JPH079081U - Movable magnet type actuator - Google Patents

Movable magnet type actuator

Info

Publication number
JPH079081U
JPH079081U JP3551993U JP3551993U JPH079081U JP H079081 U JPH079081 U JP H079081U JP 3551993 U JP3551993 U JP 3551993U JP 3551993 U JP3551993 U JP 3551993U JP H079081 U JPH079081 U JP H079081U
Authority
JP
Japan
Prior art keywords
magnet
permanent magnets
movable
magnetic
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3551993U
Other languages
Japanese (ja)
Other versions
JP2596857Y2 (en
Inventor
康之 平林
貴俊 大山
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1993035519U priority Critical patent/JP2596857Y2/en
Priority to US08/093,677 priority patent/US5434549A/en
Priority to EP9393111583A priority patent/EP0580117A3/en
Publication of JPH079081U publication Critical patent/JPH079081U/en
Application granted granted Critical
Publication of JP2596857Y2 publication Critical patent/JP2596857Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

(57)【要約】 【目的】 磁石可動体が有する複数個の永久磁石の磁極
が発生する磁束を有効利用することで、推力の向上及び
効率の向上を図るとともに、各永久磁石を貫通軸体に固
定して該貫通軸体を摺動自在に支持する構造して、各永
久磁石の固定を確実にしかつ組立を容易とし、さらに磁
石可動体の動きの円滑化を図る。 【構成】 同極対向された2個の永久磁石5A,5B及
びそれらの永久磁石間に配された中間部磁性体6を貫通
する貫通軸体8に、永久磁石5A,5B及び中間部磁性
体6を固定して磁石可動体3を構成し、貫通軸体8を軸
受部材22で摺動自在に支持して3連のコイル2A,2
B,2Cの内側に当該磁石可動体3を移動自在に設け、
前記3連のコイル2A,2B,2Cを、各永久磁石5
A,5Bの磁極間を境にして相異なる方向に電流が流れ
る如く結線している。
(57) [Abstract] [Purpose] By effectively utilizing the magnetic flux generated by the magnetic poles of a plurality of permanent magnets included in a movable magnet body, thrust and efficiency are improved, and at the same time, each permanent magnet penetrates a through shaft The permanent magnets are fixed to each other so as to be slidably supported, the permanent magnets are securely fixed and the assembling is facilitated, and the movement of the magnet movable body is smoothed. [Structure] Two permanent magnets 5A, 5B having the same poles facing each other and a penetrating shaft body 8 penetrating an intermediate magnetic body 6 arranged between the permanent magnets are attached to the permanent magnets 5A, 5B and the intermediate magnetic body. 6 is fixed to form the magnet movable body 3, and the penetrating shaft body 8 is slidably supported by the bearing member 22 to form the triple coils 2A, 2
The magnet movable body 3 is movably provided inside B and 2C,
The three coils 2A, 2B and 2C are connected to the permanent magnets 5 respectively.
The wires are connected so that current flows in different directions with the magnetic poles A and 5B as a boundary.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、制御機器、電子機器、工作機械等において電気エネルギーを電磁作 用により往復運動エネルギー等に変換させる可動磁石式アクチュエータに関する 。 The present invention relates to a movable magnet type actuator for converting electric energy into reciprocating kinetic energy and the like by electromagnetic operation in control equipment, electronic equipment, machine tools and the like.

【0002】[0002]

【従来の技術】[Prior art]

従来、可動磁石式の往復運動装置としては、図8の第1従来例の構造を持つも の、及び図9の第2従来例の構造を持つものがある。 Conventionally, as a movable magnet type reciprocating device, there are a reciprocating device having the structure of the first conventional example shown in FIG. 8 and a structure having the second conventional example shown in FIG.

【0003】 図8の第1従来例において、10は軸方向に着磁した棒状の永久磁石からなる 磁石可動体であり、両端面に磁極を有している。コイル11A,11Bは、磁石 可動体10の端部外周側をそれぞれ環状に周回するように巻回され、隣合う部分 に同極が発生するようになっている。なお、図示は省略してあるが、コイル11 A,11Bは通常磁石可動体10を軸方向に移動自在にガイドするためのガイド 筒体に装着される。そして、磁石可動体10の各端面からの磁束がそれぞれコイ ル11A,11Bと鎖交している。In the first conventional example of FIG. 8, reference numeral 10 denotes a magnet movable body composed of a rod-shaped permanent magnet magnetized in the axial direction, and has magnetic poles on both end faces. The coils 11A and 11B are wound around the outer peripheral side of the end of the magnet movable body 10 so as to circulate in a ring shape, and the same pole is generated in adjacent portions. Although not shown, the coils 11A and 11B are usually mounted on a guide cylinder body for guiding the movable magnet body 10 movably in the axial direction. The magnetic flux from each end surface of the movable magnet body 10 is linked to the coils 11A and 11B, respectively.

【0004】 図9の第2従来例において、磁石可動体15は同極対向配置の2個の棒状永久 磁石16A,16Bと、これらの永久磁石16A,16B間に固着される棒状軟 磁性体17とを固着一体化したものであり、コイル18は磁石可動体15の中間 部外周側をそれぞれ環状に周回するように巻回されている。なお、図示は省略し てあるが、コイル18は通常磁石可動体15を軸方向に移動自在にガイドするた めのガイド筒体に装着される。そして、磁石可動体15の同極対向した永久磁石 端面からの磁束がコイル18と鎖交している。In the second conventional example shown in FIG. 9, the movable magnet body 15 is composed of two rod-shaped permanent magnets 16A and 16B having the same pole facing each other and a rod-shaped soft magnetic body 17 fixed between these permanent magnets 16A and 16B. Are fixedly integrated with each other, and the coil 18 is wound so as to circulate in an annular shape on the outer peripheral side of the intermediate portion of the magnet movable body 15. Although not shown, the coil 18 is usually attached to a guide cylinder body for guiding the movable magnet body 15 movably in the axial direction. The magnetic fluxes from the end faces of the permanent magnets of the movable magnet body 15 facing each other with the same pole are linked with the coil 18.

【0005】 ところで、第1従来例及び第2従来例において、磁石可動体10,15に発生 する推力は、基本的にはフレミングの左手の法則に基づいて与えられる推力に準 ずるものである(フレミングの左手の法則はコイルに対して適用されるが、ここ ではコイルが固定のため、磁石可動体にコイルに作用する力の反力としての推力 が発生する。)。したがって、推力に寄与するのは、磁石可動体が有する永久磁 石の磁束の垂直成分(永久磁石の軸方向に直交する成分)である。By the way, in the first conventional example and the second conventional example, the thrust generated in the magnet movable bodies 10 and 15 is basically similar to the thrust given based on Fleming's left-hand rule ( Fleming's left-hand rule is applied to the coil, but since the coil is fixed here, thrust is generated as a reaction force of the force acting on the coil in the movable magnet body.) Therefore, it is the vertical component of the magnetic flux of the permanent magnet of the magnet movable body (the component orthogonal to the axial direction of the permanent magnet) that contributes to the thrust.

【0006】 そこで、1個の永久磁石の場合、あるいは2個の同極対向配置の永久磁石の場 合について、磁束の垂直成分がどのようになるのかそれぞれ解析してみた。Therefore, in the case of one permanent magnet or in the case of two permanent magnets of the same pole facing each other, the respective vertical components of the magnetic flux were analyzed.

【0007】 図10は、単独の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、永久磁石は希土類永久磁石であって、直径2.5mm 、長さ6mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 10 shows the result of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surface of a single permanent magnet. However, the permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 6 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0008】 図11は、2個の永久磁石を同極対向配置とし、かつ直接接合した場合におい て、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場解析した 結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5mm、長さ 3mm(2個で6mm)で、永久磁石表面から0.25〜0.45mm離れた位置を計測 した。FIG. 11 shows the results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets in the case where the two permanent magnets are arranged in the same pole and facing each other and are directly bonded. Show. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm (two magnets were 6 mm), and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0009】 図12は、2個の永久磁石を同極対向配置とし、かつ対向間隔を1mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 12 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 1 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0010】 図13は、2個の永久磁石を同極対向配置とし、かつ対向間隔を2mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 13 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 2 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0011】 図14は、2個の永久磁石を同極対向配置とし、かつ対向間隔を3mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 14 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same pole facing each other and the facing distance is 3 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0012】 図15は、2個の永久磁石を同極対向配置とし、両永久磁石間に長さ1mmの軟 磁性体を配置した場合において、2個の永久磁石の長手側面に沿って表面磁束密 度の垂直成分を磁場解析した結果を示す。但し、各永久磁石は希土類永久磁石で あって、直径2.5mm、長さ3mmで、永久磁石表面から0.25〜0.45mm離れ た位置を計測した。FIG. 15 shows a case where two permanent magnets are arranged so as to face each other with the same pole, and a soft magnetic body having a length of 1 mm is arranged between the permanent magnets. The results of magnetic field analysis of the vertical component of the density are shown. However, each permanent magnet was a rare earth permanent magnet, and had a diameter of 2.5 mm and a length of 3 mm, and the position measured 0.25 to 0.45 mm away from the surface of the permanent magnet was measured.

【0013】 図16は、2個の永久磁石を同極対向配置とし、両永久磁石間に長さ1mmの軟 磁性体を配置し、さらに2個の永久磁石の外周に対向させて軟磁性体ヨークを配 設した場合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成 分を磁場解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直 径2.5mm、長さ3mmで、ヨークは永久磁石を取り囲む円筒形状で厚み0.5mm、 長さ10mmで永久磁石外周から1.25mm離間した位置となっており、表面磁束 密度の垂直成分は永久磁石表面から0.25〜0.45mm離れた位置を計測した。In FIG. 16, two permanent magnets are arranged with the same poles facing each other, a soft magnetic material having a length of 1 mm is arranged between the two permanent magnets, and the permanent magnets are further opposed to the outer circumferences of the two permanent magnets. The results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the yoke is arranged are shown. However, each permanent magnet is a rare earth permanent magnet with a diameter of 2.5 mm and a length of 3 mm, and the yoke has a cylindrical shape surrounding the permanent magnet and has a thickness of 0.5 mm and a length of 10 mm and is separated from the outer circumference of the permanent magnet by 1.25 mm. The vertical component of the surface magnetic flux density was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0014】[0014]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述したように、磁石可動体に発生する推力は、基本的にはフレミングの左手 の法則に基づいて与えられる推力に準ずるものであり、コイルと鎖交する永久磁 石の磁束の垂直成分(永久磁石の軸方向に直交する成分)が多いことが望まれる が、図8の第1従来例では、表面磁束密度の垂直成分は図10のようになり、図 11乃至図16の2個の永久磁石を同極対向配置とした場合に比較して垂直成分 が少ないことが判明した。このため図8の第1従来例の構成では、推力の向上に 限界がある。例えば、磁石可動体10を直径2.5mm、長さ6mmの希土類永久磁 石で構成し、2個のコイル11A,11Bの隣合う部分に同極が発生するように 各コイル11A,11Bに40mAの電流を流したときに発生する推力F1は4 .7(gf)であった。 As described above, the thrust generated in the magnet movable body basically complies with the thrust given based on Fleming's left-hand rule, and the vertical component (permanent component) of the magnetic flux of the permanent magnet that interlinks with the coil. It is desired that there are many components (perpendicular to the axial direction of the magnet), but in the first conventional example of FIG. 8, the vertical component of the surface magnetic flux density is as shown in FIG. 10, and the two permanent components of FIGS. It was found that the vertical component is small compared to the case where the magnets are arranged opposite to each other. Therefore, the structure of the first conventional example shown in FIG. 8 has a limit in improving the thrust. For example, the magnet movable body 10 is composed of a rare earth permanent magnet with a diameter of 2.5 mm and a length of 6 mm, and 40 mA is applied to each coil 11A, 11B so that the same pole is generated in the adjacent portions of the two coils 11A, 11B. The thrust F1 generated when an electric current of (4) was applied was 4.7 (gf).

【0015】 一方、図9の第2従来例では、2個の同極対向の永久磁石間に軟磁性体を配し た磁石可動体15を用いており、磁束密度の垂直成分は図15に示す如くなり、 同極対向の永久磁石16A,16Bの磁極から出る磁束は1個の永久磁石の場合 (図10参照)や2個の永久磁石のみの場合(図11乃至図14参照)よりも多 くなるが、コイルが磁石可動体15の中間部を囲む1個のみであり、磁石可動体 15の両端面の磁極による磁束は有効に利用していない嫌いがある。このため、 図9の第2従来例の場合も推力の向上が難しかった。例えば、図9の第2従来例 において磁石可動体15として直径2.5mm、長さ3mmの希土類永久磁石を2個 用い(希土類永久磁石の性能は第1従来例と同じとする)、かつ両者間に長さ1 mmの軟磁性体を配置したものを用い、図8の第1従来例と同じ消費電力となるよ うに作成したコイル18に40mAの電流を流し、第1従来例と同じ消費電力と したときに発生する推力F2は5.6(gf)であった。On the other hand, in the second conventional example of FIG. 9, a magnet movable body 15 in which a soft magnetic material is arranged between two permanent magnets of the same pole facing each other is used, and the vertical component of the magnetic flux density is shown in FIG. As shown, the magnetic flux emitted from the magnetic poles of the permanent magnets 16A and 16B facing each other is the same as in the case of one permanent magnet (see FIG. 10) or only two permanent magnets (see FIGS. 11 to 14). Although there is a large number, there is only one coil surrounding the intermediate portion of the magnet movable body 15, and there is a dislike that the magnetic flux due to the magnetic poles on both end surfaces of the magnet movable body 15 is not effectively used. Therefore, in the case of the second conventional example shown in FIG. 9, it was difficult to improve the thrust. For example, in the second conventional example of FIG. 9, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 15 (the performance of the rare earth permanent magnet is the same as that of the first conventional example), and both of them are used. Using a soft magnetic material with a length of 1 mm placed between them, a current of 40 mA was applied to the coil 18 that was created to have the same power consumption as the first conventional example in FIG. The thrust F2 generated when it was converted to electric power was 5.6 (gf).

【0016】 なお、複数個の永久磁石及び磁性体を組み合わせて磁石可動体を構成する場合 、それらを確実に一体化することが要求される。また、永久磁石に出力取り出し 用ピンを設けてアクチュエータを構成する場合、磁石可動体や出力取り出し用ピ ンの無用のがたつき等を解消することが望ましく、その点についての配慮も必要 となる。When a plurality of permanent magnets and a magnetic body are combined to form a movable magnet body, it is required to surely integrate them. Also, when an actuator is constructed by providing an output extraction pin on a permanent magnet, it is desirable to eliminate unnecessary rattling of the movable magnet body and output extraction pin, and consideration must be given to that point. .

【0017】 本考案は、上記の点に鑑み、少なくとも2個の永久磁石を同極対向配置とした 磁石可動体を用いしかも永久磁石の磁極が発生する磁束を有効利用することで、 推力の向上及び効率の向上を図るとともに、各永久磁石を貫通軸体に固定して該 貫通軸体を摺動自在に支持する構造して、各永久磁石の固定を確実にしかつ組立 を容易とし、さらに磁石可動体の動きの円滑化を図った可動磁石式アクチュエー タを提供することを目的とする。In view of the above points, the present invention improves the thrust force by using a magnetic movable body in which at least two permanent magnets are arranged with the same poles facing each other and by effectively using the magnetic flux generated by the magnetic poles of the permanent magnets. In addition to improving the efficiency and efficiency, each permanent magnet is fixed to the penetrating shaft to support the penetrating shaft in a slidable manner, so that the permanent magnets are securely fixed and the assembling is facilitated. It is an object of the present invention to provide a movable magnet type actuator in which the movement of a movable body is smoothed.

【0018】[0018]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案の可動磁石式アクチュエータは、同極対向 された少なくとも2個の永久磁石及びそれらの永久磁石間に配された中間部磁性 体を貫通する貫通軸体に、当該永久磁石及び中間部磁性体を固定して磁石可動体 を構成し、前記貫通軸体を軸受部材で摺動自在に支持して少なくとも3連のコイ ルの内側に当該磁石可動体を移動自在に設け、前記少なくとも3連のコイルを、 各永久磁石の磁極間を境にして相異なる方向に電流が流れる如く結線した構成と している。 In order to achieve the above-mentioned object, the movable magnet type actuator of the present invention comprises: a penetrating shaft body that penetrates at least two permanent magnets having the same poles and an intermediate magnetic body arranged between the permanent magnets; The permanent magnet and the intermediate magnetic body are fixed to form a movable magnet body, and the penetrating shaft body is slidably supported by a bearing member so that the movable magnet body can be moved inside at least three coils. The permanent magnets are connected to each other so that current flows in different directions with the magnetic poles of the permanent magnets as boundaries.

【0019】 また、前記磁石可動体の両端に位置する永久磁石の外側端面に端部磁性体を設 けてもよい。Further, end magnetic bodies may be provided on the outer end surfaces of the permanent magnets located at both ends of the magnet movable body.

【0020】 また、前記少なくとも3連のコイルを固定したガイド筒体の少なくとも一方の 端部に前記磁石可動体を吸着する磁性吸着体を配置する構成としてもよい。Further, a magnetic attraction body for attracting the movable magnet body may be arranged at at least one end of the guide cylinder body to which the at least three continuous coils are fixed.

【0021】 あるいは、前記ガイド筒体の端部位置に前記磁石可動体を押し戻すばね又は前 記磁石可動体との間で反発力を発生する戻し用永久磁石を配設するようにしても よい。Alternatively, a spring for pushing back the magnet movable body or a returning permanent magnet that generates a repulsive force between the magnet movable body and the magnet movable body may be arranged at an end position of the guide cylinder.

【0022】 さらに、前記貫通軸体に係合する止め輪で前記永久磁石及び磁性体を当該貫通 軸体に固定する構造としてもよい。Further, a structure may be adopted in which the permanent magnet and the magnetic body are fixed to the penetrating shaft body by a retaining ring that engages with the penetrating shaft body.

【0023】[0023]

【作用】[Action]

本考案の可動磁石式アクチュエータの基本動作原理を図6の参考例の概略構成 図によって説明する。この図6で、磁石可動体3は同極対向配置の2個の円柱状 永久磁石5A,5Bと、これらの永久磁石5A,5B間に固着される円柱状軟磁 性体(中間部磁性体)6とを一体化したものであり、図15に示したように、磁 束密度の垂直成分(永久磁石の軸方向に直交する成分)が多い構造となっている 。3連のコイル2A,2B,2Cは、磁石可動体3の外周側を周回する如く巻回 され、磁石可動体3を構成する永久磁石5Aの左端、永久磁石5A,5Bの同極 対向端、及び永久磁石5Bの右端の磁極からの磁束とそれぞれ鎖交するように配 置されている。これらのコイル2A,2B,2Cは永久磁石5A,5Bの磁極間 を境にして相異なる方向に電流が流れる如く結線されている(磁極間の境は磁極 と磁極の間であれば必ずしも磁極中間位置になくともよい。)。なお、図示は省 略してあるが、コイル2A,2B,2Cは通常磁石可動体3を軸方向に移動自在 にガイドするためのガイド筒体に装着される。コイル2A,2B,2Cと磁石可 動体3との位置関係は、当該磁石可動体3の可動範囲において、永久磁石磁極間 を境にして各コイルに流れる電流が相互に逆向きとなるように設定するのが普通 である。 The basic operation principle of the movable magnet type actuator of the present invention will be described with reference to the schematic configuration diagram of the reference example of FIG. In FIG. 6, the movable magnet body 3 includes two columnar permanent magnets 5A and 5B having the same pole facing each other and a columnar soft magnetic body (intermediate portion magnetic body) fixed between these permanent magnets 5A and 5B. As shown in FIG. 15, the magnetic flux density has a large vertical component (a component orthogonal to the axial direction of the permanent magnet). The three coils 2A, 2B and 2C are wound so as to circulate around the outer circumference of the magnet movable body 3, and the left end of the permanent magnet 5A constituting the magnet movable body 3 and the opposite ends of the permanent magnets 5A and 5B having the same poles. And the magnetic flux from the right end magnetic pole of the permanent magnet 5B. These coils 2A, 2B, 2C are connected so that currents flow in different directions at the boundaries between the magnetic poles of the permanent magnets 5A, 5B (the boundary between the magnetic poles is not necessarily the magnetic pole middle if it is between the magnetic poles). It doesn't have to be in the position.). Although not shown, the coils 2A, 2B and 2C are usually mounted on a guide cylinder for guiding the movable magnet body 3 movably in the axial direction. The positional relationship between the coils 2A, 2B and 2C and the magnet movable body 3 is set so that the currents flowing through the coils are opposite to each other across the permanent magnet magnetic poles in the movable range of the magnet movable body 3. It is normal to do.

【0024】 図6の参考例における磁石可動体3の基本構造は、図15のように2個の永久 磁石を同極対向させかつ永久磁石間に軟磁性体を配置したものである。この図1 5のときは軟磁性体位置に相当する領域Qの表面磁束密度の垂直成分は、軟磁性 体の無い図11乃至図14よりも優れている(磁束密度0.3T以上のピークの 幅が広くかつピークが高い。)。The basic structure of the movable magnet body 3 in the reference example of FIG. 6 is such that, as shown in FIG. 15, two permanent magnets have the same poles facing each other and a soft magnetic body is arranged between the permanent magnets. In FIG. 15, the vertical component of the surface magnetic flux density in the region Q corresponding to the position of the soft magnetic material is superior to that in FIGS. 11 to 14 where the soft magnetic material is not present (the peak of the magnetic flux density of 0.3T or more). Wide and high peak.)

【0025】 このように、2個の永久磁石5A,5Bを同極対向させかつ永久磁石間に軟磁 性体6を設けた磁石可動体3は、フレミングの左手の法則に基づく推力に寄与で きる磁石可動体3の長手方向に垂直な磁束成分を大きくでき、かつ3連のコイル 2A,2B,2Cは永久磁石の全磁極の磁束と有効に鎖交するので、3連のコイ ル2A,2B,2Cに交互に逆極性の磁界を発生する向きに電流を通電すること により、従来例では到達し得ない大きな推力を発生することができる。各コイル の電流を反転させれば磁石可動体3の推力の向きも反転する。交流電流を流した 場合には、一定周期で振動を繰り返すバイブレータとして働く。In this way, the magnet movable body 3 in which the two permanent magnets 5A and 5B have the same poles facing each other and the soft magnetic body 6 is provided between the permanent magnets can contribute to the thrust based on Fleming's left-hand rule. The magnetic flux component perpendicular to the longitudinal direction of the movable magnet body 3 can be increased, and the triple coils 2A, 2B, 2C effectively interlink with the magnetic fluxes of all the magnetic poles of the permanent magnet, so that the triple coils 2A, 2B. , 2C are alternately supplied with a current in a direction in which a magnetic field of opposite polarity is generated, so that a large thrust that cannot be reached in the conventional example can be generated. If the current of each coil is reversed, the direction of the thrust of the movable magnet body 3 is also reversed. When an alternating current is applied, it acts as a vibrator that vibrates repeatedly in a fixed cycle.

【0026】 本考案の基本構成である図6の参考例の場合、例えば、磁石可動体3として直 径2.5mm、長さ3mmの希土類永久磁石を2個用い(希土類永久磁石の性能は第 1従来例と同じとする)、かつ両者間に長さ1mmの軟磁性体を配置したものを用 い、図8、図9の第1、第2従来例と同じ消費電力となるように作成した3連の コイル2A,2B,2Cに40mAの電流を流し、同じ消費電力としたときに発 生する推力F3は6.7(gf)であった。これは、同一消費電力の第1従来例の 場合の約1.42倍の推力であり、また第2従来例の約1.2倍の推力であり、第 1及び第2従来例に比較して格段に優れていることが判る。In the case of the reference example of FIG. 6 which is the basic configuration of the present invention, for example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is 1) It is the same as the conventional example), and a soft magnetic material with a length of 1 mm is placed between the two, and it is made to have the same power consumption as the first and second conventional examples of FIGS. 8 and 9. The thrust F3 generated when a current of 40 mA was applied to the three coils 2A, 2B, and 2C and the power consumption was the same was 6.7 (gf). This is about 1.42 times the thrust of the first conventional example with the same power consumption, and about 1.2 times the thrust of the second conventional example, which is a comparison with the first and second conventional examples. It turns out that it is remarkably excellent.

【0027】 図7の曲線(イ)は図6(ヨーク無し)の場合の磁石可動体3の軸方向変位量 と推力(gf)との関係を示す。但し、永久磁石の寸法、特性は図15に示したも のとするとともに、磁石可動体3の中間点が中央のコイル2Bの中間点に位置す るときを変位量零とし、各コイルの電流は40mAとした。The curve (a) in FIG. 7 shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of FIG. 6 (without a yoke). However, the dimensions and characteristics of the permanent magnet are as shown in FIG. 15, and when the midpoint of the magnet movable body 3 is located at the midpoint of the central coil 2B, the amount of displacement is zero, and the current of each coil is Was 40 mA.

【0028】 図7の曲線(ロ)は図6の参考例の構成に加えて磁性ヨークを付加した場合( 但し、永久磁石及びヨークの寸法、配置及び永久磁石の特性は図16の通り)の 磁石可動体3の軸方向変位量と推力(gf)との関係であって変位量零の点から離 れる方向に磁石可動体が動作するときを示す。また、曲線(ハ)は、曲線(ロ) と同じ条件下での磁石可動体3の軸方向変位量と推力(gf)との関係であって変 位量零の点に近付く方向に動作するときを示す。但し、磁石可動体3の中間点が 中央のコイル2Bの中間点に位置するときを変位量零とし、各コイルの電流は4 0mAとした。このように、磁性ヨーク有りの場合に、磁石可動体3が変位量零 の点に近付くか又は離れるかによって推力が相違するのは、磁石可動体3の永久 磁石の磁極とヨークとの間に磁石可動体3を変位量零点に戻す磁気吸引力が働い ているからである。The curve (B) in FIG. 7 is obtained when a magnetic yoke is added to the configuration of the reference example in FIG. 6 (however, the dimensions and arrangement of the permanent magnet and the yoke and the characteristics of the permanent magnet are as shown in FIG. 16). The relationship between the axial displacement of the magnet movable body 3 and the thrust (gf), and shows the case where the magnet movable body operates in the direction away from the point where the displacement is zero. The curve (c) is a relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) under the same conditions as the curve (b), and operates in the direction of approaching the point of zero displacement. Indicates when. However, the displacement amount was set to zero when the midpoint of the movable magnet body 3 was located at the midpoint of the central coil 2B, and the current of each coil was set to 40 mA. As described above, in the case where the magnetic yoke is provided, the thrust force is different depending on whether the movable magnet body 3 approaches or moves away from the point where the displacement amount is zero, because the magnetic pole of the permanent magnet of the movable magnet body 3 and the yoke are different. This is because the magnetic attraction force that returns the movable magnet body 3 to the displacement zero point is working.

【0029】 このように、本考案の基本となる図6の参考例は、同極対向の永久磁石の組み 合わせ構造体で磁石可動体を構成しており、永久磁石の着磁方向(軸方向)に垂 直な磁束密度成分を充分大きくできかつ永久磁石の全ての磁極の発生する磁束を 有効利用できるので、磁石可動体を取り巻くように周回した少なくとも3連のコ イルに流れる電流との間のフレミングの左手の法則に基づく推力を充分大きくで き、小型、小電流で大きな推力を得ることができる。As described above, in the reference example of FIG. 6 which is the basis of the present invention, the movable magnet body is constituted by the combination structure of permanent magnets of the same pole facing each other. ), The vertical magnetic flux density component can be made sufficiently large, and the magnetic flux generated by all the magnetic poles of the permanent magnet can be effectively used. Therefore, between the current flowing through at least three coils surrounding the movable magnet body, The thrust based on Fleming's left-hand rule can be made sufficiently large, and a large thrust can be obtained with a small size and small current.

【0030】 本考案の可動磁石式アクチュエータでは、図6の参考例の構造を前提とし、さ らに複数の永久磁石及び磁性体を確実に一体化して磁石可動体を作製し、かつそ の磁石可動体の動きの円滑化を図っている。すなわち、永久磁石及び該永久磁石 間に配された磁性体を貫通する貫通軸体に、当該永久磁石及び磁性体を固定して 磁石可動体を構成したことで、該永久磁石及び磁性体の貫通軸体への固定を確実 に実行でき、組立容易としている。また、該貫通軸体を摺動自在に支持すること で磁石可動体が各コイルの内側をがたつきなく円滑に移動可能とすることができ 、その貫通軸体の端部を出力取り出し用ピンとして利用できる。The movable magnet type actuator of the present invention is premised on the structure of the reference example of FIG. 6, and further, a plurality of permanent magnets and a magnetic body are securely integrated to produce a movable magnet body, and the magnet is manufactured. The movement of the movable body is smoothed. That is, the permanent magnet and the magnetic body are fixed to the penetrating shaft body that penetrates the permanent magnet and the magnetic body disposed between the permanent magnets to form the movable magnet body. It can be securely fixed to the shaft, making assembly easy. Also, by supporting the penetrating shaft slidably, the movable magnet body can move smoothly inside the coils without rattling, and the end of the penetrating shaft body is provided with an output extraction pin. Available as

【0031】[0031]

【実施例】【Example】

以下、本考案に係る可動磁石式アクチュエータの実施例を図面に従って説明す る。 An embodiment of a movable magnet type actuator according to the present invention will be described below with reference to the drawings.

【0032】 図1及び図2は本考案の第1実施例を示す。これらの図において、1は軟磁性 体の円筒状ヨークであり、該円筒状ヨーク1の内側に3連のコイル2A,2B, 2Cが配置され、これらのコイル2A,2B,2Cは磁石可動体3を移動自在に 案内するためのガイド筒体4を構成する絶縁樹脂等の絶縁部材で円筒状ヨーク1 に固着されている。このガイド筒体4の内周は円周面となっている。1 and 2 show a first embodiment of the present invention. In these figures, reference numeral 1 denotes a soft magnetic cylindrical yoke, three coils 2A, 2B and 2C are arranged inside the cylindrical yoke 1, and these coils 2A, 2B and 2C are movable magnets. It is fixed to the cylindrical yoke 1 by an insulating member such as an insulating resin which constitutes a guide cylinder 4 for movably guiding the magnet 3. The inner circumference of the guide cylinder 4 is a circumferential surface.

【0033】 磁石可動体3は、同極対向された2個の穴あき円柱状希土類永久磁石5A,5 B、それらの永久磁石間に配置された穴あき円柱状中間部軟磁性体6及び前記永 久磁石5A,5Bの外側位置に配置された穴あき円板状クッション板7A,7B に金属貫通軸体8を挿通し、該金属貫通軸体8の係合溝9に止め具(金属製Eリ ング)20を嵌め込み係止して、当該金属貫通軸体8に永久磁石5A,5B、中 間部軟磁性体6及び円板状クッション板7A,7Bを固定したものである。ここ で、貫通軸体8は非磁性又は磁性金属であり、クッション板7A,7Bはシリコ ンゴム等の弾性材であり、多少圧縮状態で一対の止め具20間に挟持されている 。この結果、クッション板7A,7Bは各永久磁石5A,5B及び軟磁性体6の 厚みのばらつきを吸収してがたつきを防止することができる。なお、前記金属貫 通軸体8に永久磁石5A,5B及び軟磁性体6を一体化する際に接着剤を併用し てもよい。The magnet movable body 3 is composed of two perforated columnar rare earth permanent magnets 5 A and 5 B having the same poles facing each other, a perforated columnar intermediate soft magnetic body 6 disposed between the permanent magnets, and The metal penetrating shaft body 8 is inserted through the perforated disk-shaped cushion plates 7A, 7B arranged at the outer positions of the permanent magnets 5A, 5B, and the stopper (made of metal) is inserted into the engaging groove 9 of the metal penetrating shaft body 8. The E-ring) 20 is fitted and locked, and the permanent magnets 5A and 5B, the intermediate soft magnetic body 6 and the disc-shaped cushion plates 7A and 7B are fixed to the metal penetrating shaft body 8. Here, the penetrating shaft body 8 is a non-magnetic or magnetic metal, and the cushion plates 7A and 7B are elastic materials such as silicone rubber, and are sandwiched between the pair of stoppers 20 in a slightly compressed state. As a result, the cushion plates 7A and 7B can absorb variations in the thickness of the permanent magnets 5A and 5B and the soft magnetic body 6 and prevent rattling. An adhesive may be used together when the permanent magnets 5A, 5B and the soft magnetic body 6 are integrated with the metal penetrating shaft 8.

【0034】 前記3連のコイル2A,2B,2Cは永久磁石5A,5Bの磁極間を境にして 相異なる方向に電流が流れる如く結線されている。すなわち、中央のコイル2B は軟磁性体6及び永久磁石5A,5BのN極を含む端部を囲み、両側のコイル2 A,2Cは、永久磁石5A,5BのS極を含む端部をそれぞれ囲むことができる ように円環状に巻回されており、かつ中央のコイル2Bに流れる電流の向きと、 両側のコイル2A,2Cの電流の向きとは逆向きである(図1の各コイルに付し たN,Sを参照)。The triple coils 2A, 2B, 2C are connected so that currents flow in different directions with the magnetic poles of the permanent magnets 5A, 5B as boundaries. That is, the central coil 2B surrounds the ends of the soft magnetic body 6 and the permanent magnets 5A and 5B including the N poles, and the coils 2A and 2C on both sides include the ends of the permanent magnets 5A and 5B including the S poles. It is wound in an annular shape so that it can be surrounded, and the direction of the current flowing through the central coil 2B is opposite to the direction of the current flowing through the coils 2A and 2C on both sides (in each coil in FIG. 1, (See attached N and S).

【0035】 また、前記軟磁性体の円筒状ヨーク1及び非磁性のガイド筒体4の両端部に非 磁性の側板21A,21Bが嵌合、固着され、該側板21A,21Bの中央部に 焼結金属、高摺動性樹脂等の円筒状軸受部材22がそれぞれ固定支持されている 。そして、各円筒状軸受部材22の内周面にて永久磁石5A,5B及び軟磁性体 6に貫通、一体化された貫通軸体8が摺動自在に支えられ、該貫通軸体8の一方 の端部は軸受部材外側に突出して、出力ピンとして利用できるようになっている 。なお、側板21A,21Bは前記ガイド筒体4の内周面に嵌合する凸部23を それぞれ有しており、該凸部23の先端面が前記磁石可動体3の移動時にクッシ ョン板7A,7Bに当接して当該磁石可動体3の移動範囲を規定するようになっ ている。また、前記軸受部材22は非磁性でも磁性体であってもよい。Further, non-magnetic side plates 21A and 21B are fitted and fixed to both ends of the soft magnetic cylindrical yoke 1 and the non-magnetic guide cylindrical body 4, respectively, and are burned at the central portions of the side plates 21A and 21B. Cylindrical bearing members 22 such as a binding metal and a highly slidable resin are fixedly supported. The inner peripheral surface of each cylindrical bearing member 22 slidably supports a through shaft body 8 which penetrates and is integrated with the permanent magnets 5A and 5B and the soft magnetic body 6, and one of the through shaft bodies 8 is slidably supported. The end of the is projected outside the bearing member and can be used as an output pin. The side plates 21A and 21B each have a convex portion 23 that fits on the inner peripheral surface of the guide cylinder 4, and the tip end surface of the convex portion 23 is a cushion plate when the magnet movable body 3 moves. The movable range of the magnet movable body 3 is regulated by abutting against 7A and 7B. The bearing member 22 may be non-magnetic or magnetic.

【0036】 この第1実施例では、各コイル2A,2B,2Cの外周側に軟磁性体の円筒状 ヨーク1が設けられているため、磁石可動体3の表面磁束密度の垂直成分は図6 の参考例の場合よりもさらに増大する。このため、フレミングの左手の法則に基 づく推力に寄与できる磁石可動体3の長手方向に垂直な磁束成分を大きくでき、 磁石可動体3の周囲を環状に巻回する3連のコイル2A,2B,2Cに交互に逆 極性の磁界を発生する向きに電流を通電することにより、いっそう大きな推力を 発生することができる。図1の極性では、磁石可動体3が右方向に移動する向き であり、各コイルの電流を反転させれば磁石可動体3の推力の向きも反転する。 交流電流を流した場合には、一定周期で振動を繰り返すバイブレータとして働く 。In this first embodiment, since the soft magnetic cylindrical yoke 1 is provided on the outer peripheral side of each coil 2A, 2B, 2C, the vertical component of the surface magnetic flux density of the magnet movable body 3 is as shown in FIG. It is further increased as compared with the reference example. Therefore, the magnetic flux component perpendicular to the longitudinal direction of the magnet moving body 3 that can contribute to the thrust force based on Fleming's left-hand rule can be increased, and the triple coils 2A and 2B that wind around the magnet moving body 3 in an annular shape. , 2C, a larger thrust can be generated by passing a current in the direction of alternately generating magnetic fields of opposite polarities. In the polarity of FIG. 1, the movable magnet body 3 is in the direction of moving to the right, and if the current of each coil is reversed, the direction of the thrust of the movable magnet body 3 is also reversed. When an alternating current is applied, it acts as a vibrator that vibrates repeatedly in a fixed cycle.

【0037】 また、穴あき円柱状希土類永久磁石5A,5B、穴あき円柱状中間部軟磁性体 6及び穴あき円板状クッション板7A,7Bに金属貫通軸体8を挿通し、該金属 貫通軸体8の係合溝9に止め具20を嵌め込み係止して磁石可動体3を構成して おり、永久磁石5A,5B及び中間部軟磁性体6の固定、一体化を確実に実行で き、しかも組立容易である。Further, the metal penetrating shaft body 8 is inserted through the perforated columnar rare earth permanent magnets 5A, 5B, the perforated columnar intermediate soft magnetic material 6 and the perforated disc-shaped cushion plates 7A, 7B to penetrate the metal. The magnet movable body 3 is configured by fitting the stopper 20 into the engagement groove 9 of the shaft body 8 and locking the same, so that the permanent magnets 5A and 5B and the intermediate soft magnetic body 6 can be fixed and integrated reliably. And easy to assemble.

【0038】 さらに、磁石可動体3に一体の貫通軸体8を軸受部材22で摺動自在に支持す ることで、磁石可動体3のがたつきを無くしてを常時ガイド筒体4の内周中心と 同心状態に規制でき、しかも永久磁石5A,5Bや軟磁性体6を一体化するため のホルダ等を永久磁石外周側に被せる必要がなく、永久磁石5A,5Bの外周面 とコイル2A,2B,2Cとの間隙を必要最小限に設定でき、推力の向上に有効 である。また、磁石可動体3がガイド筒体4の内周面に接触しなくなるため、磁 石可動体3を軸方向に円滑に移動させることが可能であり、磁石可動体3やガイ ド筒体4の摩耗等の問題も解消できる。Further, by supporting the penetrating shaft body 8 integrated with the movable magnet body 3 slidably by the bearing member 22, the rattling of the movable magnet body 3 can be eliminated and the inside of the guide cylinder body 4 can be maintained. The outer circumference of the permanent magnets 5A, 5B and the coil 2A can be regulated concentrically with the center of the circumference, and there is no need to cover the outer circumference of the permanent magnets with a holder or the like for integrating the permanent magnets 5A, 5B and the soft magnetic body 6. , 2B, 2C can be set to the minimum required gap, which is effective in improving thrust. Moreover, since the magnet movable body 3 does not contact the inner peripheral surface of the guide cylinder 4, the magnet movable body 3 can be smoothly moved in the axial direction, and the magnet movable body 3 and the guide cylinder 4 can be moved. It is possible to eliminate problems such as wear of the.

【0039】 なお、上記第1実施例の構成において、両端部の側板21A,21Bのいずれ か一方又は両方を軟磁性体とすれば、軟磁性体で形成した側板を磁石可動体3を 吸着する磁性吸着体として機能させることができる。In the structure of the first embodiment, if one or both of the side plates 21A and 21B at both ends are made of soft magnetic material, the side plates made of soft magnetic material attract the magnet movable body 3. It can function as a magnetic adsorbent.

【0040】 例えば、側板21A,21Bの両方を軟磁性体とした場合、コイル2A,2B ,2Cに通電されていない状態では磁石可動体3はどちらかの側板に吸着保持さ れ、現在吸着している側板から磁石可動体3が離脱する向きに各コイル2A,2 B,2Cで推力を発生させれば、反対側の側板方向に磁石可動体3が移動して吸 着停止する。For example, when both the side plates 21A and 21B are made of a soft magnetic material, the magnet movable body 3 is attracted and held by one of the side plates when the coils 2A, 2B and 2C are not energized, and is currently attracted. If a thrust is generated in each of the coils 2A, 2B, 2C in the direction in which the magnet movable body 3 separates from the side plate, the magnet movable body 3 moves in the direction of the side plate on the opposite side to stop the adsorption.

【0041】 また、一方の側板のみを軟磁性体の磁性吸着体とすれば、コイル2A,2B, 2Cに通電されていない状態では、常に磁石可動体3が一方の側板に吸着保持さ れるように設定できる。If only one of the side plates is made of a soft magnetic material, the magnet movable body 3 is always attracted to and held by the one side plate when the coils 2A, 2B and 2C are not energized. Can be set to.

【0042】 図3は本考案の第2実施例を示す。この図において、軟磁性体の円筒状ヨーク 1及び非磁性のガイド筒体4の両端部に非磁性の側板21C,21Dが嵌合、固 着され、該側板21C,21Dの内面と磁石可動体3側の円板状クッション板7 A,7B間に圧縮ばね24が配設されている。該圧縮ばね24は磁石可動体3を 中間位置に押し戻す作用を有する。なお、その他の構成は前述の第1実施例と同 じである。FIG. 3 shows a second embodiment of the present invention. In this figure, non-magnetic side plates 21C and 21D are fitted and fixed to both ends of the soft-magnetic cylindrical yoke 1 and the non-magnetic guide cylindrical body 4, respectively, and the inner surfaces of the side plates 21C and 21D and the magnet movable body. A compression spring 24 is arranged between the disk-shaped cushion plates 7A and 7B on the third side. The compression spring 24 has a function of pushing the magnet movable body 3 back to the intermediate position. The other structure is the same as that of the first embodiment.

【0043】 この第2実施例によれば、各コイル2A,2B,2Cに通電されていない状態 では、磁石可動体3は左右の圧縮ばね24の弾性力で円筒状ヨーク1内の中間位 置に復帰しており、各コイル2A,2B,2Cに直流電流を通電することで磁石 可動体3を一方に駆動することができる。また、交流電流を通電すれば、磁石可 動体3は往復運動してバイブレータして動作するが、磁石可動体3はある程度変 位した所で圧縮ばね24の弾性力で中間位置に戻されるため、磁石可動体3が側 板21C,21Dに衝突して衝撃音を発生することを防止できる。According to the second embodiment, when the coils 2A, 2B, 2C are not energized, the magnet movable body 3 is moved to the intermediate position in the cylindrical yoke 1 by the elastic force of the left and right compression springs 24. The magnet movable body 3 can be driven to one side by supplying a direct current to each coil 2A, 2B, 2C. Further, when an alternating current is applied, the magnet movable body 3 reciprocates and operates as a vibrator, but the magnet movable body 3 is returned to the intermediate position by the elastic force of the compression spring 24 when it is displaced to some extent. It is possible to prevent the movable magnet body 3 from colliding with the side plates 21C and 21D and generating impact noise.

【0044】 図4は本考案の第3実施例を示す。この図において、軟磁性体の円筒状ヨーク 1及び非磁性のガイド筒体4の両端部に非磁性の側板21A,21Bが嵌合、固 着され、該側板21A,21Bの凸部23の内周に戻し用環状永久磁石25がそ れぞれ固定されている。そして、該戻し用環状永久磁石25及び軸受部材22の 内周穴を磁石可動体3の貫通軸体8が貫通している。前記戻し用環状永久磁石2 5は、磁石可動体3が有する永久磁石5A,5Bの外側端面の磁極との間で反発 力を発生する磁極を磁石可動体3への対向面に有している。例えば図4では、永 久磁石5A,5Bの外側端面のS極に戻し用環状永久磁石25のS極が対向して いる。なお、その他の構成は前述の第1実施例と同じである。FIG. 4 shows a third embodiment of the present invention. In this figure, the non-magnetic side plates 21A and 21B are fitted and fixed to both ends of the soft-magnetic cylindrical yoke 1 and the non-magnetic guide cylindrical body 4, respectively, and the inside of the convex portion 23 of the side plates 21A and 21B is fixed. Returning annular permanent magnets 25 are fixed to the circumference. Then, the penetrating shaft body 8 of the magnet movable body 3 penetrates through the inner peripheral holes of the return annular permanent magnet 25 and the bearing member 22. The return annular permanent magnet 25 has a magnetic pole that generates a repulsive force between the permanent magnets 5A and 5B of the movable magnet body 3 on the outer surface of the permanent magnets 5A and 5B on the surface facing the movable magnet body 3. . For example, in FIG. 4, the south pole of the return annular permanent magnet 25 faces the south pole of the outer end surfaces of the permanent magnets 5A and 5B. The other structure is the same as that of the first embodiment.

【0045】 この第3実施例によれば、各コイル2A,2B,2Cに通電されていない状態 では、磁石可動体3は永久磁石5A,5Bと左右の戻し用環状永久磁石25の反 発力で円筒状ヨーク1内の中間位置に復帰しており、各コイル2A,2B,2C に直流電流を通電することで磁石可動体3を一方に駆動することができる。また 、交流電流を通電すれば、磁石可動体3は往復運動してバイブレータして動作す るが、磁石可動体3はある程度変位した所で永久磁石5A,5Bと左右の環状永 久磁石25の反発力で中間位置に戻されるため、磁石可動体3が側板21A,2 1Bや環状永久磁石25に衝突して衝撃音を発生することを防止できる。According to the third embodiment, when the coils 2A, 2B, 2C are not energized, the magnet movable body 3 repels the permanent magnets 5A, 5B and the left and right return annular permanent magnets 25. Then, the magnet movable body 3 can be driven to one side by returning to the intermediate position in the cylindrical yoke 1 and supplying a direct current to each coil 2A, 2B, 2C. Further, when an alternating current is applied, the magnet movable body 3 reciprocates and operates as a vibrator, but when the magnet movable body 3 is displaced to some extent, the permanent magnets 5A and 5B and the left and right annular permanent magnets 25 are moved. Since the magnet movable body 3 is returned to the intermediate position by the repulsive force, it is possible to prevent the impact noise from being generated by the movable magnet body 3 colliding with the side plates 21A, 21B and the annular permanent magnet 25.

【0046】 図5は本考案の第4実施例を示す。この図において、磁石可動体3Aは、同極 対向された2個の穴あき円柱状希土類永久磁石5A,5B、それらの永久磁石間 に配置された穴あき円柱状中間部軟磁性体6、前記永久磁石5A,5Bの外側に 配置された穴あき円板状端部軟磁性体26及び該端部軟磁性体26の外側位置に 配置された穴あき円板状クッション板7A,7Bに金属貫通軸体8を挿通し、該 金属貫通軸体8の係合溝9に止め具(金属製Eリング)20を嵌め込み係止して 、当該金属貫通軸体8に永久磁石5A,5B、中間部軟磁性体6、端部軟磁性体 26及び円板状クッション板7A,7Bを固定したものである。ここで、貫通軸 体8は非磁性又は磁性金属であり、クッション板7A,7Bはシリコンゴム等の 弾性材であり、多少圧縮状態で一対の止め具20間に挟持されている。この結果 、クッション板7A,7Bは各永久磁石5A,5B、軟磁性体6,26の厚みの ばらつきを吸収してがたつきを防止することができる。なお、前記金属貫通軸体 8に永久磁石5A,5B、軟磁性体6,26を一体化する際に接着剤を併用して もよい。前記端部軟磁性体26の肉厚は、中間部軟磁性体6の1/2〜1倍程度 に設定される。なお、その他の構成は前述の第1実施例と同じである。FIG. 5 shows a fourth embodiment of the present invention. In this figure, the magnet movable body 3A is composed of two perforated columnar rare earth permanent magnets 5A and 5B having the same poles facing each other, a perforated columnar intermediate portion soft magnetic body 6 disposed between the permanent magnets, Perforated disc-shaped end soft magnetic material 26 arranged outside the permanent magnets 5A, 5B and perforated circular disc-shaped cushion plates 7A, 7B arranged outside the end soft magnetic material 26. The shaft body 8 is inserted, a stopper (metal E ring) 20 is fitted and locked in the engagement groove 9 of the metal through shaft body 8, and the permanent magnets 5A, 5B and the intermediate portion are attached to the metal through shaft body 8. The soft magnetic material 6, the end soft magnetic material 26, and the disk-shaped cushion plates 7A and 7B are fixed. Here, the penetrating shaft 8 is made of non-magnetic or magnetic metal, and the cushion plates 7A and 7B are made of elastic material such as silicon rubber, and are sandwiched between the pair of stoppers 20 in a slightly compressed state. As a result, the cushion plates 7A and 7B can absorb the variations in the thickness of the permanent magnets 5A and 5B and the soft magnetic bodies 6 and 26 to prevent rattling. An adhesive may be used together when the permanent magnets 5A and 5B and the soft magnetic bodies 6 and 26 are integrated with the metal penetrating shaft 8. The thickness of the end soft magnetic material 26 is set to about 1/2 to 1 times that of the intermediate soft magnetic material 6. The other structure is the same as that of the first embodiment.

【0047】 この第4実施例では、磁石可動体3Aが有する永久磁石5A,5Bの外側端面 に端部軟磁性体26が配置されており、永久磁石5A,5Bの外側端面の磁極か ら出た磁束が端部軟磁性体26の存在で垂直方向に曲がり易くなる等の理由で永 久磁石5A,5Bの外側部分での磁束密度の垂直成分(永久磁石の軸方向に直交 する成分)が増大する。すなわち、フレミングの左手の法則に基づく推力に寄与 できる磁石可動体3Aの長手方向に垂直な磁束成分を大きくでき、磁石可動体3 Aの周囲を環状に巻回する3連のコイル2A,2B,2Cに交互に逆極性の磁界 を発生する向きに電流を通電することにより、いっそう大きな推力を発生するこ とができる。例えば、端部軟磁性体の無い第1実施例の場合に比較して数%乃至 10%程度の推力向上が得られる。In the fourth embodiment, the end soft magnetic material 26 is arranged on the outer end surfaces of the permanent magnets 5A, 5B of the movable magnet body 3A, and the end soft magnetic material 26 is projected from the magnetic poles on the outer end surfaces of the permanent magnets 5A, 5B. The vertical component of the magnetic flux density (the component orthogonal to the axial direction of the permanent magnet) in the outer portion of the permanent magnets 5A and 5B is easily changed because the magnetic flux easily bends in the vertical direction due to the presence of the end soft magnetic material 26. Increase. That is, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3A that can contribute to the thrust force based on Fleming's left-hand rule can be increased, and the triple coils 2A, 2B, which are wound around the magnet movable body 3A in an annular shape, An even greater thrust can be generated by applying a current to 2C in the direction in which a magnetic field of opposite polarity is generated alternately. For example, a thrust improvement of several% to 10% can be obtained as compared with the case of the first embodiment without the end soft magnetic material.

【0048】 なお、上記第1乃至第3実施例では、2個の同極対向の永久磁石と両永久磁石 間の軟磁性体を備える磁石可動体3を例示したが、3個以上の同極対向の永久磁 石と両永久磁石間の軟磁性体を備える構成としてもよく、これに対応させてコイ ル数も4個以上とすることができる。In the first to third embodiments, the magnet movable body 3 including the two permanent magnets having the same poles facing each other and the soft magnetic body between the permanent magnets has been exemplified. It is also possible to employ a configuration in which a permanent magnet facing each other and a soft magnetic material between both permanent magnets are provided, and the number of coils can be set to 4 or more correspondingly.

【0049】 また、上記第4実施例では、2個の同極対向の永久磁石と両永久磁石間の中間 部軟磁性体と2個の永久磁石の外側の端部軟磁性体とを備える磁石可動体3Aを 例示したが、3個以上の同極対向の永久磁石と両永久磁石間の軟磁性体と両端に 位置する永久磁石の外側の端部軟磁性体とを備える構成としてもよく、これに対 応させてコイル数も4個以上とすることができる。また、第4実施例の構成に加 えて、第2及び第3実施例で述べた磁石可動体を中間位置に押し戻す圧縮ばね2 4あるいは環状永久磁石25を設けるようにしても差し支えない。In addition, in the fourth embodiment, a magnet including two permanent magnets of the same pole facing each other, an intermediate soft magnetic material between both permanent magnets, and an outer end soft magnetic material of the two permanent magnets. Although the movable body 3A is illustrated as an example, the movable body 3A may be configured to include three or more permanent magnets of the same pole facing each other, a soft magnetic material between both permanent magnets, and end soft magnetic materials on the outer sides of the permanent magnets located at both ends, Correspondingly, the number of coils can be increased to four or more. Further, in addition to the structure of the fourth embodiment, a compression spring 24 or an annular permanent magnet 25 for returning the magnet movable body described in the second and third embodiments to the intermediate position may be provided.

【0050】 さらに、各実施例では磁石可動体3,3Aの貫通軸体の両側を軸受で支持した が、貫通軸体の片側のみを軸受で支持する構造を採用してもよい。この場合、軸 受部材も一方のみとなる(但し、軸受部材を長めにすることが望ましい。)。Further, in each of the embodiments, both sides of the penetrating shaft body of the movable magnet bodies 3 and 3A are supported by the bearings, but a structure in which only one side of the penetrating shaft body is supported by the bearings may be adopted. In this case, there is only one bearing member (however, it is desirable to lengthen the bearing member).

【0051】 また、各実施例において、ガイド筒体4を省略して各コイル2A,2B,2C をヨーク1の内周側に絶縁固定する構造を採用することも可能である。Further, in each embodiment, it is possible to employ a structure in which the guide cylinder 4 is omitted and the coils 2A, 2B, 2C are insulated and fixed to the inner peripheral side of the yoke 1.

【0052】 前記実施例では、円筒状のヨーク1及びガイド筒体4を用いたが、角筒状等の ヨーク及びガイド筒体を採用することもでき、この場合も各コイルは磁石可動体 の外周を周回するように巻回すればよい。Although the cylindrical yoke 1 and the guide cylindrical body 4 are used in the above-mentioned embodiment, a square cylindrical yoke and the guide cylindrical body may be employed, and in this case, each coil is a magnet movable body. It may be wound so as to go around the outer circumference.

【0053】[0053]

【考案の効果】[Effect of device]

以上説明したように、本考案の可動磁石式アクチュエータによれば、同極対向 された少なくとも2個の永久磁石間に中間部磁性体を配置して貫通軸体に一体化 した磁石可動体を用い、該貫通軸体を軸受部材で摺動自在に支える構成としたの で、磁石可動体の長手方向(永久磁石の着磁方向)に垂直な磁束成分を充分大き くでき、かつ磁石可動体の周囲を取り巻くように少なくとも3連のコイルを巻回 して磁石可動体の各磁極が発生する磁束と有効に鎖交可能としたので、前記垂直 な磁束成分と各コイルに流れる電流との間のフレミングの左手の法則に基づいて 与えられる推力を充分大きくできる。また、貫通軸体を用いることで複数個の永 久磁石及び中間部磁性体を当該貫通軸体に確実に固定でき、堅牢な磁石可動体を 構成でき、組立作業も簡単となる。また、貫通軸体を用いたことにより、複数個 の永久磁石及び中間部磁性体を一体化するために永久磁石や中間部磁性体の外周 を覆う非磁性ホルダ等は使用しなくてもよくなり、永久磁石外周面と各コイル間 の間隙を少なくして推力のいっそうの向上を図ることができる。そして、磁石可 動体の出力取り出し用ピンとして機能する貫通軸体を前記3連のコイルに対して 一定位置関係にある軸受部材で支持することで、磁石可動体の移動を円滑化する ことができ、小型、小電流で大きな推力を持つ信頼性の高い可動磁石式アクチュ エータを実現できる。 As described above, according to the movable magnet type actuator of the present invention, the movable magnet type body is used in which the intermediate magnetic body is arranged between at least two permanent magnets having the same poles and is integrated with the penetrating shaft body. Since the through shaft is slidably supported by the bearing member, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body (the magnetizing direction of the permanent magnet) can be sufficiently increased, and the magnet movable body Since at least three coils are wound so as to surround the circumference, and the magnetic flux generated by each magnetic pole of the magnet movable body can be effectively linked, the magnetic flux between the vertical magnetic flux component and the current flowing through each coil can be effectively linked. The thrust given based on Fleming's left-hand rule can be made sufficiently large. Further, by using the penetrating shaft body, a plurality of permanent magnets and intermediate magnetic bodies can be securely fixed to the penetrating shaft body, a robust magnet movable body can be constructed, and the assembling work becomes easy. Further, by using the through shaft, it is not necessary to use a non-magnetic holder or the like that covers the outer circumference of the permanent magnet or the intermediate magnetic body in order to integrate a plurality of permanent magnets and the intermediate magnetic body. The thrust can be further improved by reducing the gap between the outer peripheral surface of the permanent magnet and each coil. Then, by supporting the penetrating shaft that functions as an output extracting pin of the magnet movable body by a bearing member having a fixed positional relationship with the triple coil, the movement of the magnet movable body can be smoothed. It is possible to realize a highly reliable movable magnet type actuator that has a small size, a small current and a large thrust.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る可動磁石式アクチュエータの第1
実施例を示す正断面図である。
FIG. 1 shows a first movable magnet type actuator according to the present invention.
It is a right sectional view showing an example.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】本考案の第2実施例を示す正断面図である。FIG. 3 is a front sectional view showing a second embodiment of the present invention.

【図4】本考案の第3実施例を示す正断面図である。FIG. 4 is a front sectional view showing a third embodiment of the present invention.

【図5】本考案の第4実施例を示す正断面図である。FIG. 5 is a front sectional view showing a fourth embodiment of the present invention.

【図6】本考案の基本動作原理を示す参考例の概略構成
図である。
FIG. 6 is a schematic configuration diagram of a reference example showing the basic operation principle of the present invention.

【図7】図6の参考例における磁石可動体の変位量と推
力との関係を示すグラフである。
7 is a graph showing the relationship between the amount of displacement of a movable magnet body and thrust in the reference example of FIG.

【図8】第1従来例を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a first conventional example.

【図9】第2従来例を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a second conventional example.

【図10】単一の永久磁石の長手側面(永久磁石の着磁
方向に平行な面)の表面磁束密度の垂直成分(長手側面
に垂直な成分)を示すグラフである。
FIG. 10 is a graph showing a vertical component (a component perpendicular to a longitudinal side surface) of a surface magnetic flux density on a longitudinal side surface (a surface parallel to a magnetizing direction of the permanent magnet) of a single permanent magnet.

【図11】2個の同極対向の永久磁石を直接的に対接状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 11 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets of the same pole facing each other are directly brought into contact with each other.

【図12】2個の永久磁石を1mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 12 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 1 mm.

【図13】2個の永久磁石を2mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 13 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the state of facing each other with an air gap of 2 mm.

【図14】2個の永久磁石を3mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 14 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 3 mm.

【図15】2個の永久磁石を軟磁性体を介し同極対向状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 15 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with a soft magnetic material interposed therebetween.

【図16】2個の永久磁石を軟磁性体を介し同極対向状
態とし、かつ軟磁性体ヨークを配置した場合の長手側面
の表面磁束密度の垂直成分を示すグラフである。
FIG. 16 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with a soft magnetic material interposed and a soft magnetic material yoke is arranged.

【符号の説明】[Explanation of symbols]

1 円筒状ヨーク 2A,2B,2C コイル 3,3A 磁石可動体 4 ガイド筒体 5 円柱状永久磁石 6 円柱状中間部軟磁性体 7A,7B クッション板 8 貫通軸体 9 係合溝 20 止め具 21A,21B,21C,21D 側板 22 軸受部材 24 圧縮ばね 25 戻し用永久磁石 26 端部軟磁性体 DESCRIPTION OF SYMBOLS 1 Cylindrical yoke 2A, 2B, 2C Coil 3, 3A Magnet movable body 4 Guide cylinder 5 Cylindrical permanent magnet 6 Cylindrical middle part soft magnetic material 7A, 7B Cushion plate 8 Penetration shaft 9 Engagement groove 20 Stopper 21A , 21B, 21C, 21D Side plate 22 Bearing member 24 Compression spring 25 Return permanent magnet 26 End soft magnetic material

Claims (6)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 同極対向された少なくとも2個の永久磁
石及びそれらの永久磁石間に配された中間部磁性体を貫
通する貫通軸体に、当該永久磁石及び中間部磁性体を固
定して磁石可動体を構成し、前記貫通軸体を軸受部材で
摺動自在に支持して少なくとも3連のコイルの内側に当
該磁石可動体を移動自在に設け、前記少なくとも3連の
コイルを、各永久磁石の磁極間を境にして相異なる方向
に電流が流れる如く結線したことを特徴とする可動磁石
式アクチュエータ。
1. The permanent magnet and the intermediate magnetic body are fixed to a penetrating shaft body that penetrates at least two permanent magnets facing each other with the same pole and the intermediate magnetic body arranged between the permanent magnets. A magnet movable body is configured, the through shaft body is slidably supported by a bearing member, and the magnet movable body is movably provided inside at least three continuous coils. A movable magnet actuator characterized in that wires are connected so that currents flow in different directions with the magnetic poles of the magnets as boundaries.
【請求項2】 前記磁石可動体の両端に位置する永久磁
石の外側端面に端部磁性体を設けた請求項1記載の可動
磁石式アクチュエータ。
2. The movable magnet type actuator according to claim 1, wherein end magnets are provided on outer end surfaces of permanent magnets located at both ends of the magnet movable body.
【請求項3】 前記少なくとも3連のコイルを固定した
ガイド筒体の少なくとも一方の端部に前記磁石可動体を
吸着する磁性吸着体を配置した請求項1又は2記載の可
動磁石式アクチュエータ。
3. The movable magnet type actuator according to claim 1 or 2, wherein a magnetic attraction body that attracts the movable magnet body is disposed at at least one end of a guide cylindrical body to which the at least three continuous coils are fixed.
【請求項4】 前記少なくとも3連のコイルを固定した
ガイド筒体の端部位置に前記磁石可動体を押し戻すばね
を配設した請求項1又は2記載の可動磁石式アクチュエ
ータ。
4. The movable magnet type actuator according to claim 1, wherein a spring for pushing back the magnet movable body is arranged at an end position of the guide cylinder body to which the at least three continuous coils are fixed.
【請求項5】 前記少なくとも3連のコイルを固定した
ガイド筒体の端部位置に前記磁石可動体に対して反発力
を発生する戻し用永久磁石を配設した請求項1又は2記
載の可動磁石式アクチュエータ。
5. The movable member according to claim 1, wherein a returning permanent magnet that generates a repulsive force with respect to the movable magnet body is provided at an end position of a guide cylinder body to which the at least three continuous coils are fixed. Magnetic actuator.
【請求項6】 前記貫通軸体に係合する止め輪で前記永
久磁石及び中間部磁性体を当該貫通軸体に固定した請求
項1又は2記載の可動磁石式アクチュエータ。
6. The movable magnet type actuator according to claim 1, wherein the permanent magnet and the intermediate magnetic body are fixed to the through shaft by a retaining ring that engages with the through shaft.
JP1993035519U 1992-07-20 1993-06-07 Moving magnet type actuator Expired - Lifetime JP2596857Y2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1993035519U JP2596857Y2 (en) 1993-06-07 1993-06-07 Moving magnet type actuator
US08/093,677 US5434549A (en) 1992-07-20 1993-07-20 Moving magnet-type actuator
EP9393111583A EP0580117A3 (en) 1992-07-20 1993-07-20 Moving magnet-type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993035519U JP2596857Y2 (en) 1993-06-07 1993-06-07 Moving magnet type actuator

Publications (2)

Publication Number Publication Date
JPH079081U true JPH079081U (en) 1995-02-07
JP2596857Y2 JP2596857Y2 (en) 1999-06-21

Family

ID=12444008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993035519U Expired - Lifetime JP2596857Y2 (en) 1992-07-20 1993-06-07 Moving magnet type actuator

Country Status (1)

Country Link
JP (1) JP2596857Y2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280150A (en) * 2005-03-30 2006-10-12 Nsk Ltd Driving device with ultrasonic motor
WO2010119788A1 (en) * 2009-04-15 2010-10-21 Thk株式会社 Linear motor actuator
WO2011085093A2 (en) * 2010-01-06 2011-07-14 Tremont Electric, Llc Electrical energy generator
JP2012527353A (en) * 2009-05-18 2012-11-08 レゾナント システムズ,インコーポレイテッド Linear resonant vibration mechanism
JP2013169065A (en) * 2012-02-15 2013-08-29 Thk Co Ltd Vibration actuator
JP2014082934A (en) * 2009-04-15 2014-05-08 Thk Co Ltd Linear motor actuator
WO2014167720A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Movable element and linear motor
JPWO2013164892A1 (en) * 2012-05-02 2015-12-24 三菱電機エンジニアリング株式会社 Vibration generator
WO2016017584A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor
WO2016017585A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor
JP2019075966A (en) * 2017-10-13 2019-05-16 孝仁 今川 Reciprocating motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500402B2 (en) 2000-05-02 2004-02-23 財団法人鉄道総合技術研究所 Linear actuator
JP3591429B2 (en) * 2000-06-22 2004-11-17 オムロンヘルスケア株式会社 Flow control valve and sphygmomanometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121207U (en) * 1978-02-15 1979-08-24
JPS54121206U (en) * 1978-02-15 1979-08-24
JPS54133315U (en) * 1978-03-08 1979-09-14
JPS58192460A (en) * 1982-05-01 1983-11-09 Takahashi Denki Kk Self-holding linear motor
JPH03107360A (en) * 1989-09-20 1991-05-07 Atsugi Unisia Corp Drive unit
EP0457389A1 (en) * 1990-05-14 1991-11-21 Koninklijke Philips Electronics N.V. Electromagnetic drive system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121207U (en) * 1978-02-15 1979-08-24
JPS54121206U (en) * 1978-02-15 1979-08-24
JPS54133315U (en) * 1978-03-08 1979-09-14
JPS58192460A (en) * 1982-05-01 1983-11-09 Takahashi Denki Kk Self-holding linear motor
JPH03107360A (en) * 1989-09-20 1991-05-07 Atsugi Unisia Corp Drive unit
EP0457389A1 (en) * 1990-05-14 1991-11-21 Koninklijke Philips Electronics N.V. Electromagnetic drive system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280150A (en) * 2005-03-30 2006-10-12 Nsk Ltd Driving device with ultrasonic motor
US8922069B2 (en) 2009-04-15 2014-12-30 Thk Co., Ltd. Linear motor actuator
CN102395432A (en) * 2009-04-15 2012-03-28 Thk株式会社 Linear motor actuator
JP2014082934A (en) * 2009-04-15 2014-05-08 Thk Co Ltd Linear motor actuator
JP2010268672A (en) * 2009-04-15 2010-11-25 Thk Co Ltd Linear motor actuator
WO2010119788A1 (en) * 2009-04-15 2010-10-21 Thk株式会社 Linear motor actuator
JP2012527353A (en) * 2009-05-18 2012-11-08 レゾナント システムズ,インコーポレイテッド Linear resonant vibration mechanism
WO2011085093A3 (en) * 2010-01-06 2011-11-17 Tremont Electric Incorporated Electrical energy generator
WO2011085093A2 (en) * 2010-01-06 2011-07-14 Tremont Electric, Llc Electrical energy generator
JP2013169065A (en) * 2012-02-15 2013-08-29 Thk Co Ltd Vibration actuator
US9787162B2 (en) 2012-05-02 2017-10-10 Mitsubishi Electric Engineering Company, Limited Vibration power generator
JPWO2013164892A1 (en) * 2012-05-02 2015-12-24 三菱電機エンジニアリング株式会社 Vibration generator
WO2014167720A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Movable element and linear motor
US10424999B2 (en) 2014-07-28 2019-09-24 Nidec Copal Corporation Linear vibration motor
JPWO2016017585A1 (en) * 2014-07-28 2017-04-27 日本電産コパル株式会社 Linear vibration motor
JPWO2016017584A1 (en) * 2014-07-28 2017-04-27 日本電産コパル株式会社 Linear vibration motor
WO2016017585A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor
US10270326B2 (en) 2014-07-28 2019-04-23 Nidec Copal Corporation Linear vibration motor
WO2016017584A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor
JP2019075966A (en) * 2017-10-13 2019-05-16 孝仁 今川 Reciprocating motor

Also Published As

Publication number Publication date
JP2596857Y2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US5434549A (en) Moving magnet-type actuator
CA2007714C (en) Permanent magnet linear electromagnetic machine
KR20060003092A (en) Reciprocating linear drive actuator and electric toothbrush
JPH079081U (en) Movable magnet type actuator
CA2351144A1 (en) Electromagnetic linear oscillator
JP3412511B2 (en) Linear actuator
JPH0638486A (en) Movable magnet type actuator
JP3302777B2 (en) Moving magnet type actuator
JP3348124B2 (en) Moving magnet type actuator
US6365993B1 (en) Round linear actuator utilizing flat permanent magnets
CN112932933B (en) reciprocating mechanism
US11658554B2 (en) Vibrating with stop magnets, mandrel and guiding member
JP3523331B2 (en) Exciter
JP2006246691A (en) Linear oscillating actuator module
JPH0644385U (en) Movable magnet type actuator
JP2605686Y2 (en) Moving magnet type linear actuator
JP2004180377A (en) Electromagnetic reciprocating drive mechanism
JP2013055717A (en) Oscillating generator
JP2024036082A (en) linear vibration motor
JPH0644384U (en) Movable magnet type actuator
JP2002112519A (en) Electromagnetially reciprocating driver
JPS61200386A (en) Electromagnetic pump
ATE413009T1 (en) LINEAR ACTUATOR AS A CONTROLLABLE ELECTROMAGNETIC COMPRESSION SPRING
JP2004064838A (en) Linear actuator, pump device and compressor device using the same
JPS5810946B2 (en) Denjikudo Souchi

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10