JP2687489B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2687489B2
JP2687489B2 JP25614888A JP25614888A JP2687489B2 JP 2687489 B2 JP2687489 B2 JP 2687489B2 JP 25614888 A JP25614888 A JP 25614888A JP 25614888 A JP25614888 A JP 25614888A JP 2687489 B2 JP2687489 B2 JP 2687489B2
Authority
JP
Japan
Prior art keywords
well
conductivity type
type
breakdown voltage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25614888A
Other languages
Japanese (ja)
Other versions
JPH02102576A (en
Inventor
江 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25614888A priority Critical patent/JP2687489B2/en
Publication of JPH02102576A publication Critical patent/JPH02102576A/en
Application granted granted Critical
Publication of JP2687489B2 publication Critical patent/JP2687489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に高耐圧トランジスタ
の構造に関する。
The present invention relates to a semiconductor device, and more particularly to the structure of a high breakdown voltage transistor.

〔従来の技術〕[Conventional technology]

従来、この種のトランジスタは、たとえば第5図に示
すようにP型半導体基板1に高耐圧トランジスタ形成予
定領域に比較的深いNウェル2を形成し、このNウェル
2中にP型のソース拡散層8と、Pウェル3が形成さ
れ、このPウェル3中にはP型ドレイン拡散層7が形成
されている。
Conventionally, in this type of transistor, a relatively deep N well 2 is formed in a region for forming a high breakdown voltage transistor in a P type semiconductor substrate 1 as shown in FIG. 5, and a P type source is diffused in the N well 2. A layer 8 and a P well 3 are formed, and a P type drain diffusion layer 7 is formed in the P well 3.

このような従来の高耐圧トランジスタの製造方法を以
下に示す、Nウェル2は第6図の斜線部(図中の斜線部
はマスクパターンを示すために便宜的に施したもので、
断面を示すものではない)で示した様に、素子形成予定
領域以外の半導体基板1上にマスク9で覆った状態でN
型のイオンを基板に注入し、押込みのための高温の熱処
理を行って形成される。このNウェル2の内部にPウェ
ル3がNウェルよりも浅く形成される。Pウェル3の形
成方法もNウェル2形成時と同様に、Pウェル形成領域
以外の基板上をマスク材で覆い、P型のイオンを基板に
注入した後熱処理を行って形成される。なお、Pウェル
3は将来P型ドレイン拡散層7となる領域を含む様な位
置に形成しておく。
A method of manufacturing such a conventional high breakdown voltage transistor will be described below. The N well 2 is shown by a hatched portion in FIG. 6 (the hatched portion in the drawing is for convenience sake to show a mask pattern,
(Not shown in cross section), N in a state of being covered with the mask 9 on the semiconductor substrate 1 other than the element formation planned region.
It is formed by implanting mold ions into the substrate and performing high-temperature heat treatment for indentation. A P well 3 is formed inside the N well 2 so as to be shallower than the N well. Similarly to the method of forming the N well 2, the P well 3 is also formed by covering the substrate other than the P well forming region with a mask material, implanting P-type ions into the substrate, and then performing heat treatment. The P well 3 is formed at a position including a region which will be the P type drain diffusion layer 7 in the future.

次に、ソース,ドレイン,チャンネルとなる領域を除
いて素子分離用のフィールド酸化膜4を形成する。
Next, a field oxide film 4 for element isolation is formed except for the regions to be the source, drain and channel.

次にゲート酸化膜5を介してゲート電極6が、ソー
ス,ドレイン間のフィールド酸化膜4の一部から、チャ
ンネル部っに渡って形成される。
Next, the gate electrode 6 is formed through the gate oxide film 5 from a part of the field oxide film 4 between the source and the drain, over the channel portion.

次にフィールド酸化膜4及びゲート電極6をマスクと
して、基板にP型のイオンを高濃度に注入し、P型ドレ
イン拡散層7、P型ソース拡散層8を形成することによ
り高耐圧トランジスタが形成される。
Next, by using the field oxide film 4 and the gate electrode 6 as a mask, P-type ions are implanted at a high concentration into the substrate to form a P-type drain diffusion layer 7 and a P-type source diffusion layer 8 to form a high breakdown voltage transistor. To be done.

ここで、P型ドレイン拡散層7をPウェル3でおおう
事、およびゲート電極6のドレイン側の一端をフィール
ド酸化膜4に乗せる事により、30V以上での動作を可能
にしている。
Here, by covering the P-type drain diffusion layer 7 with the P-well 3 and placing one end of the gate electrode 6 on the drain side on the field oxide film 4, it is possible to operate at 30 V or higher.

第6図の斜線部分で示した様に、従来例では高耐圧ト
ランジスタ形成領域全体にNウェル形成の為のイオン注
入を行っているため、高耐圧トランジスタのソースから
ドレインにかけてのNウェル濃度分布は一定である。第
6図のB−B′断面におけるウェル濃度分布を第7図に
示したが、NウェルとPウェルを合成した濃度分布はウ
ェル境界部に於いてはその濃度勾配が比較的急岐となっ
ている。
As shown by the hatched portion in FIG. 6, in the conventional example, since the ion implantation for forming the N well is performed in the entire high breakdown voltage transistor formation region, the N well concentration distribution from the source to the drain of the high breakdown voltage transistor is It is constant. The well concentration distribution in the BB ′ cross section of FIG. 6 is shown in FIG. 7, but the concentration distribution obtained by combining the N well and P well has a relatively steep concentration gradient at the well boundary. ing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の高耐圧トランジスタには以下の様な欠
点が存在する。高耐圧トランジスタの耐圧は、Nウェル
濃度,Pウェル濃度で決定され、各濃度が低いほど耐圧を
上げる事が可能である。しかしNウェル濃度を低くする
と、配線に印加される高電圧によりフィールド酸化膜下
のNウェルが反転し、Pウェル−Nウェル−P型基板か
ら成る寄生トランジスタが導通し、リークの原因となる
ため回路レイアウト上、寄生トランジスタが導通しない
様な設計にする必要が生じ面積の増大を招く。またNウ
ェルのイオン注入量を減らしてNウェル濃度を低くす場
合は、Nウェルが浅くなり、Pウェル−P型基板間のパ
ンチスルーが起きやすくなるという問題も生ずる。Nウ
ェルの押込時間を長くしてNウェルを深くすることも可
能であるが、高温,長時間の熱処理が必要であり、生産
性が悪いという問題もある。一方Pウェル濃度を低くす
る場合は、Pウェル部の抵抗が高くなり、電流駆動能力
が低くなるという欠点がある。
The conventional high breakdown voltage transistor described above has the following drawbacks. The breakdown voltage of the high breakdown voltage transistor is determined by the N well concentration and the P well concentration, and the lower the concentration, the higher the breakdown voltage can be. However, if the N well concentration is lowered, the N well under the field oxide film is inverted by the high voltage applied to the wiring, and the parasitic transistor composed of P well-N well-P type substrate becomes conductive, which causes leakage. In terms of circuit layout, it is necessary to design the parasitic transistor so that it does not conduct, which leads to an increase in area. Further, when the ion implantation amount of the N well is reduced to lower the N well concentration, the N well becomes shallower, and punch-through between the P well and the P type substrate is likely to occur. Although it is possible to lengthen the N-well pushing time to deepen the N-well, there is a problem that productivity is poor because heat treatment at high temperature for a long time is required. On the other hand, when the P well concentration is lowered, there is a drawback that the resistance of the P well portion becomes high and the current driving capability becomes low.

さらに作に述べた様に、Pウェル−Nウェル境界部で
のウェル濃度勾配が比較的急岐である為、Pウェル,フ
ィールド酸化膜形成時の位置合わせの誤差による耐圧の
変動が大きいという欠点もある。
Further, as described in the article, since the well concentration gradient at the P well-N well boundary is relatively steep, there is a drawback that the withstand voltage fluctuates greatly due to an alignment error when the P well and the field oxide film are formed. There is also.

以上の様に、従来構造に於ては、高耐圧トランジスタ
の製造上及び設計上の余裕が小さいためトランジスタ特
性の変動につながり、信頼性上の問題があった。
As described above, in the conventional structure, the manufacturing and design margin of the high breakdown voltage transistor is small, which leads to fluctuations in transistor characteristics, resulting in reliability problems.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体装置は、第1導電型の半導体基板に形
成された第2導電型のウェルと、該第2導電型のウェル
内に設けられた第1導電型のウェルと、該第1導電型の
ウェル内に形成された第1導電型のドレイン領域と、前
記第2導電型のウェル内に形成された第1導電型のソー
ス領域と、該ドレインおよびソース領域間に形成され、
かつ前記第1導電型のウェル上に設けられた絶縁膜と、
該絶縁膜上に形成されたゲート電極とを有し、前記ゲー
ト電極領域下の前記第1および第2導電型のウェル間の
境界領域近傍の不純物濃度が選択的に低く形成されてい
ることを特徴とするものである。
A semiconductor device according to the present invention includes a second conductivity type well formed in a first conductivity type semiconductor substrate, a first conductivity type well provided in the second conductivity type well, and the first conductivity type well. A drain region of the first conductivity type formed in the well of the first conductivity type, a source region of the first conductivity type formed in the well of the second conductivity type, and formed between the drain and the source region,
And an insulating film provided on the first conductivity type well,
A gate electrode formed on the insulating film, and an impurity concentration near the boundary region between the wells of the first and second conductivity types under the gate electrode region is selectively formed to be low. It is a feature.

このような本発明により第1および第2導電型ウェル
の境界領域近傍のイオン濃度の勾配を緩和し、耐圧の向
上を図るものである。
According to the present invention as described above, the gradient of the ion concentration in the vicinity of the boundary region between the first and second conductivity type wells is relaxed and the breakdown voltage is improved.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1
図は、本発明の第1の実施例を示す高耐圧トランジスタ
部の縦断面図である。P型半導体基板1に形成されたN
ウェル2中にPウェル3が形成され、Nウェル2中にP
型ソース拡散層8が、Pウェル3中にP型ドレイン拡散
層7が形成される。また、ソース・ドレイン間のチャン
ネル部上にフィールド酸化膜4とゲート酸化膜5を介し
てゲート電極が形成されている。ここで、Nウェル2は
ゲート電極6直下のPウェル3とNウェル2の境介領域
周辺でウェル濃度が低く形成されている。本実施例の製
造工程は、従来技術に示したものと同様であるが、本発
明の構造を実現するために、Nウェル2をイオン注入で
形成する際、第2図の斜線部分(第2図中の斜線部分は
マスクパターンを示すため便宜的に記したもので断面を
示すものではない)のようにゲート電極6下のチャンネ
ル部でのNウェル2とPウェル3との境界部分の基板上
にマスク9′形成し、Nウェル形成時のイオンが基板に
注入されない様にしている。従ってイオン注入されない
領域のNウェルは、その後の熱処理による拡散によって
形成されるため第2図A−A′断面でのNウェル濃度分
布は第3図に示す様にNウェル2とPウェル3の境界近
傍において濃度が低くなっている。本実施例では従来と
同様の注入熱処理条件下でNウェル濃度の最も低い部分
で約35×1015cm-2となり、従来例の約3分の1になって
いる。従ってNウェル2とPウェル3を合成したウェル
濃度分布は第3図の破線で示した様になり、従来例の第
7図の破線に比べ勾配が緩やかになり電界強度が弱めら
れ耐圧の大幅な向上が期待できる。
Next, the present invention will be described with reference to the drawings. First
FIG. 1 is a vertical sectional view of a high breakdown voltage transistor portion showing a first embodiment of the present invention. N formed on the P-type semiconductor substrate 1
P well 3 is formed in well 2 and P well 3 is formed in N well 2.
The type source diffusion layer 8 and the P type drain diffusion layer 7 are formed in the P well 3. Further, a gate electrode is formed on the channel portion between the source and the drain via the field oxide film 4 and the gate oxide film 5. Here, the N well 2 is formed with a low well concentration around the boundary region between the P well 3 and the N well 2 directly below the gate electrode 6. The manufacturing process of this embodiment is the same as that shown in the prior art, but when the N well 2 is formed by ion implantation in order to realize the structure of the present invention, the shaded portion (second part) in FIG. The hatched portion in the drawing is a mask pattern for convenience sake and is not shown in cross section), and the substrate at the boundary between the N well 2 and the P well 3 in the channel portion under the gate electrode 6 is shown. A mask 9'is formed on the top of the substrate to prevent ions from being implanted into the substrate when the N well is formed. Therefore, the N well in the region where the ion implantation is not performed is formed by the diffusion by the subsequent heat treatment, so that the N well concentration distribution in the cross section AA 'in FIG. 2 shows the N well 2 and the P well 3 as shown in FIG. The concentration is low near the boundary. In this embodiment, under the same implantation heat treatment conditions as in the conventional case, the area where the N well concentration is the lowest is approximately 35 × 10 15 cm −2 , which is about one third of that in the conventional example. Therefore, the well concentration distribution obtained by combining the N well 2 and the P well 3 is as shown by the broken line in FIG. 3, and the gradient is gentler than that of the broken line in FIG. Can be expected to improve.

本実施例において、マスク形成工程でNウェル形成用
のイオン注入時のマスク材のパターンを第4図斜線部
9″(第4図中の斜線部はマスクパターンを示すために
便宜的に記したもので断面を示すものではない)の様
に、Pウェル3がNウェル2と接する全境界領域上に形
成する場合を考える。この場合、Nウェル2とPウェル
3の全境界領域においてNウェル濃度が低減できるた
め、トランジスタの耐圧が向上できるばかりでなく、N
ウェル−Pウェル間の接合耐圧も向上できる。従って高
耐圧トランジスタのドレイン−ゲート電極領域での降伏
電圧よりもNウェル−Pウェル間の接合耐圧が低いため
に、トランジスタの耐圧がウェルの接合耐圧で制限され
る事も防止できる。
In this embodiment, the pattern of the mask material at the time of ion implantation for forming the N well in the mask forming step is shown for convenience in order to show the mask pattern 9 ″ in FIG. 4 (the hatched area in FIG. 4 shows the mask pattern). However, the P well 3 is formed on the entire boundary region in contact with the N well 2. In this case, the N well 2 is formed in the entire boundary region between the N well 2 and the P well 3. Since the concentration can be reduced, not only can the breakdown voltage of the transistor be improved, but the N
The junction breakdown voltage between the well and P well can also be improved. Therefore, since the junction breakdown voltage between the N well and the P well is lower than the breakdown voltage in the drain-gate electrode region of the high breakdown voltage transistor, it is possible to prevent the breakdown voltage of the transistor from being limited by the junction breakdown voltage of the well.

なお、Nウェル2の深さは、Nウェル形成時のイオン
注入を行わない領域では、多少浅くなる可能性はある
が、あらかじめNウェル2が十分深くなるようにイオン
注入量,熱処理時間を設定しておけば問題はない。ま
た、本発明の構成は従来の製造方法に比べマスク工程を
増やすものではなく、かつウェル形成時のイオン注入条
件,熱処理条件を変化させずに実現できることは上記記
述より明らかである。
Although the depth of the N well 2 may be slightly shallower in the region where the ion implantation is not performed when the N well is formed, the ion implantation amount and the heat treatment time are set in advance so that the N well 2 is sufficiently deep. There is no problem if you keep it. Further, it is apparent from the above description that the structure of the present invention does not increase the number of mask steps as compared with the conventional manufacturing method, and can be realized without changing the ion implantation conditions and the heat treatment conditions during the well formation.

なお、本実施例ではP型半導体基板を用いたがP型と
N型を置き換えることにより、N型半導体基板にN型高
耐圧トランジスタを形成する半導体集積回路装置も本発
明の範囲に含まれる。
Although the P-type semiconductor substrate is used in this embodiment, a semiconductor integrated circuit device in which the N-type high breakdown voltage transistor is formed on the N-type semiconductor substrate by replacing the P-type and N-type is also included in the scope of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に於ては、高耐圧トランジ
スタの耐圧を向上させる事が容易に可能であると同時
に、ウェル,フィールド酸化膜形成時の位置合わせの誤
差による耐圧の変動の割合が小さくできるという効果が
ある。また、、高耐圧トランジスタの耐圧,駆動電流を
適当な値に設定する事も容易に行えるため、トランジス
タ設計時の特性の最適化が容易であるという効果もあ
る。
As described above, in the present invention, it is possible to easily improve the withstand voltage of the high withstand voltage transistor, and at the same time, the ratio of the withstand voltage fluctuation due to the alignment error at the time of forming the well and field oxide film is small. The effect is that you can do it. In addition, since it is possible to easily set the withstand voltage and the drive current of the high breakdown voltage transistor to appropriate values, it is easy to optimize the characteristics when designing the transistor.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の高耐圧トランジスタの第1の実施例の
縦断面図、第2図は第1の実施例の平面図、第3図は第
2図A−A′断面におけるウェル濃度分布を示す図、第
4図は本発明の第2の実施例を示す平面図、第5図は、
従来技術による高耐圧トランジスタの縦断面図、第6図
は従来例の平面図、第7図は第2図B−B′断面のウェ
ル濃度分布を示す図である。 1……P型半導体基板、2……Nウェル,3……Pウェ
ル、4……フィールド酸化膜、5……ゲート酸化膜、6
……ゲート電極、7……P型ドレイン拡散層、8……P
型ソース拡散層、9,9′,9″……マスク。
FIG. 1 is a vertical sectional view of a first embodiment of a high breakdown voltage transistor of the present invention, FIG. 2 is a plan view of the first embodiment, and FIG. 3 is a well concentration distribution in the AA 'section of FIG. FIG. 4, FIG. 4 is a plan view showing a second embodiment of the present invention, and FIG.
FIG. 6 is a vertical sectional view of a high breakdown voltage transistor according to a conventional technique, FIG. 6 is a plan view of a conventional example, and FIG. 7 is a diagram showing a well concentration distribution in a BB ′ cross section of FIG. 1 ... P-type semiconductor substrate, 2 ... N well, 3 ... P well, 4 ... field oxide film, 5 ... gate oxide film, 6
...... Gate electrode, 7 ... P-type drain diffusion layer, 8 ... P
Type source diffusion layer, 9,9 ′, 9 ″ …… Mask.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板に形成された第2
導電型のウェルと、該第2導電型のウェル内に設けられ
た第1導電型のウェルと、該第1導電型のウェル内に形
成された第1導電型の拡散領域と、前記第2導電型のウ
ェル内に形成された第1導電型の第2の拡散領域と、該
第1および第2の拡散領域間に形成され、かつ前記第1
導電型のウェル上には設けられた絶縁膜と、該絶縁膜上
に形成された電極とを有し、前記電極領域下の前記第1
および第2導電型のウェル間の境界領域近傍の不純物濃
度が選択的に低く形成されていることを特徴とする半導
体装置。
A first conductive type semiconductor substrate formed on a first conductive type semiconductor substrate;
A well of conductivity type; a well of first conductivity type provided in the well of second conductivity type; a diffusion region of first conductivity type formed in the well of first conductivity type; A second diffusion region of a first conductivity type formed in a well of a conductivity type, and a first diffusion region formed between the first and second diffusion regions, and
An insulating film provided on the conductive type well and an electrode formed on the insulating film, and the first electrode under the electrode region.
And a semiconductor device characterized in that the impurity concentration in the vicinity of the boundary region between the wells of the second conductivity type is formed selectively low.
JP25614888A 1988-10-11 1988-10-11 Semiconductor device Expired - Lifetime JP2687489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25614888A JP2687489B2 (en) 1988-10-11 1988-10-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25614888A JP2687489B2 (en) 1988-10-11 1988-10-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02102576A JPH02102576A (en) 1990-04-16
JP2687489B2 true JP2687489B2 (en) 1997-12-08

Family

ID=17288571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25614888A Expired - Lifetime JP2687489B2 (en) 1988-10-11 1988-10-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2687489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359161B1 (en) * 1999-12-31 2002-10-31 주식회사 하이닉스반도체 A method for fabricating transistor of a semiconductor device

Also Published As

Publication number Publication date
JPH02102576A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
US5491105A (en) LDMOS transistor with self-aligned source/backgate and photo-aligned gate
US20080188048A1 (en) Semiconductor device
US6359318B1 (en) Semiconductor device with DMOS and bi-polar transistors
US6888207B1 (en) High voltage transistors with graded extension
US8748262B2 (en) Method of forming an integrated power device and structure
JPH08321556A (en) Manufacture of integrated circuit
KR100318283B1 (en) Planar process using common registration mark for well injection
JP2823572B2 (en) Manufacturing method of integrated circuit
JP3655467B2 (en) Double diffused MOS transistor and method of manufacturing the same
US5817546A (en) Process of making a MOS-technology power device
JPH09252115A (en) Mos technology power device
KR0159141B1 (en) Semiconductor device having a plurality of impurity layers and manufacturing method thereof
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
JPH04239760A (en) Manufacture of semiconductor device
JP2003526949A (en) Trench gate semiconductor device
US6238975B1 (en) Method for improving electrostatic discharge (ESD) robustness
JP2687489B2 (en) Semiconductor device
US4216038A (en) Semiconductor device and manufacturing process thereof
JP2000068372A (en) Semiconductor device and manufacture thereof
US4484208A (en) Junction-type field-effect transistor and its manufacture
KR100587605B1 (en) High voltage transistor and method of fabricating the same
JP2001060634A (en) Semiconductor device and manufacture thereof
JPH09102555A (en) Electrically rewritable nonvolatile semiconductor memory device and its manufacture
JP2554361B2 (en) Method for manufacturing semiconductor device
JPH067556B2 (en) MIS type semiconductor device