C(:H:X
)と略記する。 但しX=F。
The electrophotographic photoreceptor shown in FIG. 1 has at least hydrogen or halogen atoms (
Amorphous carbon containing X) (hereinafter referred to as a-C(:H:X
). However, X=F.

C1,Br又は10)からなる電荷移動層2とシリコン
を含む光導電層3とを有し、前記光導電層3は一方で自
由表面4を有している。
It has a charge transfer layer 2 made of C1, Br or 10) and a photoconductive layer 3 containing silicon, said photoconductive layer 3 having a free surface 4 on the one hand.

本発明において、シリコンを含有する光導電層としては
、a−3t(:H:X)、a−3i1−yC,(:H:
X)(0<y<1 )、a−3t1−、Oア(:H:X
)(0<7<1 )、a−3t、 −、N、(: H:
 X ) (0(7(1) 、 a−3t1−2Go2
(:H:X)(0<Z<1 )、a −(S 11−z
Ge z ) 1−yNy(:H:X)(o<y、z<
1 )、    、    、a−(Stl−2Go2
)1−.0.(:H:X)(0(y、z(1)、又はa
−(S il、、zGe z ) 1++ 、c y 
(: H: X ) (0(y 、z (1)の単層あ
るいはこれらの積層からなる。また、yを連続的に変化
させた場合も使用できる。
In the present invention, photoconductive layers containing silicon include a-3t (:H:X), a-3i1-yC, (:H:
X) (0<y<1), a-3t1-, Oa(:H:X
)(0<7<1), a-3t, -, N, (: H:
X) (0(7(1), a-3t1-2Go2
(:H:X) (0<Z<1), a-(S 11-z
Ge z ) 1-yNy(:H:X)(o<y, z<
1), , ,a-(Stl-2Go2
)1-. 0. (:H:X)(0(y, z(1), or a
−(S il,, zGe z ) 1++ , c y
It consists of a single layer of (: H:

この時の膜厚は、電荷移動層は5〜60μm。The thickness of the charge transfer layer at this time is 5 to 60 μm.

好適には10〜25μm、また光導電層の膜厚は0.6
〜10μm、好適には1〜5μmとすれば良い。
The thickness of the photoconductive layer is preferably 10 to 25 μm and 0.6 μm.
~10 μm, preferably 1 to 5 μm.

本発明において、更に電子写真特性を向上させるために
、第1図において、支持体1と電荷移動層2との間に、
支持体1から電荷移動層2に注入するキャリアを効果的
に阻止するため障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic characteristics, in FIG. 1, between the support 1 and the charge transfer layer 2,
A barrier layer may be provided to effectively prevent carriers from being injected from the support 1 into the charge transfer layer 2.

障壁層を形成する材料としては、Al2O3,Bad。The material for forming the barrier layer is Al2O3, Bad.

Bad2. Bed、 Bi2O3、CaO1CeO2
,Ce2O3、La2O3゜Dy2Q3.Lu2O3,
Cr2O3,Cuo、Cu2O、Fe01Pbo 。
Bad2. Bed, Bi2O3, CaO1CeO2
, Ce2O3, La2O3°Dy2Q3. Lu2O3,
Cr2O3, Cuo, Cu2O, Fe01Pbo.

MgO、SrO,Ta2O3,The2. ZrO2,
HfO2,TiO2,TiO。
MgO, SrO, Ta2O3, The2. ZrO2,
HfO2, TiO2, TiO.

SiC2,GeO2,Sio、GeO等の金属酸化物、
またはTiN、AIN、SuN、NbN、TaN、Ga
N等の金属窒化物、またはWC、S n C、T i 
C、等の金属炭化物、またはstc、SiN、GeC,
GeN、BC,BN等の絶縁物。
Metal oxides such as SiC2, GeO2, Sio, GeO,
Or TiN, AIN, SuN, NbN, TaN, Ga
Metal nitrides such as N, or WC, S n C, Ti
Metal carbides such as C, or stc, SiN, GeC,
Insulators such as GeN, BC, BN.

ポリエチレン、ポリカーボネート、ポリウレタン。Polyethylene, polycarbonate, polyurethane.

ポリハラキシレン等の有機化合物が使用される。Organic compounds such as polyhalaxylene are used.

また、クリーニング性あるいは耐摩耗性あるいは耐コロ
ナ性を向上させるため、第1図および第2図において、
自由表面4上に表面被覆層を形成する。表面被覆層とし
て好適な材料としては、5ixQ1−x、5iXC1−
エ、5ixN1−エ、Ge!o1−エ、GexCl−エ
In addition, in order to improve cleaning performance, abrasion resistance, or corona resistance, in Figures 1 and 2,
A surface coating layer is formed on the free surface 4. Suitable materials for the surface coating layer include 5ixQ1-x and 5iXC1-
E, 5ixN1-E, Ge! o1-e, GexCl-e.

GexNl−x、B、N1−、、B、C1−x、Al、
N1−、(0<!<1 )。
GexNl-x, B, N1-, , B, C1-x, Al,
N1-, (0<!<1).

およびこれらに水素あるいはノ・口、ゲンを含有する層
等の無機物、あるいはポリエチレンテレフタレート、ホ
リカーボネート、ポリプロピレン、ポリ塩化ビニル、ポ
リビニルアルコール、ポリスチレン、ポリアミド、ポリ
四弗化エチレン、ポリ三弗化塩化エチレン、ポリ弗化ビ
ニリデン、ポリウレタン等の合成樹脂などが上げられる
and inorganic materials such as layers containing hydrogen, polycarbonate, polypropylene, polyvinyl chloride, polyvinyl alcohol, polystyrene, polyamide, polytetrafluoroethylene, polytrifluorochloroethylene , polyvinylidene fluoride, polyurethane, and other synthetic resins.

a−C(:H:X)の作成には、CH4tC2H6,C
3H6゜C4H1゜、C2H4,C3H6,C4H8,
C2H2,C3H4゜C4H6,C6H6等の炭化水素
、CH3F、CH3Cl。
To create a-C(:H:X), CH4tC2H6,C
3H6゜C4H1゜, C2H4, C3H6, C4H8,
Hydrocarbons such as C2H2, C3H4°C4H6, C6H6, CH3F, CH3Cl.

CH3I、C2H6C1,C2H3Bx、等のハロゲン
化アリル、CClF3.CF4.CHF3.C2F6.
C3F8等のフロンガス、C6H6−mFm(m=1〜
6)の弗化ベンゼン等のC原子の原料ガスを用いたプラ
ズマCVD法、または、グラファイトをターゲットとし
た、Ar、F2.F2.C12,C2H4,C2H2中
での反応性スパッタ法が使用される。この時、誘電率は
共有結合の強い膜からポリマー状の膜まで放電条件等に
よって変化し、その値は大きく変化する。誘電率を3〜
6とするためには水素が10〜6o原子チ含まれるよう
に成膜しなければならない。
Allyl halides such as CH3I, C2H6C1, C2H3Bx, CClF3. CF4. CHF3. C2F6.
Freon gas such as C3F8, C6H6-mFm (m=1~
6) Plasma CVD method using C atom raw material gas such as benzene fluoride, or Ar, F2.6) using graphite as a target. F2. Reactive sputtering in C12, C2H4, C2H2 is used. At this time, the dielectric constant changes depending on the discharge conditions, from a film with strong covalent bonds to a polymer film, and its value changes greatly. Dielectric constant 3~
6, the film must be formed to contain 10 to 6 atoms of hydrogen.

シリコンを含有する光導電層であるa −3L (:H
:X) 。
a-3L (:H
:X).

a−3t1−アCア(: )i:xX O< 3’ <
 ’ ) e a−8i1−vOy(:H:X)(0<
y<1)、あるいはa−3z 1−yNy (: H:
 X )(0<y<1)の作成には、5tH4,S= 
2H6,S稲−、。
a-3t1-aCa(: )i:xX O<3'<
' ) e a-8i1-vOy(:H:X)(0<
y<1) or a-3z 1-yNy (: H:
To create X) (0<y<1), 5tH4,S=
2H6, S rice-,.

5tF4,5tC14,5tHF3.SiH2F2.S
iH3F。
5tF4, 5tC14, 5tHF3. SiH2F2. S
iH3F.

5IHC13,5iH2C12,5iH3C1等のSi
原子の原料ガスを用いたプラズマCVD法、または多結
晶ノリコンをターゲットとし、ArとF2(さらにF2
又はC12を混合しても良い)の混合ガス中での反応性
スパッタ法が用いられる。またa−3i、−アCア(:
H:X)(0<y<1 )、a−8i1−アOy(:H
:x)(o<yく+ )、a−3i1−、N、(:H:
X)(○<y<1 )C4H3,C6H6等の炭化水素
、CH3F 、 CH3Cl 。
Si such as 5IHC13, 5iH2C12, 5iH3C1
Ar and F2 (and F2
A reactive sputtering method in a mixed gas (or C12 may be mixed) is used. Also a-3i, -aCa(:
H:X) (0<y<1), a-8i1-AOy(:H
:x) (o<y+), a-3i1-, N, (:H:
X) (○<y<1) Hydrocarbons such as C4H3 and C6H6, CH3F, CH3Cl.

CH3I、C2H5C1,C2H3Bx 、等の/%0
ゲン化アジアリルClF3.CF4.CHF3.C2F
6.C3F8等のフロガス、C6H6−mF工(m−1
〜6)の弗化ベンゼン等のC原子の原料ガスを、プラズ
マCVD法に用いるシリコン原料ガスと混合して、ある
いは、反応性スパッタ法にはAr等のスパッタガスと混
合して用いる。また、酸素源としては、C2,CQ、C
O2゜No、No2等、また、窒素源としてはN2.N
H3゜No等を混合して用いる。
/%0 of CH3I, C2H5C1, C2H3Bx, etc.
Genated Asialyl ClF3. CF4. CHF3. C2F
6. Fluogas such as C3F8, C6H6-mF (m-1
The raw material gas of C atoms such as benzene fluoride in ~6) is mixed with the silicon raw material gas used in the plasma CVD method, or mixed with a sputtering gas such as Ar in the reactive sputtering method. In addition, as oxygen sources, C2, CQ, C
O2゜No, No2, etc., and N2 as a nitrogen source. N
Use a mixture of H3°No, etc.

また、a−3L(:H:X)にGoを添加する場合も、
GeHGe HGe HGeF  GeCl4.GeH
F3゜4e    269   3B’     4j
GeH2F2.GeH3F、GeHCl3.GeH2C
12゜G e H3C1等のガスを上記S1原子の原料
ガスと混合しプラズマCVD法によって形成することも
出来る。
Also, when adding Go to a-3L(:H:X),
GeHGe HGe HGeF GeCl4. GeH
F3゜4e 269 3B' 4j
GeH2F2. GeH3F, GeHCl3. GeH2C
It can also be formed by a plasma CVD method by mixing a gas such as 12°G e H3C1 with the source gas of the S1 atoms.

さらに、本発明において、上記のa−3i(:H:X)
Furthermore, in the present invention, the above a-3i(:H:X)
.

a−3i   C(:H:X)(0(y(1)、a −
S 11−yOy−F7 (:H:X)(0<y<1 )、a−311−、Ny(
:H:X)((y<1)、あるいはこれらにGe添加し
た膜、あるいはa−C(:H:X)の膜中に、不純物を
添加することによシ伝導性を制御し、所望の電子写真特
性を得ることができる。特に、電荷移動層を形成するa
−C(:H:X)は、この不純物の添加により大きくキ
ャリア輸送の特性が変化する。p型伝導性を与えるp型
不純物としては、周期律表第■族すに属するB 、Al
、Ga、In等があり、好適にはB、Al。
a-3i C(:H:X)(0(y(1), a-
S 11-yOy-F7 (:H:X) (0<y<1), a-311-, Ny(
:H:X)((y<1), or a film with Ge added thereto, or a-C(:H:X) film by adding impurities to control the conductivity and obtain the desired property. Electrophotographic properties can be obtained.In particular, a
The carrier transport characteristics of -C(:H:X) greatly change due to the addition of this impurity. Examples of p-type impurities that provide p-type conductivity include B and Al, which belong to Group Ⅰ of the periodic table.
, Ga, In, etc., preferably B, Al.

Gaが用いられ、n型伝導性を与えるn型不純物として
は、周期律表第■族b[属するN 、 P 、As。
Ga is used, and the n-type impurities that provide n-type conductivity include Group II b of the periodic table [belonging to N, P, and As.

sb等が有り、好適にはP、Asが用いられる。sb, etc., and P and As are preferably used.

また、これらの不純物を添加する方法として、(C2H
6)3Ga、InCl3.(C2H5)3Inを、n型
T[物)tJJ合、N2.NH3,No、N20.No
2.PH3゜P2H4,PH41、PF3.PF5.P
Cl3.PCl3.PBr3゜PBr3.Pi3.As
H3,AgF2.AsCl3.AsBr3゜SbHSb
F  SBF  5bCI  5bCL5等のガ3+ 
   3=     5’      31スを、ある
いはこれらのガスをH2,Ha、Axで希釈したガスを
、プラズマCVD法では、それぞれの膜形成時において
、使用する上記のC原子、SL原子等の原料ガスと混合
して用いれば良く、反応性スパッタ法では、Arまたは
H2あるいはF2゜C12に混合して用いれば良い。以
下実施例について述べる。
In addition, as a method of adding these impurities, (C2H
6) 3Ga, InCl3. (C2H5)3In, n-type T [material] tJJ, N2. NH3, No, N20. No
2. PH3゜P2H4, PH41, PF3. PF5. P
Cl3. PCl3. PBr3゜PBr3. Pi3. As
H3, AgF2. AsCl3. AsBr3゜SbHSb
F SBF 5bCI 5bCL5 etc. 3+
In the plasma CVD method, 3=5' 31 gases or gases obtained by diluting these gases with H2, Ha, and Ax are used as the raw material gases such as the above-mentioned C atoms and SL atoms used during the formation of each film. They may be used in combination, and in the reactive sputtering method, they may be used in combination with Ar, H2, or F2°C12. Examples will be described below.

実施例1 鏡面研磨したアルミニウム基板を6インチの放電電極を
有する平行平板型の容量結合方式プラズマCVD装置内
に配置し、反応容器内を5×1Q−6Torr以下に排
気後、基板を150〜300°C2好適に200〜25
0°Cに加熱した。C2H4を10〜80 s ecm
、He希釈した濃度1%のB2H6を0.5〜20 s
Cam装置内に導入し、反応容器内の圧力を0.1〜0
.8 Torrに調整した。13 、56 MHzの高
周波電力80〜150Wでホウ素添加したa−C:H層
を電荷輸送層として25μm形成し、つぎにSiH4を
1o〜4oscCm導入し、圧力0.2〜し、圧力0.
2−1 、OTorr 、高周波電力60〜160Wで
5i1−、Cx:H(0(x(1)を表面被服層として
0.08〜0.3μm形成して電子写真感光体を作成し
た。
Example 1 A mirror-polished aluminum substrate was placed in a parallel plate type capacitively coupled plasma CVD apparatus having a 6-inch discharge electrode, and after evacuating the inside of the reaction vessel to 5×1Q-6 Torr or less, the substrate was heated to a temperature of 150 to 300 Torr. °C2 suitably 200-25
Heated to 0°C. C2H4 for 10-80 sec
, B2H6 diluted with He at a concentration of 1% for 0.5-20 s
Introduced into the Cam device, and the pressure inside the reaction vessel was set to 0.1 to 0.
.. Adjusted to 8 Torr. A boron-doped aC:H layer with a thickness of 25 μm was formed as a charge transport layer using a high frequency power of 80 to 150 W at 13 and 56 MHz, and then SiH4 was introduced at 10 to 4 oscCm, and the pressure was set to 0.2 to 0.
2-1, OTorr, high frequency power of 60 to 160 W, 5i1-, Cx:H(0(x(1)) was formed as a surface covering layer to a thickness of 0.08 to 0.3 μm to prepare an electrophotographic photoreceptor.

この時のa−C:H層の誘電率は3.6〜5と小さい埴
を示した。また、この電子写真感光体を刊、3KVでコ
ロナ帯電させたところ、+3000Vの表面電位を得る
ことが出来、白色光で露光したところ、残留電位+30
V以下で半減電位露光量は11ux m sea以下と
非常に高い感度が得られた。また、この感光体を+5o
ovに帯電させ同じく白色光にて露光したところ、半減
電位露光量は0.31ux * sea以下と感度は非
常に高い。これを、従来のa−3t:Hからなる20p
mの感光体を+400vに帯電させ白色光で露光した場
合と比較すれば2培の感度があり、可視光のみに限り露
光を再度行い比較したところ、2,5倍以上の感度が確
認された。また、同じコロナ電位での帯電ではa−8t
:Hのみに比べ、帯電電位も3倍以上と少ない帯電電流
で高い感度の感光体が得られる事を示した。
The dielectric constant of the aC:H layer at this time was 3.6 to 5, which was a small value. Furthermore, when this electrophotographic photoreceptor was corona charged at 3KV, a surface potential of +3000V was obtained, and when exposed to white light, a residual potential of +30V was obtained.
At V or less, the half-potential exposure amount was 11 ux m sea or less, and very high sensitivity was obtained. In addition, this photoconductor is +5o
When charged to ov and similarly exposed to white light, the half-potential exposure amount was 0.31 ux * sea or less, and the sensitivity was very high. This is the conventional 20p consisting of a-3t:H.
Compared to the case where the photoreceptor of M is charged to +400V and exposed to white light, the sensitivity is 2 times higher, and when exposure was performed again only to visible light and compared, it was confirmed that the sensitivity was more than 2.5 times higher. . Also, when charged at the same corona potential, a-8t
: Compared to H only, the charging potential was three times or more, indicating that a highly sensitive photoreceptor could be obtained with a small charging current.

これは、B添加の誘電率3.5〜5のa−C:H層は正
孔の電荷移動層として機能し、電子写真感光体の誘電率
を減少させているためである。
This is because the B-added aC:H layer with a dielectric constant of 3.5 to 5 functions as a charge transfer layer for holes and reduces the dielectric constant of the electrophotographic photoreceptor.

また、0.2−2 pmのa−3i:Hfi導電層に酸
素を200〜3000ppm添加した場合も、Bを0.
6〜5 ppm添加した場合も上記と同様な特性を示す
電子写真感光体を形成できた。
Also, when 200 to 3000 ppm of oxygen is added to a 0.2-2 pm a-3i:Hfi conductive layer, B is added to 0.2-2 pm.
Even when 6 to 5 ppm of the compound was added, an electrophotographic photoreceptor exhibiting characteristics similar to those described above could be formed.

また、C2H4にCF4を1%混合しa−C(:H:X
)膜を形成した場合、誘電率は3〜4.5となり上記と
同様な特性が得られた。
Also, by mixing 1% CF4 with C2H4, a-C(:H:X
) When a film was formed, the dielectric constant was 3 to 4.5, and the same characteristics as above were obtained.

実施例2 鏡面研磨したアルミニウムドラムを、長さ450、内径
16ffiφの円筒型の放電電極を有する容量結合方式
プラズマCVD装置内に配置し、反応容器内を5 X 
10−6Torr以下に排気後、アルミニウムドラムを
150〜a o o ’C好適には200〜250″C
に加熱した。S L H4を50〜150 secm。
Example 2 A mirror-polished aluminum drum was placed in a capacitively coupled plasma CVD apparatus having a cylindrical discharge electrode with a length of 450 mm and an inner diameter of 16 ffiφ, and the interior of the reaction vessel was
After evacuation to below 10-6 Torr, the aluminum drum is heated to 150~a o o'C, preferably 200~250''C.
heated to. S L H4 for 50-150 sec.

H2希釈した4 001)I)mノB2)16を5Q〜
150secm導入し、圧力0.2〜1 、OTorr
 、高周波電力100〜250Wで、障壁層としてp型
a−3t:H層を0.3〜1.5 pm形成し、つぎに
S I H4を60〜150 secm、圧力0.2〜
1.○To r r 、高周波電力100〜250Wで
ノンドープa−3t:H層を1〜5μm形成し、統いて
、S t H4に加えてC2H2を20〜5011cc
m導入し、a −S i□−xc、層0.5〜1μmを
形成した。次ぎに、S x H4を遮断し、c2H2の
みで5〜10μm形成し電子写真感光体とした。
H2 diluted 4001)I)mnoB2)16 from 5Q~
Introduced for 150sec, pressure 0.2~1, OTorr
, a p-type A-3T:H layer was formed as a barrier layer at a thickness of 0.3-1.5 pm with a high frequency power of 100-250 W, and then S I H4 was applied at a power of 60-150 sec and a pressure of 0.2-1.5 pm.
1. ○ To r r , a non-doped a-3t:H layer with a thickness of 1 to 5 μm is formed using high-frequency power of 100 to 250 W, and in addition to S t H4, 20 to 5011 cc of C2H2 is formed.
m was introduced to form a-Si□-xc layer of 0.5 to 1 μm. Next, S x H4 was blocked and c2H2 alone was formed to a thickness of 5 to 10 μm to form an electrophotographic photoreceptor.

この時のa−C:H層の誘電率は4〜6であり、この感
光体を670nmのLEDを光源とする元プリンタに実
装し、正帯電において+500〜800vの表面電位で
鮮明な印字を確認した。また、光導電層であるa−3i
:H層に代わりa−3i(:H:F)を、a−8114
Cx層に代わってa −S t 1−ρ1層。
The dielectric constant of the a-C:H layer at this time was 4 to 6. This photoreceptor was installed in a former printer using a 670 nm LED as a light source, and clear printing was achieved with a surface potential of +500 to 800 V when positively charged. confirmed. In addition, a-3i which is a photoconductive layer
:H layer instead of a-3i (:H:F), a-8114
a-S t 1-ρ1 layer instead of Cx layer.

a −S t 1−エN工層を用いても上記と同様な特
性を持つ電子写真感光体を形成できた。
An electrophotographic photoreceptor having characteristics similar to those described above could also be formed using the a-S t 1-EN layer.

また、a−3i:Hあるいはa−3i(:H:F)にG
eを添加したa−3i1−、Ge2: H、a−3iG
e :H。
Also, a-3i:H or a-3i(:H:F) has G
a-3i1-, Ge2: H, a-3iG with addition of e
e:H.

a−3t、−zGez(: H: X ) (0(z(
1)を用いれば更に感度の向上が計られた。
a-3t, -zGez(: H: X) (0(z(
Using method 1) further improved the sensitivity.

実施例3 実施例2で制作した電子写真感光体に、表面被覆層とし
て0.1〜0.5 μmのa −Ge 1−、Cx: 
H(○<x<1 )をプラズマCVD法で形成し、実施
例2で使用した光プリンタに実装したところ、この構成
の電子写真感光体が耐熱性、耐湿性に優へ80万枚の耐
刷性を有することを確認した。
Example 3 The electrophotographic photoreceptor produced in Example 2 was coated with a-Ge 1-, Cx with a thickness of 0.1 to 0.5 μm as a surface coating layer.
When H (○<x<1) was formed using the plasma CVD method and mounted on the optical printer used in Example 2, the electrophotographic photoreceptor with this configuration had excellent heat resistance and moisture resistance, and was able to withstand 800,000 sheets. It was confirmed that the printability was good.

実施例4 実施例2で製作した電子写真感光体に、表面被覆層とし
てポリカーボネート樹脂を乾燥後の膜厚が1μmとなる
ように均一に塗布し電子写真感光体を得た。実施例2で
使用した光プリンタに実装したところ、この構成の電子
写真感光体は耐湿性に優れ5万枚以上の耐刷性を有する
ことを確認した。
Example 4 A polycarbonate resin was uniformly applied as a surface coating layer to the electrophotographic photoreceptor produced in Example 2 so that the film thickness after drying was 1 μm to obtain an electrophotographic photoreceptor. When installed in the optical printer used in Example 2, it was confirmed that the electrophotographic photoreceptor with this configuration had excellent moisture resistance and a printing life of 50,000 sheets or more.

実施例6 表面にMOを蒸着した基板上に、実施例1のプラズマC
VD法ニヨリ、Pを500〜100o原子ppm含有す
るa−C:H層を6μm、Pを0.6〜50原子ppm
含有するa−3i:H層を0.5〜2 p m 、およ
び5i1−xNx:H層を0.1〜0,2μm順次積層
して電子写真感光体を作成した。この感光体をる。○K
Vでコロナ帯電をしたところ、表面電位−800■を得
、白色光に対し、0.7 lux * seaの半減電
位露光量と高感度で、残留電位も一13v以下であった
。この場合、P添加したa−C:H層は電子の電荷移動
層として機能している。
Example 6 Plasma C of Example 1 was applied onto a substrate on which MO was vapor-deposited.
VD method Niyori, a-C:H layer containing 500 to 100 atomic ppm of P, 6 μm thick, 0.6 to 50 atomic ppm of P
An electrophotographic photoreceptor was prepared by sequentially laminating an a-3i:H layer with a thickness of 0.5 to 2 pm and a 5i1-xNx:H layer with a thickness of 0.1 to 0.2 μm. Take this photoreceptor. ○K
When corona charging was carried out with V, a surface potential of -800V was obtained, and the sensitivity was high with a half-reduced potential exposure of 0.7 lux*sea to white light, and the residual potential was less than -13V. In this case, the P-doped aC:H layer functions as an electron charge transfer layer.

実施例6 アルミニウムを蒸着したガラス基板を6インチターゲッ
トのマグ不トロンスノくツタ装置内に配置し、基板温度
を150〜300′Cとし、Dア、03焼結体をターゲ
ットとし、八rを3〜20 m Torr。
Example 6 A glass substrate on which aluminum was vapor-deposited was placed in a 6-inch target MAGUTRON SNOKUTSU device, and the substrate temperature was set at 150 to 300'C. ~20m Torr.

02を10〜40 m Torr 、高周波電力100
〜3oOWの条件でDy2O3層を0.1〜0.5pm
形成し、次にグラファイトをターゲットとし、Arを1
〜10mTorr、H2を9〜90mTorr、高周波
電力100〜600Wの条件でa−C:H層を5μm形
成した。
02 to 10 to 40 m Torr, high frequency power 100
0.1-0.5pm of Dy2O3 layer under ~3oOW condition
then target graphite and 1 Ar
A C:H layer having a thickness of 5 μm was formed under conditions of ~10 mTorr, H2 of 9 to 90 mTorr, and high frequency power of 100 to 600 W.

この時の誘電率は4.5〜6であった。続いて、多結晶
7リコンをターゲットとし、Arを5〜10m To 
r r 、H2を0.3〜4 mTorr導入し、高周
波電力200〜800Wにて光導電層であるa−3t:
Hを0.5〜2μm形成し、更に、H2をN2に切り替
えa″′511−xNxを0.08〜0.2μ晴成し表
面被覆層とした。この感光体は−e+、oKVのコロナ
帯電処理により、表面電位−650■に帯電し白色光の
露光により半減電位露光量1.2 lux @ sea
 f確認した。  1アルミニウム支持体1上に、C2
H2を用いてプラズマCVD法により光学的禁止帯幅1
.8〜2.1eV、誘電率3〜6のノンドープミーC:
H層と10〜15μm形成し、その後S i H4とS
 I F 4の混合ガスにより光導電層としてa−3i
:H:F層を1〜3μm形成した。
The dielectric constant at this time was 4.5 to 6. Next, targeting polycrystalline 7 recon, Ar was applied at 5 to 10 m To
r r , H2 was introduced at 0.3 to 4 mTorr, and a-3t, which is a photoconductive layer, was formed at high frequency power of 200 to 800 W:
H was formed to a thickness of 0.5 to 2 μm, and then H2 was changed to N2 and a″'511-xNx was polished to a surface coating layer of 0.08 to 0.2 μm. This photoreceptor was coated with -e+, oKV corona. Through charging treatment, the surface potential is charged to -650■, and when exposed to white light, the potential is halved with an exposure amount of 1.2 lux @ sea
f Confirmed. 1 on aluminum support 1, C2
Optical bandgap width 1 was determined by plasma CVD using H2.
.. Non-doped MeC with 8-2.1eV and dielectric constant 3-6:
Form a 10 to 15 μm thick H layer, then S i H4 and S
a-3i as a photoconductive layer using a mixed gas of IF4.
:H:F layer was formed with a thickness of 1 to 3 μm.

次に、SiF4をN2に切り替え、表面被覆層としてa
−3il、−、N、(0<X<1 )を0.08 り、
2 μm形成し電子写真感光体を得た。
Next, SiF4 was switched to N2 and a
−3il, −, N, (0<X<1) by 0.08,
A 2 μm thick film was formed to obtain an electrophotographic photoreceptor.

この感光体に−s 、o KVのコロナ電圧で帯電処理
を行った。表面電位は一1300Vと高い電位が得られ
、白色光によって半減電位露光量は0.5 lux・S
eCと高感度が実証された。これは誘電率3〜5のノン
ドープミーC:H層が上記の範囲では電子に対し効率良
い電荷移動層として機能していることを裏付けている。
This photoreceptor was charged with a corona voltage of -s, o KV. A high surface potential of -1300V can be obtained, and the potential exposure amount is 0.5 lux・S when the potential is halved by white light.
eC and high sensitivity were demonstrated. This confirms that the non-doped C:H layer with a dielectric constant of 3 to 5 functions as an efficient charge transfer layer for electrons in the above range.

また、表面被覆層としてa −Ge、−xCx: H(
o(x〈1)を0.1〜0.5μm形成した感光体は繰
り返し一帯電の再現が特に優れ、上記と同様な特性が再
現発明の効果 本発明による電子写真感光体は、非晶質カーボンを主成
分とする誘電率が3〜6である電荷移動層と光4篭層と
を積層することにより、帯電時のコロナ電流が小さく、
可視光に対して高感度で、しかも低コストで耐刷性、耐
環境性(耐熱性、耐湿性等)に優れたものである。
In addition, a -Ge, -xCx: H(
The photoreceptor in which o(x<1) is formed in a thickness of 0.1 to 0.5 μm is particularly excellent in reproducing one charge repeatedly and exhibits the same characteristics as above. Effects of the Invention The electrophotographic photoreceptor according to the present invention has an amorphous By laminating the charge transfer layer, which is mainly composed of carbon and has a dielectric constant of 3 to 6, and the optical four-layer, the corona current during charging is small.
It is highly sensitive to visible light, is low cost, and has excellent printing durability and environmental resistance (heat resistance, moisture resistance, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ本発明の実施例におけ
る電子写真感光体の断面図である。 1・・・・・・支持体、2・・・・・・電荷移動層、3
・・・・・・光導電層、4・・・・・・自由表面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
一一支特体 Z −m−電荷輸送1 3−1記弐光埠tW 4− 自前表面 第1図 第2図
FIG. 1 and FIG. 2 are sectional views of an electrophotographic photoreceptor in an example of the present invention, respectively. 1...Support, 2...Charge transfer layer, 3
...Photoconductive layer, 4...Free surface. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
11 branch special object Z -m-charge transport 1 3-1 Nikobu tW 4- own surface Fig. 1 Fig. 2

Claims (6)

【特許請求の範囲】[Claims] (1)光励起によって移動可能なキャリアを発生する光
導電層と、非晶質カーボンを主成分とする電荷移動層が
積層された電子写真感光体において、前記電荷移動層の
誘電率が3〜6である電子写真感光体。
(1) In an electrophotographic photoreceptor in which a photoconductive layer that generates movable carriers by photoexcitation and a charge transfer layer mainly composed of amorphous carbon are laminated, the charge transfer layer has a dielectric constant of 3 to 6. An electrophotographic photoreceptor.
(2)非晶質カーボン層が少なくとも水素あるいはハロ
ゲン元素を含む特許請求の範囲第1項記載の電子写真感
光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the amorphous carbon layer contains at least hydrogen or a halogen element.
(3)光導電層が局在化状態密度を減少せしめる修飾物
質を含む非晶質層である特許請求の範囲第1項記載の電
子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1, wherein the photoconductive layer is an amorphous layer containing a modifier that reduces the localized density of states.
(4)光導電層が、少なくとも水素あるいはハロゲン元
素のいずれかを含む特許請求の範囲第3項記載の電子写
真感光体。
(4) The electrophotographic photoreceptor according to claim 3, wherein the photoconductive layer contains at least either hydrogen or a halogen element.
(5)非晶質カーボン層が周期律表第III族B、あるい
は第V族Bの元素を含有する特許請求の範囲第1項記載
の電子写真感光体。
(5) The electrophotographic photoreceptor according to claim 1, wherein the amorphous carbon layer contains an element of Group III B or Group V of the periodic table.
(6)自由表面に表面被覆層を形成した特許請求の範囲
第1項記載の電子写真感光体。
(6) The electrophotographic photoreceptor according to claim 1, wherein a surface coating layer is formed on the free surface.
JP1511886A 1985-08-03 1986-01-27 Electrophotographic sensitive body Pending JPS62173474A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1511886A JPS62173474A (en) 1986-01-27 1986-01-27 Electrophotographic sensitive body
EP19860110686 EP0211421B1 (en) 1985-08-03 1986-08-01 Electrophotographic photoreceptor
DE8686110686T DE3681655D1 (en) 1985-08-03 1986-08-01 Elektrophotographischer photorezeptor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1511886A JPS62173474A (en) 1986-01-27 1986-01-27 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62173474A true JPS62173474A (en) 1987-07-30

Family

ID=11879909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1511886A Pending JPS62173474A (en) 1985-08-03 1986-01-27 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62173474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148962A (en) * 1985-09-13 1987-07-02 Minolta Camera Co Ltd Photosensitive body
JPS62195674A (en) * 1986-02-24 1987-08-28 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62242948A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS62270961A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS6321651A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPH01163751A (en) * 1986-09-26 1989-06-28 Canon Inc Electrophotographic sensitive body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPS6275536A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPS6275536A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148962A (en) * 1985-09-13 1987-07-02 Minolta Camera Co Ltd Photosensitive body
JPS62195674A (en) * 1986-02-24 1987-08-28 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62242948A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS62270961A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPS6321651A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPH01163751A (en) * 1986-09-26 1989-06-28 Canon Inc Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JPH021303B2 (en)
JPS62173474A (en) Electrophotographic sensitive body
US4405702A (en) Electrophotographic image-forming member with ladder-type silicon resin layer
JPS63132251A (en) Electrophotographic sensitive body
US5094929A (en) Electrophotographic photoreceptor with amorphous carbon containing germanium
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS6275536A (en) Electrophotographic sensitive body
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS62242948A (en) Electrophotographic sensitive body
JPS63179363A (en) Electrophotographic sensitive body
JP2595536B2 (en) Electrophotographic photoreceptor
JPS61275852A (en) Electrophotographic sensitive body
JP2553558B2 (en) Electrophotographic photoreceptor
JPS63121855A (en) Electrophotographic sensitive body
JPS63121853A (en) Electrophotographic sensitive body
JP2566762B2 (en) Electrophotographic photoreceptor
EP0211421A1 (en) Electrophotographic photoreceptor
JPS62270961A (en) Electrophotographic sensitive body
JPS63276059A (en) Production of electrophotographic sensitive body
JPH07107606B2 (en) Photoconductor
JPS63129348A (en) Electrophotographic photosensitive body
JPS6321651A (en) Electrophotographic sensitive body
JPH07120057B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS6381436A (en) Production of electrophotographic sensitive body
JPS6067950A (en) Photosensitive body