JPH0794723A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPH0794723A
JPH0794723A JP5315811A JP31581193A JPH0794723A JP H0794723 A JPH0794723 A JP H0794723A JP 5315811 A JP5315811 A JP 5315811A JP 31581193 A JP31581193 A JP 31581193A JP H0794723 A JPH0794723 A JP H0794723A
Authority
JP
Japan
Prior art keywords
region
substrate
conductivity type
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5315811A
Other languages
Japanese (ja)
Other versions
JP2858623B2 (en
Inventor
Masanori Funaki
正紀 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP5315811A priority Critical patent/JP2858623B2/en
Priority to KR1019940017594A priority patent/KR0174569B1/en
Priority to US08/335,409 priority patent/US5463237A/en
Publication of JPH0794723A publication Critical patent/JPH0794723A/en
Priority to US08/477,609 priority patent/US5580799A/en
Application granted granted Critical
Publication of JP2858623B2 publication Critical patent/JP2858623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce a threshold voltage without increasing a leak current in a fine patterning step. CONSTITUTION:A conductive region (I) of the same conductive type as that of the substrate 11 is provided under a gate, electrode 15 and a conductive region (II) of the opposite type to that of the substrate 11 is provided under the conductive region (I). Each conductive region (III) of the same conductive type as that of the substrate 11 is provided between a source region 12 and the conductive region (II) and between a drain region 13 and the conductive region (II). In addition, the substrate 11 is used as a region (IV).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に係り、特にMOSFET(Metal Oxide Semico
nductor Field Effect Transistor )とその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to a MOSFET (Metal Oxide Semico
nductor Field Effect Transistor) and its manufacturing method.

【0002】[0002]

【従来の技術】従来のMOSFETは、図8に示すよう
に、基板1に不純物を拡散してソース領域2とドレイン
領域3とを形成し、ゲート酸化膜4を介してゲート電極
5が設けられた構造となっている。そして、このような
構造のMOSFETを微細化するとソース領域2とドレ
イン領域3との間隔が狭くなり、これらの間で導通する
パンチスルー現象が生じるので、これを防止するため
に、基板1の不純物濃度を上げる必要があった。このた
め、ゲート電圧をかけたときのゲート電極5下の空乏層
幅は狭くなり、ゲート酸化膜4界面での垂直電界が増大
するので、キャリアの移動度が減少してトランジスタの
駆動能力が減少する原因となっていた。
2. Description of the Related Art In a conventional MOSFET, as shown in FIG. 8, impurities are diffused in a substrate 1 to form a source region 2 and a drain region 3, and a gate electrode 5 is provided via a gate oxide film 4. It has a different structure. When the MOSFET having such a structure is miniaturized, the distance between the source region 2 and the drain region 3 becomes narrower, and a punch-through phenomenon occurs in which conduction occurs between them. Therefore, in order to prevent this, impurities on the substrate 1 are prevented. It was necessary to increase the concentration. Therefore, when the gate voltage is applied, the width of the depletion layer under the gate electrode 5 becomes narrow, and the vertical electric field at the interface of the gate oxide film 4 increases, so that the mobility of carriers decreases and the driving capability of the transistor decreases. Was the cause.

【0003】ところで、MOSFETは、微細化するに
したがって電源電圧が下がる傾向にあり、それに伴って
しきい値電圧も下げる必要がある。ところが、基板1の
不純物濃度を上げるとしきい値電圧も上がってしまう。
そこで、基板1と逆の導電型の不純物を基板1の表面に
導入して、見掛上のしきい値電圧を下げるようにしてい
た。
By the way, the power supply voltage of the MOSFET tends to decrease as it is miniaturized, and the threshold voltage must be decreased accordingly. However, if the impurity concentration of the substrate 1 is increased, the threshold voltage also increases.
Therefore, an impurity having a conductivity type opposite to that of the substrate 1 is introduced into the surface of the substrate 1 to reduce the apparent threshold voltage.

【0004】[0004]

【発明が解決しようとする課題】基板1と逆の導電型の
不純物を基板1の表面に導入した場合、見掛上のしきい
値電圧は下がるが、ゲート電圧が0Vの時のドレイン電
流(リーク電流)値は増大してしまうという課題があっ
た。
When impurities of the conductivity type opposite to that of the substrate 1 are introduced into the surface of the substrate 1, the apparent threshold voltage decreases, but the drain current (when the gate voltage is 0 V There was a problem that the (leakage current) value would increase.

【0005】これは、図9に示すゲート電圧−ドレイン
電流のグラフからも判るように、しきい値電圧以下の領
域でドレイン電流を一桁下げるのに必要なゲート電圧を
示すS係数の特性は基板1の不純物濃度に依存するが、
基板1の不純物濃度は変わっていないため、S係数は変
わらず、単順にしきい値を下げるとリーク電流が増える
ことになった。したがって、リーク電流を増加させずに
しきい値電流を下げるには、同時にS係数も下げる必要
があった。
As can be seen from the graph of gate voltage-drain current shown in FIG. 9, the characteristic of the S coefficient showing the gate voltage required to lower the drain current by one digit in the region below the threshold voltage is Depending on the impurity concentration of the substrate 1,
Since the impurity concentration of the substrate 1 did not change, the S coefficient did not change, and if the threshold value was simply lowered, the leak current would increase. Therefore, in order to decrease the threshold current without increasing the leak current, it is necessary to decrease the S coefficient at the same time.

【0006】また、基板1の不純物濃度を上げるとソー
ス領域2及びドレイン領域3下の空乏層幅も減少し、各
領域2,3の容量も増大するので、MOSFETの遅延
時間が増大し、動作速度が低下するという課題があっ
た。そこで本発明は、上記課題を解決した半導体装置及
びその製造方法を提供することを目的とする。
Further, if the impurity concentration of the substrate 1 is increased, the width of the depletion layer under the source region 2 and the drain region 3 is also reduced, and the capacitance of each of the regions 2 and 3 is also increased. There was a problem that the speed decreased. Therefore, it is an object of the present invention to provide a semiconductor device and a method of manufacturing the same that solve the above problems.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の手段として、第1の導電型を有する半導体基板上に薄
いゲート絶縁膜を挟んで形成されたゲート電極と、この
ゲート絶縁膜の下方でこのゲート電極の両側に設けられ
た第2の導電型を有するソース領域及びドレイン領域
と、を備えた半導体装置において、前記ゲート絶縁膜の
下方で前記ゲート絶縁膜と前記ソース領域及び前記ドレ
イン領域に接しないようにして前記基板内に形成された
第2の導電型を有する第2の領域と、第1の導電型を有
して前記ゲート絶縁膜とこの第2の領域との間に形成さ
れ、前記ゲート電極に電圧をかけた時に形成される空乏
層の幅と、前記第2の領域とのpn接合による空乏層の
幅とを合計した幅よりも小さい幅の第1の領域と、第1
の導電型を有して前記第2の領域と前記ソース領域及び
前記ドレイン領域との間にそれぞれ形成され、前記ソー
ス領域による空乏層幅と、前記第2の領域とのpn接合
による空乏層の幅とを合計した幅よりも大きい幅の第3
の領域と、を有することを特徴とする半導体装置、及
び、第1の導電型を有する半導体基板に第2の導電型を
有する不純物を注入して第2の領域を形成する工程と、
前記半導体基板に第1の導電型を有する不純物を注入し
て前記第2の領域よりも表面側に第1の領域を形成する
工程と、前記半導体基板表面に薄いゲート絶縁膜を成膜
する工程と、このゲート絶縁膜上にゲート電極を形成す
る工程と、このゲート電極をマスクとして前記第2の領
域の不純物濃度よりも濃くなるように、第3の領域を形
成するための第1の導電型を有する不純物を前記第2の
領域に重なる位置に注入する工程と、前記ゲート電極を
マスクとして第2の導電型を有する不純物を注入してソ
ース領域及びドレイン領域を形成する工程とよりなるこ
とを特徴とする半導体装置の製造方法を提供しようとす
るものである。
As means for achieving the above object, a gate electrode formed on a semiconductor substrate having a first conductivity type with a thin gate insulating film sandwiched between the gate electrode and a gate electrode below the gate insulating film. And a source region and a drain region having a second conductivity type provided on both sides of the gate electrode, the gate insulating film, the source region, and the drain region below the gate insulating film. Between the gate insulating film and the second region having the first conductivity type and the second region having the second conductivity type formed in the substrate so as not to come into contact with the second region. A first region having a width smaller than the sum of the width of the depletion layer formed when a voltage is applied to the gate electrode and the width of the depletion layer formed by the pn junction with the second region; First
Of the depletion layer formed by the source region and the depletion layer formed by the pn junction with the second region. A third width greater than the sum of the width and
And a region for forming a second region by implanting an impurity having a second conductivity type into a semiconductor substrate having a first conductivity type.
Injecting an impurity having a first conductivity type into the semiconductor substrate to form a first region on the surface side of the second region, and forming a thin gate insulating film on the semiconductor substrate surface. And a step of forming a gate electrode on the gate insulating film, and using the gate electrode as a mask, a first conductive film for forming the third region so as to have a higher impurity concentration than the second region. Implanting an impurity having a type into a position overlapping the second region, and implanting an impurity having a second conductivity type with the gate electrode as a mask to form a source region and a drain region. An object of the present invention is to provide a method for manufacturing a semiconductor device characterized by the above.

【0008】[0008]

【実施例】まず、本発明の半導体装置の第1の実施例で
あるMOSFETの構造を図1に示し、その要部拡大図
を図2に示して以下に説明する。このMOSFETは、
ゲート電極15下に基板11と同じ導電型を有する領域
Iがあり、その下には、基板11と反対の導電型を有す
る領域IIがある。また、この領域IIとソース領域12と
の間及び領域IIとドレイン領域13との間には、それぞ
れ基板11と同じ導電型を有する領域III がある。な
お、基板11を領域IVとする。したがって、基板11を
p型とすると、領域I、III 、IVはp型となり、領域I
I、ソース領域12、ドレイン領域13はn型となる。
また、基板11がn型の場合には、それぞれ逆の導電型
となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a MOSFET which is a first embodiment of the semiconductor device of the present invention is shown in FIG. 1, and an enlarged view of the essential parts thereof is shown in FIG. This MOSFET is
Below the gate electrode 15 is a region I having the same conductivity type as that of the substrate 11, and below that is a region II having a conductivity type opposite to that of the substrate 11. Further, between the region II and the source region 12 and between the region II and the drain region 13, there are regions III having the same conductivity type as the substrate 11, respectively. It should be noted that the substrate 11 is defined as a region IV. Therefore, if the substrate 11 is p-type, the regions I, III, and IV are p-type, and the region I
I, the source region 12, and the drain region 13 are n-type.
When the substrate 11 is n-type, the conductivity types are opposite to each other.

【0009】そして、それぞれの領域は、次のような条
件を満たしている。領域Iの深さ方向幅W1は、ゲート
バイアスによる空乏層幅Wgと領域IIの接合による空乏
層幅Wj1の合計よりも小さくする(W1<Wg+Wj
1)。領域IIの深さ方向幅W2は、任意である。領域III
の深さ方向幅W3は、領域IIの深さ方向幅W2よりも
大きくする(W3>W2)。領域III の横方向幅W13
は、領域IIのドレイン領域13による空乏層幅Wdと領
域IIとの接合による空乏層幅Wj3の合計よりも大きくす
る(W13>Wd+Wj3)。さらに、望ましい条件とし
て、領域IVの基板濃度N4を他の全ての領域I,II,II
I の濃度N1,N2,N3よりも薄くする(N4<N
1,N2,N3)。
Each area satisfies the following conditions. The width W1 in the depth direction of the region I is smaller than the total of the depletion layer width Wg due to the gate bias and the depletion layer width Wj1 due to the junction of the region II (W1 <Wg + Wj.
1). The width W2 in the depth direction of the region II is arbitrary. Area III
The width W3 in the depth direction is larger than the width W2 in the depth direction of the region II (W3> W2). Region III lateral width W13
Is larger than the sum of the depletion layer width Wd due to the drain region 13 in the region II and the depletion layer width Wj3 due to the junction with the region II (W13> Wd + Wj3). Furthermore, as a desirable condition, the substrate concentration N4 in the region IV is set to all other regions I, II, II.
The concentration of I is made thinner than N1, N2, N3 (N4 <N
1, N2, N3).

【0010】このような各条件は、次のような作用を示
す。領域Iは、動作時に反転状態となり、キャリアの伝
導を担当するチャネル領域である。そして、領域Iの不
純物濃度によって、このMOSFETのしきい値電圧が
制御される。
Each of such conditions has the following effects. The region I is a channel region that is in an inverted state during operation and is in charge of carrier conduction. The threshold voltage of this MOSFET is controlled by the impurity concentration in the region I.

【0011】領域IIは、領域Iとpn接合しているの
で、領域Iをこの接合により空乏化させる。したがっ
て、領域IIは、ゲート電極15に電圧をかけたときの領
域Iの空乏化を助け、ゲート電極15から見た見掛上の
容量を低減させる。また、同時にしきい値電圧を低減す
る。
Since the region II has a pn junction with the region I, the region I is depleted by this junction. Therefore, the region II helps depletion of the region I when a voltage is applied to the gate electrode 15, and reduces the apparent capacitance seen from the gate electrode 15. At the same time, the threshold voltage is reduced.

【0012】領域III は、ドレイン領域13の空乏層が
広がって、領域IIとドレイン領域13が導通することを
防止する。さらに、領域III は、領域Iと領域IVとをつ
ないで領域Iの電位を安定させている。
The region III prevents the depletion layer of the drain region 13 from spreading and the region II and the drain region 13 from conducting. Further, the region III connects the regions I and IV to stabilize the potential of the region I.

【0013】領域IVの不純物濃度は、ソース領域12と
ドレイン領域13の容量を決定する。パンチスルーの防
止は、領域III が行っているので、領域IVの不純物濃度
はこのことを考慮せずに決めることができ、ソース領域
12とドレイン領域13の容量を減らすために低濃度に
する。
The impurity concentration of the region IV determines the capacitance of the source region 12 and the drain region 13. Since the punch-through is prevented by the region III, the impurity concentration of the region IV can be determined without taking this into consideration, and the impurity concentration of the source region 12 and the drain region 13 is made low to reduce the capacitance.

【0014】また、図3に示すように、製造工程の関係
で、ソース領域12及びドレイン領域13の下側に領域
III がはみ出た構造で形成されることがある(第2の実
施例)。この場合、ソース領域12及びドレイン領域1
3に接している領域III の不純物濃度がソース領域12
及びドレイン領域13の容量を決定するが、領域IIIの
はみ出した部分の深さ方向幅W3aがドレインの空乏層幅
Wdよりも小さい場合(W3a<Wd)、ドレインの空乏
層が領域IVにまで伸びることになるので、この場合でも
ソース領域12及びドレイン領域13の容量を低減する
ことができる。
Further, as shown in FIG. 3, due to the manufacturing process, a region below the source region 12 and the drain region 13 is formed.
Sometimes III is formed in a protruding structure (second embodiment). In this case, the source region 12 and the drain region 1
The impurity concentration of the region III in contact with the source region 3 is
And the capacitance of the drain region 13 is determined. When the width W3a of the protruding portion of the region III in the depth direction is smaller than the drain depletion layer width Wd (W3a <Wd), the drain depletion layer extends to the region IV. Therefore, even in this case, the capacities of the source region 12 and the drain region 13 can be reduced.

【0015】このような構造のMOSFETは次のよう
にして製造することができる。製造工程を図4(A)〜
(D)に示す。まず、同図(A)に示すように、領域IV
である不純物濃度1.5×1016cm-3のp型基板11の
表面に犠牲酸化膜14aを形成し、この犠牲酸化膜14
aを通して基板11にB(ボロン)を25KeV 、1.5
×1012cm-2、P(リン)を160KeV 、2.5×10
12cm-2注入すると、犠牲酸化膜14aの下に、領域Iと
なるBの注入された層16が形成され、さらにその下
に、領域IIとなるPの注入された層17が形成される。
そして、熱処理は、後述するソース領域12及びドレイ
ン領域13の活性化のための熱処理と同時に行って、領
域I,IIを形成するのであるが、この時点で、熱処理を
行って、実行不純物プロファイルをとると、図5に示す
ように、基板11の表面側から順番に、領域I、領域II
及び基板11である領域IVが形成されていることが判
る。なお、図5のグラフの横軸はこの半導体の表面から
の深さを示し、縦軸は実効的不純物量を示している。
The MOSFET having such a structure can be manufactured as follows. The manufacturing process is shown in FIG.
It shows in (D). First, as shown in FIG.
The sacrificial oxide film 14a is formed on the surface of the p-type substrate 11 having an impurity concentration of 1.5 × 10 16 cm −3.
B (boron) of 25 KeV, 1.5 on the substrate 11 through a
× 10 12 cm -2 , P (phosphorus) at 160 KeV, 2.5 × 10
After the implantation of 12 cm -2, a layer 16 of B which is a region I and a layer 16 of P that is a region II are formed under the sacrificial oxide film 14a. .
Then, the heat treatment is performed simultaneously with the heat treatment for activating the source region 12 and the drain region 13, which will be described later, to form the regions I and II. At this point, the heat treatment is performed to obtain the effective impurity profile. Then, as shown in FIG. 5, the region I and the region II are sequentially arranged from the front surface side of the substrate 11.
It can be seen that the region IV which is the substrate 11 is formed. The horizontal axis of the graph of FIG. 5 represents the depth from the surface of this semiconductor, and the vertical axis represents the effective impurity amount.

【0016】そして、図4(B)に示すように、B,P
の注入後(熱処理を行わずに)、ゲート酸化膜(ゲート
絶縁膜)14をつけ直してからポリシリコン薄膜を成
膜、エッチングして、ゲート電極15を形成する。
Then, as shown in FIG. 4B, B, P
After implantation (without heat treatment), the gate oxide film (gate insulating film) 14 is reattached, and then a polysilicon thin film is formed and etched to form the gate electrode 15.

【0017】次に、ソース領域12及びドレイン領域1
3に用いる不純物との拡散係数の差を利用して、領域II
I を形成する。まず、同図(C)に示すように、ゲート
電極15をマスクとして領域IIを完全に覆うように、領
域IIに注入したPよりも多くのBを注入する。
Next, the source region 12 and the drain region 1
Utilizing the difference in diffusion coefficient from the impurities used in No. 3,
Form I. First, as shown in FIG. 3C, a larger amount of B than P injected into the region II is injected so as to completely cover the region II using the gate electrode 15 as a mask.

【0018】さらに、同図(D)に示すように、ソース
領域12及びドレイン領域13形成用のAs(ひ素)を
Bよりも多く注入して、熱処理を行うと、同図(E)に
示すように、拡散係数の大きいBがAsよりも拡散し
て、領域III を形成し、図1に示すようなMOSFET
を製造することができる。
Further, as shown in FIG. 6D, when a larger amount of As (arsenic) for forming the source region 12 and the drain region 13 is implanted than in B and heat treatment is performed, the result is shown in FIG. As described above, B having a large diffusion coefficient diffuses more than As to form the region III, and the MOSFET as shown in FIG.
Can be manufactured.

【0019】また、領域III は、別の方法によっても形
成することができる。この方法を図6(A)〜(C)と
共に説明する。まず、図4(A)〜(C)まで同様に行
い、ゲート電極15をマスクとしてBを注入した状態を
図6(A)に示す。そして、同図(B)に示すように、
SiO2 のCVD絶縁膜18を表面に成膜してから、ソ
ース領域12及びドレイン領域13形成用のAsを注入
する。このとき、ゲート電極15の側面に成膜されるC
VD絶縁膜18の厚みの分だけ、BよりもAsが外側に
注入されるので、同図(C)に示すように、領域III と
なる部分ができる。そして、最後に熱処理を行うと、図
1に示すようなMOSFETを製造することができる。
The region III can also be formed by another method. This method will be described with reference to FIGS. First, FIG. 6A shows a state in which B is implanted using the gate electrode 15 as a mask in the same manner as in FIGS. 4A to 4C. Then, as shown in FIG.
After the CVD insulating film 18 of SiO 2 is formed on the surface, As for forming the source region 12 and the drain region 13 is injected. At this time, C formed on the side surface of the gate electrode 15
Since As is injected to the outside of B by the thickness of the VD insulating film 18, a region III is formed as shown in FIG. Then, by finally performing heat treatment, a MOSFET as shown in FIG. 1 can be manufactured.

【0020】この方法では、CVD絶縁膜18の膜厚を
制御することにより、領域III の横方向幅W13を変える
ことができるので、拡散だけにより領域III を形成する
場合に比べて、領域III の横方向幅W13を簡単に制御す
ることができる。
According to this method, the lateral width W13 of the region III can be changed by controlling the film thickness of the CVD insulating film 18, so that the region III of the region III can be formed as compared with the case where the region III is formed only by diffusion. The lateral width W13 can be easily controlled.

【0021】さらに、領域III の別の形成方法を図7
(A),(B)と共に説明する。まず、図4(A),
(B)まで同様にして製造する。次に、図7(A)に示
すように、ゲート電極15をマスクとしてBを斜めイオ
ン注入する。この斜めイオン注入により、ゲート電極1
5の下側にもBが注入される。その後、同図(B)に示
すように、ゲート電極15をマスクとしてソース領域1
2及びドレイン領域13形成用のAsを注入すると、ゲ
ート電極の下側に領域III となるBが注入された領域が
残る。そして、最後に熱処理を行うと、図1に示すよう
なMOSFETを製造することができる。この場合も、
斜めイオン注入を制御することにより、領域III の横方
向幅W13を簡単に制御することができる。
Further, another method for forming the region III is shown in FIG.
This will be described together with (A) and (B). First, FIG. 4 (A),
It is manufactured in the same manner up to (B). Next, as shown in FIG. 7A, B is obliquely ion-implanted using the gate electrode 15 as a mask. By this oblique ion implantation, the gate electrode 1
B is also injected into the lower side of 5. After that, as shown in FIG. 3B, the source region 1 is formed using the gate electrode 15 as a mask.
When 2 and As for forming the drain region 13 are implanted, a region in which B to be the region III is implanted remains under the gate electrode. Then, by finally performing heat treatment, a MOSFET as shown in FIG. 1 can be manufactured. Also in this case,
The lateral width W13 of the region III can be easily controlled by controlling the oblique ion implantation.

【0022】また、本発明の半導体装置の第3の実施例
を図面と共に説明する。図10は、本発明の半導体装置
の第3の実施例を示す構成図であり、LDD構造を有す
るものである。このLDD構造の特性は、先に出願した
整理番号405001060号「半導体装置」(平成5
年11月9日出願)に詳しく記載されている。そして、
第1の実施例では、領域III の横方向幅が、領域IIのド
レイン領域13による空乏層幅と領域IIとの接合による
空乏層幅の合計よりも大きくしているが、この第3の実
施例では、領域III の横方向幅が、領域IIのドレイン領
域23による空乏層幅と領域IIとの接合による空乏層幅
の合計よりも小さいが、領域IIのソース領域22による
空乏層幅と領域IIとの接合による空乏層幅の合計よりも
大きい値となっている。一般に、ドレイン電圧の作用に
より、ドレイン領域13による空乏層幅の方が、ソース
領域12による空乏層幅よりも大きくなるので、本実施
例のような領域III の横方向幅に設定することができ
る。
A third embodiment of the semiconductor device of the present invention will be described with reference to the drawings. FIG. 10 is a configuration diagram showing a third embodiment of the semiconductor device of the present invention, which has an LDD structure. The characteristics of this LDD structure are as follows: Reference number 405001060 “Semiconductor device” (1993)
(Filed on November 9, 2012). And
In the first embodiment, the lateral width of the region III is larger than the total width of the depletion layer formed by the drain region 13 and the junction of the region II in the region II. In the example, the lateral width of the region III is smaller than the sum of the depletion layer width due to the drain region 23 of the region II and the depletion layer width due to the junction with the region II, but the width of the depletion layer due to the source region 22 of the region II and the region The value is larger than the total width of the depletion layer due to the junction with II. Generally, due to the action of the drain voltage, the width of the depletion layer due to the drain region 13 is larger than the width of the depletion layer due to the source region 12, so that it can be set to the lateral width of the region III as in this embodiment. .

【0023】この図10に示したMOSFETの構成を
簡単に説明すると、ゲート電極25の両側には、非導電
性のサイドスペーサ26があり、ゲート酸化膜24を介
したゲート電極25下に基板21と同じ導電型を有する
領域Iがある。そして、その下には、基板21と反対の
導電型を有する領域IIがある。また、この領域IIとソー
ス領域22との間及び領域IIとドレイン領域23との間
には、それぞれ基板21と同じ導電型を有する領域III
がある。さらに、領域Iとソース領域22との間及び領
域Iとドレイン領域23との間には、LDD領域27が
形成されている。なお、基板21を領域IVとする。した
がって、基板21をp型とすると、領域I、III 、IVは
p型となり、領域II、ソース領域22、ドレイン領域2
3、LDD領域27はn型となる。また、基板21がn
型の場合には、それぞれ逆の導電型となる。
The structure of the MOSFET shown in FIG. 10 will be briefly described. Non-conductive side spacers 26 are provided on both sides of the gate electrode 25, and the substrate 21 is provided below the gate electrode 25 via the gate oxide film 24. There is a region I having the same conductivity type as. Below that, there is a region II having a conductivity type opposite to that of the substrate 21. Further, between the region II and the source region 22 and between the region II and the drain region 23, a region III having the same conductivity type as that of the substrate 21 is provided.
There is. Further, LDD regions 27 are formed between the regions I and the source regions 22 and between the regions I and the drain regions 23. The substrate 21 will be referred to as a region IV. Therefore, if the substrate 21 is p-type, the regions I, III, and IV are p-type, and the region II, the source region 22, and the drain region 2 are
3, the LDD region 27 becomes n-type. In addition, the substrate 21 is n
In the case of molds, the conductivity types are opposite to each other.

【0024】このMOSFETの製造方法を図11
(A)〜(F)と共に説明する。まず、同図(A)に示
すように、領域IVである不純物濃度1.5×1016cm-3
のp型基板21の表面に厚さ500A(オングストロー
ム)の犠牲酸化膜24aを形成し、この犠牲酸化膜24
aを通して基板21にB(ボロン)を注入電圧25KeV
、注入量6.8×1012cm-2で注入した後、P(リ
ン)を105KeV の注入電圧で、注入量6.3×1012
cm-2で注入すると、犠牲酸化膜24aの下に、領域Iと
なるBの注入された層28が形成され、さらにその下
に、領域IIとなるPの注入された層29が形成される。
なお、この不純物の熱処理は、後述するソース領域22
及びドレイン領域23の活性化のための熱処理と同時に
行って、領域I,IIを形成する。
A method for manufacturing this MOSFET is shown in FIG.
This will be described together with (A) to (F). First, as shown in FIG. 3A, the impurity concentration of the region IV is 1.5 × 10 16 cm −3.
A sacrificial oxide film 24a having a thickness of 500 A (angstrom) is formed on the surface of the p-type substrate 21 of FIG.
Inject B (boron) into the substrate 21 through a. Voltage 25 KeV
, With an implantation amount of 6.8 × 10 12 cm -2 , and then with P (phosphorus) at an implantation voltage of 105 KeV with an implantation amount of 6.3 × 10 12
When the implantation is performed at cm −2 , a layer 28 of B which is the region I and a layer 28 of P that is the region II are formed below the sacrificial oxide film 24 a. .
The heat treatment of the impurities is performed by the source region 22 described later.
And simultaneously with the heat treatment for activating the drain region 23, regions I and II are formed.

【0025】そして、同図(B)に示すように、B,P
の注入後、犠牲酸化膜24aを除去してから厚さ60A
のゲート酸化膜24をつけ直し、ポリシリコン薄膜を成
膜してから、これをエッチングして、幅0.4μmのn
+ 型のポリシリコンゲート電極25を形成する。さら
に、同図(C)に示すように、ゲート電極25をマスク
として、領域IIの形成された深さ位置にBを注入電圧4
0KeV 、注入量5.0×1012cm-2で注入し、領域III
を形成する。その後、同図(D)に示すように、ゲート
電極25をマスクとして、注入電圧25KeV 、注入量
4.0×1013cm-2でAs(ひ素)を注入して、Bの注
入された層28の表面側にLDD領域27となるn-
30を形成する。
Then, as shown in FIG.
After the sacrificial oxide film 24a is removed after the implantation of
The gate oxide film 24 is reattached to form a polysilicon thin film, which is then etched to obtain an n-type film having a width of 0.4 μm.
A + type polysilicon gate electrode 25 is formed. Further, as shown in FIG. 7C, B is injected at a depth position where the region II is formed using the gate electrode 25 as a mask.
Implanted at 0 KeV and dose of 5.0 × 10 12 cm -2 ,
To form. Then, as shown in FIG. 3D, with the gate electrode 25 as a mask, As (arsenic) is implanted at an implantation voltage of 25 KeV and an implantation amount of 4.0 × 10 13 cm −2 , and the layer in which B is implanted. An n layer 30 to be the LDD region 27 is formed on the surface side of 28.

【0026】そして、同図(E)に示すように、幅0.
2μmのサイドスペーサ26をゲート電極25の両サイ
ドに形成する。このサイドスペーサ26は、SiO2
を全面に成膜してRIE法などの異方性エッチングを行
うことにより、形成することができる。この状態で、同
図(F)に示すように、ゲート電極25及びサイドスペ
ーサ26をマスクとして、注入電圧50KeV 、注入量
4.0×1013cm-2でAsを注入して、n- 層30及び
Bの注入された層28のサイドスペーサ26の下側より
も外側にソース領域22とドレイン領域23とを形成す
る。最後に、900℃で40分間の熱処理を行うことに
より、図10に示すようなMOSFETを製造すること
ができる。
Then, as shown in FIG.
2 μm side spacers 26 are formed on both sides of the gate electrode 25. The side spacers 26 can be formed by forming a SiO 2 film on the entire surface and performing anisotropic etching such as RIE. In this state, as shown in FIG. 6F, As was implanted at an implantation voltage of 50 KeV and an implantation amount of 4.0 × 10 13 cm -2 using the gate electrode 25 and the side spacers 26 as a mask, and the n layer was formed. The source region 22 and the drain region 23 are formed outside the underside of the side spacer 26 of the layer 28 into which 30 and B are implanted. Finally, by performing heat treatment at 900 ° C. for 40 minutes, a MOSFET as shown in FIG. 10 can be manufactured.

【0027】そして、このようにして製造したMOSF
ETにゲート電圧、ソース電圧、基板電圧を全て0
(V)としてドレイン電圧を2(V)印加したときの真
性シリコンの電位を基準とした電位分布図を図12に示
す。なお、同図中に使用されている数字は、図中右側に
示した電位の等高線を示すための番号であり、他の図で
使用している符号とは異なるものである。同図から判る
ように、領域IIは、ドレイン電圧の影響を受けて、ドレ
イン側の電位がソース側の電位よりも上昇している。し
かしながら、ソース側近傍の領域III の電位が安定して
いるため、ソース側の領域III を通してチャネルの電位
も安定している。その結果、MOSFETの特性に問題
は生じていない。
Then, the MOSF thus manufactured
Gate voltage, source voltage, and substrate voltage are all 0 in ET
FIG. 12 shows a potential distribution diagram based on the potential of intrinsic silicon when a drain voltage of 2 (V) is applied as (V). The numbers used in the figure are numbers for showing the contour lines of the potential shown on the right side of the figure, and are different from the reference numerals used in the other figures. As can be seen from the figure, in the region II, the drain side potential is higher than the source side potential due to the influence of the drain voltage. However, since the potential of the region III near the source side is stable, the potential of the channel is also stable through the region III on the source side. As a result, there is no problem in the characteristics of the MOSFET.

【0028】また、図13にドレイン近傍でホットエレ
クトロンにより生じたホールの流れ(基板電流)を示
す。このMOSFETは、ソース側で領域III が空乏化
しておらず、領域Iと電気的に接続されているので、ド
レイン領域23で生じたホールは、領域IIとの境界を進
んでソース側の領域III を通して基板21に流れてい
る。そして、この経路が存在することにより、ホールが
領域Iのチャネル領域に溜まってチャネルの電位が上昇
し、ドレイン電流が異常上昇してしまうキンク効果が生
じるのを防止している。
FIG. 13 shows the flow of holes (substrate current) generated by hot electrons near the drain. In this MOSFET, the region III is not depleted on the source side and is electrically connected to the region I. Therefore, the holes generated in the drain region 23 advance along the boundary with the region II and the region III on the source side. Through the substrate 21. The existence of this path prevents holes from accumulating in the channel region of the region I, increasing the potential of the channel, and causing a kink effect in which the drain current abnormally increases.

【0029】したがって、第1の実施例では、ドレイン
側の領域III が空乏化しないようにしていたが、この第
3の実施例のように、ドレイン側の領域III が空乏化し
て領域IIとドレイン領域23とがつながっても、ソース
側の領域III が空乏化しなければ、MOSFETの特性
が安定する。言い換えると、領域III の幅は、ドレイン
領域23による空乏層幅に関係なく、ソース領域22に
よる空乏層幅と領域IIとの接合による空乏層幅の合計よ
りも大きい値となっていれば良く、半導体装置の設計自
由度を増すことができる。
Therefore, in the first embodiment, the region III on the drain side is prevented from being depleted, but as in the third embodiment, the region III on the drain side is depleted and the region II and the drain are drained. Even if the region 23 is connected, the characteristics of the MOSFET are stable unless the region III on the source side is depleted. In other words, the width of the region III may be larger than the sum of the depletion layer width of the source region 22 and the depletion layer width of the junction of the region II, regardless of the depletion layer width of the drain region 23. The degree of freedom in designing the semiconductor device can be increased.

【0030】[0030]

【発明の効果】本発明の半導体装置は、微細化したとき
にでも、基板の不純物濃度を上げずにしきい値電圧を下
げることができるので、リーク電流が増加せず、良好な
特性を得ることができる。
According to the semiconductor device of the present invention, the threshold voltage can be lowered without raising the impurity concentration of the substrate even when miniaturized, so that leak current does not increase and good characteristics can be obtained. You can

【0031】また、ソース領域及びドレイン領域下の空
乏層幅が減少しないので、遅延時間の増大や動作速度の
低下を招かずに半導体装置の微細化が可能となる。
Further, since the width of the depletion layer under the source region and the drain region is not reduced, the semiconductor device can be miniaturized without increasing the delay time and lowering the operation speed.

【0032】さらに、本発明の半導体装置の製造方法
は、良好な特性を有する微細化した半導体装置を製造す
ることができるという効果がある。
Further, the method of manufacturing a semiconductor device of the present invention has an effect that a miniaturized semiconductor device having good characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の第1の実施例を示す構成
図である。
FIG. 1 is a configuration diagram showing a first embodiment of a semiconductor device of the present invention.

【図2】図1に示した第1の実施例の要部を示す要部拡
大図である。
FIG. 2 is an enlarged view of an essential part showing an essential part of the first embodiment shown in FIG.

【図3】本発明の半導体装置の第2の実施例を示す構成
図である。
FIG. 3 is a configuration diagram showing a second embodiment of the semiconductor device of the present invention.

【図4】(A)〜(E)は本発明の半導体装置の製造方
法の一実施例を説明するための工程図である。
4A to 4E are process drawings for explaining one embodiment of the method for manufacturing a semiconductor device of the present invention.

【図5】図4(A)の状態から熱処理したときの実行不
純物プロファイルを示すグラフである。
FIG. 5 is a graph showing an effective impurity profile when heat treatment is performed from the state of FIG.

【図6】(A)〜(C)は領域III の形成方法の他の実
施例を説明するための工程図である。
6A to 6C are process charts for explaining another embodiment of the method for forming the region III.

【図7】(A),(B)は領域III の形成方法のさらに
他の実施例を説明するための工程図である。
7A and 7B are process drawings for explaining still another embodiment of the method for forming the region III.

【図8】従来例を示す構成図である。FIG. 8 is a configuration diagram showing a conventional example.

【図9】従来例におけるゲート電圧−ドレイン電流の関
係を示すグラフである。
FIG. 9 is a graph showing the relationship between gate voltage and drain current in a conventional example.

【図10】本発明の半導体装置の第3の実施例を示す構
成図である。
FIG. 10 is a configuration diagram showing a third embodiment of the semiconductor device of the present invention.

【図11】(A)〜(F)は図10に示した本発明の半
導体装置の第3の実施例の製造方法を説明するための工
程図である。
11A to 11F are process drawings for explaining the manufacturing method of the third embodiment of the semiconductor device of the present invention shown in FIG.

【図12】第3の実施例の電位分布を示す図である。FIG. 12 is a diagram showing a potential distribution of the third embodiment.

【図13】第3の実施例のホットエレクトロンにより生
じたホールの流れを示す図である。
FIG. 13 is a diagram showing a flow of holes generated by hot electrons according to the third embodiment.

【符号の説明】[Explanation of symbols]

1,11,21 基板 2,12,22 ソース領域 3,13,23 ドレイン領域 4,14,24 ゲート酸化膜(ゲート絶縁膜) 5,15,25 ゲート電極 14a,24a 犠牲酸化膜 16,28 Bの注入された層(領域I) 17,29 Pの注入された層(領域II) 18 CVD絶縁膜 26 サイドスペーサ 27 LDD領域 30 n- 1, 11, 21 Substrate 2, 12, 22 Source region 3, 13, 23 Drain region 4, 14, 24 Gate oxide film (gate insulating film) 5, 15, 25 Gate electrode 14a, 24a Sacrificial oxide film 16, 28 B Injected layer (region I) 17, 29 P Injected layer (region II) 18 CVD insulating film 26 Side spacer 27 LDD region 30 n - layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1の導電型を有する半導体基板上に薄い
ゲート絶縁膜を挟んで形成されたゲート電極と、このゲ
ート絶縁膜の下方でこのゲート電極の両側に設けられた
第2の導電型を有するソース領域及びドレイン領域と、
を備えた半導体装置において、 前記ゲート絶縁膜の下方で前記ゲート絶縁膜と前記ソー
ス領域及び前記ドレイン領域に接しないようにして前記
基板内に形成された第2の導電型を有する第2の領域
と、 第1の導電型を有して前記ゲート絶縁膜とこの第2の領
域との間に形成され、前記ゲート電極に電圧をかけた時
に形成される空乏層の幅と、前記第2の領域とのpn接
合による空乏層の幅とを合計した幅よりも小さい幅の第
1の領域と、 第1の導電型を有して前記第2の領域と前記ソース領域
及び前記ドレイン領域との間にそれぞれ形成され、前記
ソース領域による空乏層幅と、前記第2の領域とのpn
接合による空乏層の幅とを合計した幅よりも大きい幅の
第3の領域と、を有することを特徴とする半導体装置。
1. A gate electrode formed by sandwiching a thin gate insulating film on a semiconductor substrate having a first conductivity type, and a second conductivity provided below the gate insulating film on both sides of the gate electrode. A source region and a drain region having a mold;
A second region having a second conductivity type formed in the substrate so as not to contact the gate insulating film and the source region and the drain region below the gate insulating film. A width of a depletion layer having a first conductivity type and formed between the gate insulating film and the second region when a voltage is applied to the gate electrode; A first region having a width smaller than a total width of a depletion layer formed by a pn junction with the region, and the second region having the first conductivity type, the source region and the drain region. Pn between the depletion layer formed by the source region and the second region
And a third region having a width larger than the total width of the depletion layers formed by the junction.
【請求項2】請求項1記載の半導体装置において、 第3の領域の不純物濃度が第2の領域の不純物濃度より
も高いことを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the impurity concentration of the third region is higher than the impurity concentration of the second region.
【請求項3】請求項1記載の半導体装置において、 基板の不純物濃度が第3の領域の不純物濃度よりも薄
く、かつ少なくともドレイン領域による空乏層が前記基
板にまで達していることを特徴とする半導体装置。
3. The semiconductor device according to claim 1, wherein the impurity concentration of the substrate is lower than the impurity concentration of the third region, and at least the depletion layer due to the drain region reaches the substrate. Semiconductor device.
【請求項4】第1の導電型を有する半導体基板に第2の
導電型を有する不純物を注入して第2の領域を形成する
工程と、 前記半導体基板に第1の導電型を有する不純物を注入し
て前記第2の領域よりも表面側に第1の領域を形成する
工程と、 前記半導体基板表面に薄いゲート絶縁膜を成膜する工程
と、 このゲート絶縁膜上にゲート電極を形成する工程と、 このゲート電極をマスクとして前記第2の領域の不純物
濃度よりも濃くなるように、第3の領域を形成するため
の第1の導電型を有する不純物を前記第2の領域に重な
る位置に注入する工程と、 前記ゲート電極をマスクとして第2の導電型を有する不
純物を注入してソース領域及びドレイン領域を形成する
工程とよりなることを特徴とする半導体装置の製造方
法。
4. A step of implanting an impurity having a second conductivity type into a semiconductor substrate having a first conductivity type to form a second region, and the step of implanting an impurity having a first conductivity type into the semiconductor substrate. Injecting to form a first region on the surface side of the second region, forming a thin gate insulating film on the surface of the semiconductor substrate, and forming a gate electrode on the gate insulating film. And a position where an impurity having a first conductivity type for forming a third region is overlapped with the second region so that the impurity concentration of the second region is higher than that of the second region by using the gate electrode as a mask. And a step of implanting an impurity having a second conductivity type by using the gate electrode as a mask to form a source region and a drain region.
【請求項5】請求項4記載の半導体装置の製造方法にお
いて、 半導体基板及びゲート電極上に絶縁膜を形成してから、
第2の導電型を有する不純物を注入してソース領域及び
ドレイン領域を形成することにより、前記絶縁膜の膜厚
によって第3の領域の幅を制御するようにしたことを特
徴とする半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein an insulating film is formed on the semiconductor substrate and the gate electrode,
A semiconductor device characterized in that the width of the third region is controlled by the film thickness of the insulating film by implanting an impurity having the second conductivity type to form a source region and a drain region. Production method.
【請求項6】請求項4記載の半導体装置の製造方法にお
いて、 斜めイオン注入を用いて第3の領域を形成するための第
1の導電型を有する不純物を第2の領域に重なる位置に
注入するようにしたことを特徴とする半導体装置の製造
方法。
6. The method of manufacturing a semiconductor device according to claim 4, wherein an impurity having the first conductivity type for forming the third region is implanted at a position overlapping the second region by using oblique ion implantation. A method of manufacturing a semiconductor device, characterized in that.
JP5315811A 1993-07-30 1993-11-24 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2858623B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5315811A JP2858623B2 (en) 1993-07-30 1993-11-24 Semiconductor device and manufacturing method thereof
KR1019940017594A KR0174569B1 (en) 1993-07-30 1994-07-21 Semiconductor device and method of manufacturing the same
US08/335,409 US5463237A (en) 1993-11-04 1994-11-03 MOSFET device having depletion layer
US08/477,609 US5580799A (en) 1993-11-04 1995-06-07 Method of manufacturing transistor with channel implant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-208867 1993-07-30
JP20886793 1993-07-30
JP5315811A JP2858623B2 (en) 1993-07-30 1993-11-24 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0794723A true JPH0794723A (en) 1995-04-07
JP2858623B2 JP2858623B2 (en) 1999-02-17

Family

ID=26517090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315811A Expired - Lifetime JP2858623B2 (en) 1993-07-30 1993-11-24 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2858623B2 (en)
KR (1) KR0174569B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082379A1 (en) * 2000-04-21 2001-11-01 Hitachi, Ltd. Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082379A1 (en) * 2000-04-21 2001-11-01 Hitachi, Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2858623B2 (en) 1999-02-17
KR950004606A (en) 1995-02-18
KR0174569B1 (en) 1999-02-01

Similar Documents

Publication Publication Date Title
US5463237A (en) MOSFET device having depletion layer
EP0583897B1 (en) Field-effect transistor with structure for suppressing hot-electron effects, and method of fabricating the transistor
JPH03145138A (en) Formation of dmos transistor
KR100374551B1 (en) Semiconductor device and method for fabricating thereof
US5874338A (en) MOS-technology power device and process of making same
US6509211B2 (en) Semiconductor device having SOI structure and method of fabricating the same
JP2002217406A (en) Semiconductor device and its manufacturing method
JP3189576B2 (en) Semiconductor device
US4216038A (en) Semiconductor device and manufacturing process thereof
JP2858623B2 (en) Semiconductor device and manufacturing method thereof
KR100287886B1 (en) Structure and method of fabrication for semiconductor device
JP2858622B2 (en) Semiconductor device
KR100257074B1 (en) Mosfet and method for manufacturing the same
JP3369862B2 (en) Method for manufacturing semiconductor device
JPH04127537A (en) Manufacture of mosfet
KR0167606B1 (en) Process of fabricating mos-transistor
KR100252747B1 (en) Flash memory device and manufacturing method thereof
JP2948892B2 (en) Mos field-effect transistor and its manufacture
KR100219063B1 (en) Method of manufacturing semiconductor device
KR100260366B1 (en) Method for fabricating semiconductor device
KR100206193B1 (en) A power semiconductor device and a method of fabricating the same
JP2687489B2 (en) Semiconductor device
JPH09199716A (en) Semiconductor device and its manufacture
KR100498592B1 (en) Most transistors and manufacturing method thereof
JPH0438834A (en) Manufacture of mos transistor