JPH0795505B2 - Method for manufacturing bonded wafer - Google Patents

Method for manufacturing bonded wafer

Info

Publication number
JPH0795505B2
JPH0795505B2 JP2045778A JP4577890A JPH0795505B2 JP H0795505 B2 JPH0795505 B2 JP H0795505B2 JP 2045778 A JP2045778 A JP 2045778A JP 4577890 A JP4577890 A JP 4577890A JP H0795505 B2 JPH0795505 B2 JP H0795505B2
Authority
JP
Japan
Prior art keywords
wafer
oxide film
bonded
wafers
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2045778A
Other languages
Japanese (ja)
Other versions
JPH03250617A (en
Inventor
辰夫 伊藤
正己 中野
克夫 吉沢
隆広 木田
正雄 深美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Nagano Electronics Industrial Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Nagano Electronics Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Nagano Electronics Industrial Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2045778A priority Critical patent/JPH0795505B2/en
Priority to DE1991626153 priority patent/DE69126153T2/en
Priority to EP91301680A priority patent/EP0444943B1/en
Publication of JPH03250617A publication Critical patent/JPH03250617A/en
Publication of JPH0795505B2 publication Critical patent/JPH0795505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2枚の単結晶シリコンウエーハを接合一体化
して成る接合ウエーハの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a bonded wafer, which is formed by bonding and integrating two single crystal silicon wafers.

(従来の技術) 従来、誘電体基板上に単結晶半導体薄膜を形成する方法
としは、単結晶サファイア基板上に単結晶シリコン(S
i)膜等をエピタキシャル成長させる技術が良く知られ
ているが、この技術においては、基板誘電体と気相成長
されるシリコン単結晶との間に格子定数の不一致がある
ため、シリコン気相成長層に多数の結晶欠陥が発生し、
このために該技術は実用性に乏しい。
(Prior Art) Conventionally, as a method of forming a single crystal semiconductor thin film on a dielectric substrate, single crystal silicon (S
i) A technique for epitaxially growing a film or the like is well known. However, in this technique, there is a mismatch in the lattice constant between the substrate dielectric and the vapor-grown silicon single crystal. Many crystal defects occur in
For this reason, the technique is not practical.

又、シリコン基板表面上に熱酸化膜を形成し、この熱酸
化膜上に多結晶状若しくはアモルファス状のシリコン膜
を被着し、これに電子線或いはレーザー光線等のエネル
ギービームを線状に、且つ一方向に照射して該シリコン
膜を線状に融解、冷却及び固化することによって、全体
を単結晶の薄膜とする技術も良く知られている。
Further, a thermal oxide film is formed on the surface of the silicon substrate, and a polycrystalline or amorphous silicon film is deposited on the thermal oxide film, and an energy beam such as an electron beam or a laser beam is linearly formed on the thermal oxide film, and A well-known technique is to irradiate in one direction to linearly melt, cool, and solidify the silicon film to form a single-crystal thin film as a whole.

ところで、熱酸化膜上のシリコン多結晶膜をレーザー光
線等で単結晶膜化する技術は、例えば特公昭62−34716
号公報に開示されている。この技術においては、単結晶
シリコン基板の端部にこれと一体に連続する単結晶突部
を設け、これを核として多結晶膜の単結晶化を試みてい
るが、溶融シリコンの酸化膜との相互作用によって部分
的には単結晶化が可能であるものの、実用に耐え得るシ
リコン単結晶膜は得難いのが実情である。
By the way, a technique for converting a silicon polycrystalline film on a thermal oxide film into a single crystal film with a laser beam or the like is disclosed in, for example, Japanese Patent Publication No. 62-34716.
It is disclosed in the publication. In this technique, a single crystal projection that is continuous with the single crystal silicon substrate is provided at the end of the single crystal silicon substrate, and an attempt is made to single crystallize the polycrystalline film using this as a nucleus. Although it is possible to partially form a single crystal by interaction, it is difficult to obtain a silicon single crystal film that can withstand practical use.

そこで近年、SOI(Si On Insulator)構造のウエーハが
特に注目されるに至った。この接合ウエーハは、2枚の
半導体ウエーハの少なくとも一方を酸化処理してそのウ
エーハの少なくとも一方の表面に酸化膜を形成し、これ
ら2枚の半導体ウエーハを前記酸化膜が中間層になるよ
うにして重ね合わせた後、所定温度に加熱して両者を接
着し、その上層のウエーハ(以下、ボンドウエーハと称
する)を研磨加工してこれを薄膜化することによって得
られる。
Therefore, in recent years, a wafer having an SOI (Si On Insulator) structure has been particularly attracting attention. In this bonding wafer, at least one of the two semiconductor wafers is oxidized to form an oxide film on the surface of at least one of the wafers, and these two semiconductor wafers are formed so that the oxide film serves as an intermediate layer. After they are superposed, they are heated to a predetermined temperature to bond them to each other, and an upper layer wafer (hereinafter referred to as a bond wafer) is subjected to polishing to obtain a thin film.

(発明が解決しようとする課題) ところで、接合ウエーハにおいては、両ウエーハの結合
強度が全接着面に亘って高いことが必要であり、結合強
度が不十分であると接合界面にボイドと称される未結合
領域が生じ、製品の歩留りが悪くなるという問題が発生
していた。尚、ボイドの検出方法としては、赤外線透過
法、超音波探傷法、X線ラング法等が知られている。
(Problems to be Solved by the Invention) By the way, in a bonded wafer, the bonding strength of both wafers needs to be high over the entire bonding surface, and if the bonding strength is insufficient, it is called a void at the bonding interface. There has been a problem that a non-bonded region is generated and the yield of products is deteriorated. In addition, as a method of detecting a void, an infrared transmission method, an ultrasonic flaw detection method, an X-ray rung method, and the like are known.

又、接合ウエーハの製造工程においては、ウエーハ表面
に被着された酸化膜を除去するために、例えばフッ化水
素液を用いたエッチングが実施されるが、接合界面のエ
ッチング液(フッ化水素液)に対する耐浸食性が高くな
ければ、デバイス工程においてボンドウエーハ上に形成
されるパターンに剥がれが発生する不具合があった。
In addition, in the manufacturing process of the bonded wafer, etching is performed using, for example, a hydrogen fluoride solution in order to remove the oxide film deposited on the wafer surface. If the erosion resistance to (1) is not high, there is a problem that peeling occurs in the pattern formed on the bond wafer in the device process.

さらに、シリコンウエーハの場合、その単結晶と酸化膜
(SiO2)では熱収縮率(熱膨張率)に差があるため、こ
れら単結晶面と酸化膜面とを接触させて接合ウエーハと
すると、該接合ウエーハに残留応力が蓄積されので、接
合ウエーハに撓み変形(反り)が発生する問題もあっ
た。
Furthermore, in the case of a silicon wafer, there is a difference in thermal contraction rate (coefficient of thermal expansion) between the single crystal and the oxide film (SiO 2 ), so if the single crystal surface and the oxide film surface are brought into contact with each other to form a bonded wafer, Since residual stress is accumulated in the bonded wafer, there is a problem that the bonded wafer is bent and deformed (warped).

本発明は上記問題点に鑑みてなされたもので、その第1
の目的は、結合強度及び、接合界面のエッチング液に対
する耐浸食性が高い接合ウエーハを得ることができる接
合ウエーハの製造方法を提供することにある。
The present invention has been made in view of the above problems, and the first
It is an object of the present invention to provide a method for producing a bonded wafer, which can obtain a bonded wafer having high bond strength and high erosion resistance of the bonding interface against an etching solution.

本発明の第2の目的は、前記反りのない接合ウエーハを
提供することにある。
A second object of the present invention is to provide a bonded wafer without warpage.

(課題を解決するための手段) 上記第1の目的を達成するべく請求項1に記載の接合ウ
エーハの製造方法は、いずれも単結晶シリコンからなる
第1鏡面ウエーハと第2鏡面ウエーハとを用意し、第2
鏡面ウエーハの片面鏡面側に酸化膜を形成し、第2鏡面
ウエーハを、前記酸化膜が中間層になるように第1鏡面
ウエーハの鏡面に重ね合わせた後、これら第1、第2鏡
面ウエーハをN2雰囲気中又は酸化性雰囲気中で1100℃〜
1200℃に加熱して両者を接着した後、第2鏡面ウエーハ
における第1鏡面ウエーハとの接着面と反対側の面を研
磨して第2鏡面ウエーハを薄膜化することを特徴とす
る。
(Means for Solving the Problems) In order to achieve the first object, the method for producing a bonded wafer according to claim 1, wherein a first mirror surface wafer and a second mirror surface wafer each made of single crystal silicon are prepared. Then second
An oxide film is formed on the one-sided mirror surface side of the mirror surface wafer, and the second mirror surface wafer is superposed on the mirror surface of the first mirror surface wafer so that the oxide film serves as an intermediate layer. 1100 ° C ~ in N 2 atmosphere or oxidizing atmosphere
After heating to 1200 ° C. to bond them, the second mirror-finished wafer is thinned by polishing the surface of the second mirror-finished wafer opposite to the surface bonded to the first mirror-finished wafer.

又、上記第2の目的を達成するための、請求項2に記載
の接合ウエーハの製造方法は、請求項1の方法におい
て、前記加熱処理を酸化性雰囲気中で行い、第1及び第
2鏡面ウエーハの、前記接着面を除く全表面に酸化膜を
形成することを特徴とする。
The method for manufacturing a bonded wafer according to claim 2 for achieving the second object is the method according to claim 1, wherein the heat treatment is carried out in an oxidizing atmosphere. An oxide film is formed on the entire surface of the wafer except the adhesive surface.

(作用) 第1、第2鏡面ウエーハを、酸化膜を介して接着するパ
ターンとしては、 第1鏡面ウエーハ(接合ウエーハにおいて、主として
機械的強度を与える保護用ウエーハであって、以下、ベ
ースウエーハと称する)のみに酸化膜を形成し、この酸
化膜を介してベースウエーハに第2鏡面ウエーハ(接合
ウエーハにおいて、薄膜化され、デバイスが形成される
ウエーハであって、ボンドウエーハと称する)を接着す
るもの、 逆に、ボンドウエーハのみに酸化膜を形成し、この酸
化膜を介して両ウエーハを接着するもの、 両ウエーハに酸化膜を形成し、これらの酸化膜を介し
て両ウエーハを接着するもの、 が考えられる。
(Function) As a pattern for bonding the first and second mirror-finished wafers through the oxide film, the first mirror-finished wafer (a bonded wafer, which is a protective wafer that mainly gives mechanical strength, is referred to as a base wafer hereinafter) (Referred to as "bond wafer"), and an oxide film is formed only on the wafer), and a second mirror surface wafer (a wafer on which a thin film is formed on the bonded wafer to form a device, referred to as a bond wafer) is bonded to the base wafer through the oxide film. On the contrary, the one in which an oxide film is formed only on the bond wafer and both wafers are bonded through this oxide film, and the one in which an oxide film is formed on both wafers and both wafers are bonded through these oxide films , Can be considered.

本発明者らは、上記パターンの違いが接合ウエーハにお
ける両ウエーハの結合機構、延いては両ウエーハの結合
強度、及び接合界面のエッチング液に対する耐浸食性に
影響を及ぼすものとの見地に立って種々実験した結果、
本発明方法(請求項1)のように、ボンドウエーハの片
面鏡面側のみに酸化膜を形成し、かつN2雰囲気中又は酸
化性雰囲気中で所定温度に加熱して両者を接合すれば、
該接合ウエーハにおいて高い接合強度及び上記耐浸食性
が得られることを見い出した。
In view of the fact that the difference in the above patterns affects the bonding mechanism of both wafers in the bonded wafer, by extension the bonding strength of both wafers, and the erosion resistance of the bonding interface to the etching liquid. As a result of various experiments,
As in the method of the present invention (claim 1), if an oxide film is formed only on the one-sided mirror surface side of the bond wafer, and the two are bonded by heating to a predetermined temperature in an N 2 atmosphere or an oxidizing atmosphere,
It has been found that high bonding strength and the above erosion resistance can be obtained in the bonded wafer.

又、前記加熱処理を酸化性雰囲気中で行い、ボンドウエ
ーハ及びベースウエーハの、前記接着面を除く全表面に
酸化膜を形成する(請求項2)ことにより、接合ウエー
ハの反りを防止できることが判った。
Further, it has been found that the warp of the bonded wafer can be prevented by performing the heat treatment in an oxidizing atmosphere and forming an oxide film on all surfaces of the bond wafer and the base wafer except the bonding surface (claim 2). It was

(実施例) 以下に、本発明の一実施例を添付図面に基づいて説明す
る。第1図(a)〜(e)は、本発明に係る接合ウエー
ハの製造方法を工程順に示す説明図である。
(Example) Below, one Example of this invention is described based on an accompanying drawing. 1 (a) to 1 (e) are explanatory views showing a method for manufacturing a bonded wafer according to the present invention in the order of steps.

第1図(a)に示すように、素子形成面となるべき単結
晶シリコンからなるボンドウエーハ1と、ベース材とな
るべき同じく単結晶シリコンからなるベースウエーハ2
とを用意する。そして、ボンドウエーハ1を酸化処理し
て、その片側の鏡面に(図面下側の面)に厚さ約500nm
のSiO2酸化膜3を形成する。
As shown in FIG. 1 (a), a bond wafer 1 made of single crystal silicon to be an element formation surface and a base wafer 2 made of the same single crystal silicon to be a base material.
And prepare. Then, the bond wafer 1 is subjected to an oxidation treatment, and a mirror surface on one side thereof (the surface on the lower side of the drawing) has a thickness of about 500 nm.
SiO 2 oxide film 3 is formed.

次に、第1図(b)に示すように、ベースウエーハ2の
上にボンドウエーハ1を重ね合わせて一体化する。
Next, as shown in FIG. 1 (b), the bond wafer 1 is superposed on the base wafer 2 to be integrated.

次に、第1図(c)に示すように、これら一体化された
ウエーハ1,2を酸化性雰囲気中で約1100℃の温度で約120
分間、熱酸化処理することによって、ウエーハ1,2を接
着するとともに、両ウエーハ1,2の全表面(前記接着面
を除く)に厚さ約500nmのSiO2酸化膜4を形成する。
Next, as shown in FIG. 1 (c), these integrated wafers 1 and 2 are heated in an oxidizing atmosphere at a temperature of about 1100 ° C. for about 120 ° C.
The wafers 1 and 2 are adhered to each other by thermal oxidation treatment for a minute, and the SiO 2 oxide film 4 having a thickness of about 500 nm is formed on the entire surfaces of the wafers 1 and 2 (excluding the adhering surface).

次に、上記接合一体化されたウエーハ1,2を冷却した
後、第1図(d)に示すように、上層のボンドウエーハ
1の表面が所定の研磨代(例えば、3μm)を残して所
定の厚さt1(例えば、6μm)になるまでプレ研磨(1
次研磨)する。
Next, after cooling the bonded and integrated wafers 1 and 2, as shown in FIG. 1 (d), the surface of the upper bond wafer 1 is subjected to a predetermined polishing allowance (for example, 3 μm) to a predetermined value. To a thickness t 1 (for example, 6 μm) of pre-polishing (1
Next polishing).

この場合、前述のように単結晶シリコンから成るウエー
ハ1,2の熱収縮率(熱膨張率)の方がSiO2酸化膜3,4のそ
れよりも大きいため、酸化膜4形成後の接合一体化ウエ
ーハを冷却した時点でウエーハ1,2に残留応力が蓄積す
る。
In this case, since the thermal contraction rate (coefficient of thermal expansion) of the wafers 1 and 2 made of single crystal silicon is larger than that of the SiO 2 oxide films 3 and 4 as described above, the integrated bonding after the oxide film 4 is formed. Residual stress accumulates on wafers 1 and 2 when the synthetic wafer is cooled.

然るに、本実施例では、上記プレ研磨が終了した時点で
ベースウエーハ2の上下面は略同一厚さ(約500nm)の
酸化膜3,4によって被われるため、該ベースウエーハ2
の上下面における残留応力分布が略等しくなり、上下面
の熱収縮量が略同一となって接合一体化ウエーハの撓み
変形が防止される。
However, in this embodiment, since the upper and lower surfaces of the base wafer 2 are covered with the oxide films 3 and 4 having substantially the same thickness (about 500 nm) at the time when the pre-polishing is completed, the base wafer 2
The residual stress distributions on the upper and lower surfaces are substantially equal, and the heat shrinkage amounts on the upper and lower surfaces are substantially the same, so that the bending deformation of the bonded integrated wafer is prevented.

次に、前述のようにプレ研磨された厚さt1のボンドウエ
ーハ1(第1図(d)参照)を、2次研磨によって厚さ
t2(例えば、3μm)まで研磨して薄膜化し、これによ
って第1図(e)に示すような接合ウエーハ5を得る。
Next, the bond wafer 1 (see FIG. 1 (d)) having the thickness t 1 pre-polished as described above is subjected to the secondary polishing to obtain the thickness.
It is thinned by polishing to t 2 (for example, 3 μm) to obtain a bonded wafer 5 as shown in FIG. 1 (e).

以上のようにして得られた接合ウエーハ5の結合強度を
調べるために、接着時の加熱温度900℃、1000℃、1100
℃、1200℃で各2時間加熱処理して得られた接合ウエー
ハを複数用意し、各接合ウエーハの引張り接着強度を、
引張り試験機で測定した。この場合、ボンドウエーハ1
の上面とベースウエーハ2の下面を、接着剤により前記
試験機の引張り用部材に固定した。その結果を第2図
(c)に示す。
In order to investigate the bonding strength of the bonded wafer 5 obtained as described above, the heating temperature at the time of bonding 900 ° C, 1000 ° C, 1100
Prepare a plurality of bonded wafers obtained by heat treatment at ℃ and 1200 ℃ for 2 hours each, and measure the tensile adhesive strength of each bonded wafer.
It was measured with a tensile tester. In this case, bond wafer 1
And the lower surface of the base wafer 2 were fixed to the pulling member of the tester with an adhesive. The results are shown in FIG. 2 (c).

又、上記本発明の実施例に対する比較例として、同じ加
熱条件下で、ウエーハ間に酸化膜を介在させないで直接
接合して得られた接合ウエーハと、両ウエーハにそれぞ
れ厚さ500nmの酸化膜を形成し、この酸化膜を介して両
ウエーハを接合して得られた接合ウエーハとを用意し、
これらの接合ウエーハについて、同様に引張り接着強度
の試験を行った。その結果を第2図(a)、(b)に示
す。尚、第2図中、●印は両ウエーハ接合界面が剥離し
たときの値を示し、○印は接合ウエーハが前記引張り試
験機の引張り用部材から剥離(接着剤剥離)したときの
値を示す。
Further, as a comparative example to the above-mentioned embodiment of the present invention, under the same heating conditions, a bonded wafer obtained by directly bonding without interposing an oxide film between the wafers, and an oxide film with a thickness of 500 nm respectively on both wafers. Prepare a bonded wafer obtained by forming and bonding both wafers through this oxide film,
These bonded wafers were similarly tested for tensile adhesive strength. The results are shown in FIGS. 2 (a) and 2 (b). In addition, in FIG. 2, a ● mark indicates a value when both wafer bonding interfaces are peeled off, and a ○ mark indicates a value when the bonded wafer is peeled from the pulling member of the tensile testing machine (peeling of the adhesive). .

さらに第2図中、「酸化膜0/0nm」は両ウエーハ間に酸
化膜が存在しない場合を、「酸化膜500/500nm」は両ウ
エーハにそれぞれ厚さ500nmの酸化膜を形成した場合
を、「500/0nm」は、ボンドウエーハのみに厚さ500nmの
酸化膜を形成した場合(本発明の実施例)を、それぞれ
示している。
Furthermore, in FIG. 2, “oxide film 0/0 nm” is the case where no oxide film exists between both wafers, and “oxide film 500/500 nm” is the case where an oxide film with a thickness of 500 nm is formed on both wafers. “500/0 nm” indicates the case where an oxide film having a thickness of 500 nm is formed only on the bond wafer (Example of the present invention).

第2図(c)から明らかなように、本発明方法により、
ボンドウエーハのみに酸化膜を形成し、温度1100℃〜12
00℃に加熱した場合には600kg/cm2以上の高い結合強度
が得られる。
As is clear from FIG. 2 (c), according to the method of the present invention,
An oxide film is formed only on the bond wafer, and the temperature is 1100 ° C-12
When heated to 00 ° C, a high bond strength of 600 kg / cm 2 or more can be obtained.

そして、第2図に示される結果から、各品種の接合ウエ
ーハの結合強度に対する評価を各加熱温度毎に下すと、
第3図に示すような結果となる。尚、第3図中、○印は
良、△印は可、×印は不可をそれぞれ示す。
Then, based on the results shown in FIG. 2, when the bonding strength of the bonded wafers of each type is evaluated for each heating temperature,
The result is as shown in FIG. In FIG. 3, ◯ indicates good, Δ indicates good, and X indicates bad.

而して、以上の結果を総合すると、本発明方法のように
ボンドウエーハの片側鏡面のみに酸化膜を形成し、接着
時に1100℃〜1200℃に加熱すれば、高い結合強度(600k
g/cm2以上)が得られることが判った。
Thus, when the above results are summed up, if an oxide film is formed only on one side mirror surface of the bond wafer as in the method of the present invention and heated to 1100 ° C. to 1200 ° C. at the time of bonding, high bond strength (600 k
g / cm 2 or more) was obtained.

一方、上記各品種の接合ウエーハについて、接合界面の
エッチング液(フッ化水素液)に対する耐浸食性試験を
した結果、本発明方法によって得られた接合ウエーハに
は高い耐浸食性が確保されることが判った。尚、他の接
合ウエーハ(両ウエーハ間に酸化膜が介在しないもの、
及び両ウエーハに酸化膜を形成したもの)においては、
満足すべき耐浸食性が得られなかった。
On the other hand, as a result of performing an erosion resistance test on the bonding interface etching liquid (hydrogen fluoride solution) for each of the above-mentioned bonded wafers, it is confirmed that the bonded wafers obtained by the method of the present invention have high erosion resistance. I understood. In addition, other bonded wafers (with no oxide film between both wafers,
And an oxide film formed on both wafers),
Satisfactory erosion resistance was not obtained.

ところで、本発明方法によって得られた接合ウエーハ5
にあっては、その厚さの大部分を占めるベースウエーハ
2の撓み変形が前述のように防止されるため、該接合ウ
エーハ5は反りの無い、平坦度合の高いものとなり、次
工程以降における当該接合ウエーハ5の真空吸着が確実
に行われる等の効果が得られる。
By the way, the bonded wafer 5 obtained by the method of the present invention
In this case, since the flexural deformation of the base wafer 2 which occupies most of the thickness is prevented as described above, the bonded wafer 5 has no warp and has a high degree of flatness. It is possible to obtain the effect that the vacuum suction of the bonding wafer 5 is reliably performed.

接合界面のエッチング液に対する耐久性を調べるため
に、前述の接合ウエーハ(第2図(b)及び(c)に示
すもの)を薄刃、例えば80μmの外周式ダイヤモンドス
ライサーで切断して、それぞれの接合ウエーハから約2m
m角のペレットを20個ずつ用意し、これらを濃度25%で
温度25℃のフッ化水素酸水溶液中で20分間放置し、水
洗、乾燥後、その接合状況を調べた。即ち、ピンセット
で軽くボンドウエーハ側及びベースウエーハ側を反対方
向に引張ったところ、第2図(b)に示す接合ウエーハ
からのペレットでは、その約半数が接合界面でボンドウ
エーハとベースウエーハに分離した。これに対し、本発
明に係る第2図(c)に示す接合ウエーハからのペレッ
トでは、上記のような破壊は全く発生しなかった。
In order to examine the durability of the bonding interface against an etching solution, the above-mentioned bonding wafer (shown in FIGS. 2 (b) and (c)) was cut with a thin blade, for example, a peripheral diamond slicer of 80 μm, and each bonding was performed. About 2m from Waha
Twenty pieces of m-square pellets were prepared, and these pellets were allowed to stand in a hydrofluoric acid aqueous solution at a temperature of 25 ° C at a concentration of 25% for 20 minutes, washed with water, dried, and then examined the bonding state. That is, when lightly pulling the bond wafer side and the base wafer side in opposite directions with tweezers, about half of the pellets from the bonded wafer shown in FIG. 2 (b) were separated into the bond wafer and the base wafer at the bonding interface. . On the other hand, in the pellet from the bonded wafer shown in FIG. 2 (c) according to the present invention, the above breakage did not occur at all.

更に、上記水洗、乾燥後の接合ウエーハの接合界面を顕
微鏡で観察したところ、第2図(c)に示す接合ウエー
ハからのペレットにおいては、ベースウエーハと酸化膜
との接合界面でも、その中央部ではエッチング液による
腐食が進んでいなかった。
Further, when the joint interface of the joint wafer after being washed with water and dried was observed with a microscope, in the pellet from the joint wafer shown in FIG. 2 (c), even at the joint interface between the base wafer and the oxide film, the central portion thereof was observed. Then, the corrosion by the etching solution did not proceed.

本発明方法により得られた接合ウエーハは、ボンドウエ
ーハに例えば集積回路素子が公知の方法で形成される場
合、中間の酸化膜を熱酸化で形成するならば、ベースウ
エーハに当該酸化膜が形成されるのと比較して、ボンド
ウエーハにおける、集積回路素子の形成される領域の片
面が、誘電体である酸化膜によって完全に被覆されてい
るため、当該集積回路素子の耐絶縁特性、その他の電気
特性が良好に実現できる。
The bonding wafer obtained by the method of the present invention is formed on a bond wafer by, for example, an integrated circuit element formed by a known method, and if the intermediate oxide film is formed by thermal oxidation, the oxide film is formed on the base wafer. On the other hand, since one surface of the area where the integrated circuit element is formed in the bond wafer is completely covered with the oxide film as the dielectric, the insulation resistance of the integrated circuit element and other electrical Good characteristics can be realized.

(発明の効果) 以上の説明では明らかの如く、請求項1に記載の接合ウ
エーハの製造方法によれば、結合強度、及び接合界面の
エッチング液に対する耐浸食性が高く、集積回路素子用
の基板として優れた接合ウエーハを得ることができる効
果がある。
(Effects of the Invention) As is apparent from the above description, according to the method for manufacturing a bonded wafer according to claim 1, the bonding strength and the erosion resistance of the bonding interface with respect to the etching solution are high, and the substrate for an integrated circuit element is high. As a result, an excellent bonded wafer can be obtained.

また、請求項2に記載の接合ウエーハの製造方法によれ
ば、反りのない接合ウエーハが得られる効果がある。
Further, according to the method for producing a bonded wafer according to the second aspect, there is an effect that a warped bonded wafer can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(e)は、本発明の実施例に係る接合ウ
エーハの製造方法をその工程順に示す説明図、第2図及
び第3図は、上記実施例で得られたウエーハ及び比較例
で得られた接合ウエーハについての引張り接着強度の試
験結果を示す図である。 1……ボンドウエーハ(第2鏡面ウエーハ)、2……ベ
ースウエーハ(第1鏡面ウエーハ)、3,4……酸化膜、
5……接合ウエーハ。
1 (a) to 1 (e) are explanatory views showing a method of manufacturing a bonded wafer according to an embodiment of the present invention in the order of steps, and FIGS. 2 and 3 show the wafer obtained in the above embodiment and It is a figure which shows the test result of the tensile adhesive strength about the joining wafer obtained in the comparative example. 1 ... Bond wafer (second mirror surface wafer), 2 ... Base wafer (first mirror surface wafer), 3, 4 ... Oxide film,
5 ... Bonding wafer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉沢 克夫 長野県更埴市大字屋代1393番地 長野電子 工業株式会社内 (72)発明者 木田 隆広 長野県更埴市大字屋代1393番地 長野電子 工業株式会社内 (72)発明者 深美 正雄 長野県更埴市大字屋代1393番地 長野電子 工業株式会社内 (56)参考文献 特開 平3−62511(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuo Yoshizawa 1393 Yashiro Odaira, Sarahaku-shi, Nagano Nagano Electronics Co., Ltd. 72) Inventor Masao Fukami, 1393 Yashiro, Ojiro, Saranomiya-shi, Nagano Nagano Electronics Co., Ltd. (56) Reference JP-A-3-62511 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】いずれも単結晶シリコンからなる第1鏡面
ウエーハと第2鏡面ウエーハとを用意し、第2鏡面ウエ
ーハの片面鏡面側に酸化膜を形成し、第2鏡面ウエーハ
を、前記酸化膜が中間層になるように第1鏡面ウエーハ
の鏡面に重ね合わせた後、これら第1、第2鏡面ウエー
ハをN2雰囲気中又は酸化性雰囲気中で1100℃〜1200℃に
加熱して両者を接着した後、第2鏡面ウエーハにおける
第1鏡面ウエーハとの接着面と反対側の面を研磨して第
2鏡面ウエーハを薄膜化することを特徴とする接合ウエ
ーハの製造方法。
1. A first mirror surface wafer and a second mirror surface wafer both made of single crystal silicon are prepared, an oxide film is formed on one side of the second mirror surface wafer, and the second mirror surface wafer is formed by the oxide film. Are laminated on the mirror surface of the first mirror surface wafer so as to be an intermediate layer, and then these first and second mirror surface wafers are heated to 1100 ° C to 1200 ° C in an N 2 atmosphere or an oxidizing atmosphere to bond them. After that, the second mirror-finished wafer is thinned by polishing the surface of the second mirror-finished wafer opposite to the surface bonded to the first mirror-finished wafer to thin the second mirror-finished wafer.
【請求項2】前記加熱処理を酸化性雰囲気中で行い、第
1及び第2鏡面ウエーハの、前記接着面を除く全表面に
酸化膜を形成することを特徴とする請求項1に記載の接
合ウエーハの製造方法。
2. The bonding according to claim 1, wherein the heat treatment is performed in an oxidizing atmosphere to form an oxide film on all surfaces of the first and second mirror-finished wafers except the bonding surface. Wafer manufacturing method.
JP2045778A 1990-02-28 1990-02-28 Method for manufacturing bonded wafer Expired - Lifetime JPH0795505B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2045778A JPH0795505B2 (en) 1990-02-28 1990-02-28 Method for manufacturing bonded wafer
DE1991626153 DE69126153T2 (en) 1990-02-28 1991-02-28 Process for the production of bonded semiconductor wafers
EP91301680A EP0444943B1 (en) 1990-02-28 1991-02-28 A method of manufacturing a bonded wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045778A JPH0795505B2 (en) 1990-02-28 1990-02-28 Method for manufacturing bonded wafer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9209954A Division JP3030545B2 (en) 1997-07-19 1997-07-19 Manufacturing method of bonded wafer

Publications (2)

Publication Number Publication Date
JPH03250617A JPH03250617A (en) 1991-11-08
JPH0795505B2 true JPH0795505B2 (en) 1995-10-11

Family

ID=12728752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045778A Expired - Lifetime JPH0795505B2 (en) 1990-02-28 1990-02-28 Method for manufacturing bonded wafer

Country Status (1)

Country Link
JP (1) JPH0795505B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183477A (en) * 1993-12-22 1995-07-21 Nec Corp Manufacture of semiconductor substrate
JP3422225B2 (en) * 1997-07-08 2003-06-30 三菱住友シリコン株式会社 Laminated semiconductor substrate and method of manufacturing the same
JP4830290B2 (en) * 2004-11-30 2011-12-07 信越半導体株式会社 Manufacturing method of directly bonded wafer
JP6558355B2 (en) * 2016-12-19 2019-08-14 信越半導体株式会社 Manufacturing method of SOI wafer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013155A (en) * 1973-06-06 1975-02-12
JPS6050970A (en) * 1983-08-31 1985-03-22 Toshiba Corp Semiconductor pressure converter
JPS615544A (en) * 1984-06-19 1986-01-11 Toshiba Corp Manufacture of semiconductor device
JP2596784B2 (en) * 1988-03-12 1997-04-02 富士通株式会社 Inspection method for bonded SOI substrate
JP2763107B2 (en) * 1988-05-30 1998-06-11 株式会社東芝 Dielectric-isolated semiconductor substrate and method of manufacturing the same
JPH02238663A (en) * 1989-03-10 1990-09-20 Fujitsu Ltd Manufacture of semiconductor device
JPH0362511A (en) * 1989-07-31 1991-03-18 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Also Published As

Publication number Publication date
JPH03250617A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
US5395788A (en) Method of producing semiconductor substrate
JP3900741B2 (en) Manufacturing method of SOI wafer
JPH0719739B2 (en) Bonded wafer manufacturing method
EP0444943A1 (en) A method of manufacturing a bonded wafer
US6614065B2 (en) Use of membrane properties to reduce residual stress in an interlayer region
JPH0691147B2 (en) Bonding wafer inspection method
JPH0795505B2 (en) Method for manufacturing bonded wafer
JP3030545B2 (en) Manufacturing method of bonded wafer
JP3921823B2 (en) Manufacturing method of SOI wafer and SOI wafer
JPH11186120A (en) Close bonding between substrates made of same or different materials
JP2621325B2 (en) SOI substrate and manufacturing method thereof
JPS62122148A (en) Semiconductor substrate
JPH06224404A (en) Manufacture of integrated circuit device
JPH0680624B2 (en) Method for manufacturing bonded wafer
JP2846994B2 (en) Semiconductor wafer bonding method
JP2609198B2 (en) Semiconductor substrate manufacturing method
JPH0636407B2 (en) Semiconductor wafer bonding method
JP2801672B2 (en) Method for manufacturing semiconductor wafer
JP3902321B2 (en) Manufacturing method of bonded substrates
JPH11345954A (en) Semiconductor substrate and its manufacture
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2512243B2 (en) Manufacturing method of semiconductor element forming substrate
JPS62229855A (en) Manufacture of semiconductor device
JP4750065B2 (en) Manufacturing method of bonded semiconductor wafer
JPH088413A (en) Method of manufacturing semiconductor substrate