JPH0638486A - Movable magnet type actuator - Google Patents
Movable magnet type actuatorInfo
- Publication number
- JPH0638486A JPH0638486A JP21326792A JP21326792A JPH0638486A JP H0638486 A JPH0638486 A JP H0638486A JP 21326792 A JP21326792 A JP 21326792A JP 21326792 A JP21326792 A JP 21326792A JP H0638486 A JPH0638486 A JP H0638486A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- permanent magnets
- magnetic
- movable
- movable body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Linear Motors (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、制御機器、電子機器、
工作機械等において電気エネルギーを電磁作用により往
復運動エネルギー等に変換させる可動磁石式アクチュエ
ータに関する。The present invention relates to a control device, an electronic device,
The present invention relates to a movable magnet actuator that converts electric energy into reciprocating kinetic energy and the like by electromagnetic action in machine tools and the like.
【0002】[0002]
【従来の技術】従来、可動磁石式の往復運動装置として
は、図6の第1従来例の構造を持つもの、及び図7の第
2従来例の構造を持つものがある。2. Description of the Related Art Conventional reciprocating devices of a movable magnet type include those having a structure of a first conventional example shown in FIG. 6 and those having a structure of a second conventional example shown in FIG.
【0003】図6の第1従来例において、10は軸方向
に着磁した棒状の永久磁石からなる磁石可動体であり、
両端面に磁極を有している。コイル11A,11Bは、
磁石可動体10の端部外周側をそれぞれ環状に周回する
ように巻回され、隣合う部分に同極が発生するようにな
っている。なお、図示は省略してあるが、コイル11
A,11Bは通常磁石可動体10を軸方向に移動自在に
ガイドするためのガイド筒体に装着される。そして、磁
石可動体10の各端面からの磁束がそれぞれコイル11
A,11Bと鎖交している。In the first conventional example shown in FIG. 6, reference numeral 10 denotes a magnet movable body composed of a rod-shaped permanent magnet magnetized in the axial direction.
It has magnetic poles on both end faces. The coils 11A and 11B are
The magnet movable body 10 is wound so as to circulate around the outer peripheral side of the end portion in a ring shape, and the same pole is generated in adjacent portions. Although not shown, the coil 11
A and 11B are usually mounted on guide cylinders for guiding the movable magnet body 10 so as to be movable in the axial direction. Then, the magnetic flux from each end surface of the movable magnet body 10 is transferred to the coil 11 respectively.
It is linked to A and 11B.
【0004】図7の第2従来例において、磁石可動体1
5は同極対向配置の2個の棒状永久磁石16A,16B
と、これらの永久磁石16A,16B間に固着される棒
状軟磁性体17とを固着一体化したものであり、コイル
18は磁石可動体15の中間部外周側をそれぞれ環状に
周回するように巻回されている。なお、図示は省略して
あるが、コイル18は通常磁石可動体15を軸方向に移
動自在にガイドするためのガイド筒体に装着される。そ
して、磁石可動体15の同極対向した永久磁石端面から
の磁束がコイル18と鎖交している。In the second conventional example shown in FIG. 7, the movable magnet body 1 is used.
Reference numeral 5 is two rod-shaped permanent magnets 16A and 16B having the same pole facing each other.
And a rod-shaped soft magnetic body 17 fixed between these permanent magnets 16A, 16B are integrally fixed, and the coil 18 is wound so as to circulate around the outer peripheral side of the intermediate portion of the magnet movable body 15 in an annular shape. It has been turned. Although not shown, the coil 18 is usually attached to a guide cylinder body for guiding the movable magnet body 15 movably in the axial direction. The magnetic fluxes from the end faces of the permanent magnets of the magnet movable body 15 that face each other in the same pole are linked with the coil 18.
【0005】ところで、第1従来例及び第2従来例にお
いて、磁石可動体10,15に発生する推力は、基本的
にはフレミングの左手の法則に基づいて与えられる推力
に準ずるものである(フレミングの左手の法則はコイル
に対して適用されるが、ここではコイルが固定のため、
磁石可動体にコイルに作用する力の反力としての推力が
発生する。)。したがって、推力に寄与するのは、磁石
可動体が有する永久磁石の磁束の垂直成分(永久磁石の
軸方向に直交する成分)である。By the way, in the first conventional example and the second conventional example, the thrust generated in the magnet movable bodies 10 and 15 is basically similar to the thrust given based on Fleming's left-hand rule (Fleming. The left-hand rule of is applied to the coil, but since the coil is fixed here,
Thrust as a reaction force of the force acting on the coil is generated in the movable magnet body. ). Therefore, it is the vertical component of the magnetic flux of the permanent magnet of the magnet movable body (the component orthogonal to the axial direction of the permanent magnet) that contributes to the thrust.
【0006】そこで、1個の永久磁石の場合、あるいは
2個の同極対向配置の永久磁石の場合について、磁束の
垂直成分がどのようになるのかそれぞれ解析してみた。Therefore, an analysis was made on how the vertical component of the magnetic flux is in the case of one permanent magnet or two permanent magnets of the same pole facing each other.
【0007】図8は、単独の永久磁石の長手側面に沿っ
て表面磁束密度の垂直成分を磁場解析した結果を示す。
但し、永久磁石は希土類永久磁石であって、直径2.5m
m、長さ6mmで、永久磁石表面から0.25〜0.45mm
離れた位置を計測した。FIG. 8 shows the result of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surface of a single permanent magnet.
However, the permanent magnet is a rare earth permanent magnet and has a diameter of 2.5 m.
m, length 6mm, 0.25 ~ 0.45mm from the surface of the permanent magnet
The distant positions were measured.
【0008】図9は、2個の永久磁石を同極対向配置と
し、かつ直接接合した場合において、2個の永久磁石の
長手側面に沿って表面磁束密度の垂直成分を磁場解析し
た結果を示す。但し、各永久磁石は希土類永久磁石であ
って、直径2.5mm、長さ3mm(2個で6mm)で、永久
磁石表面から0.25〜0.45mm離れた位置を計測し
た。FIG. 9 shows the results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets are arranged with the same poles facing each other and are directly bonded. . However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm (two pieces were 6 mm), and measured a position apart from the surface of the permanent magnet by 0.25 to 0.45 mm.
【0009】図10は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を1mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。FIG. 10 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 1 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.
【0010】図11は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を2mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。FIG. 11 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 2 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.
【0011】図12は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を3mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。FIG. 12 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 3 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.
【0012】図13は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置した場
合において、2個の永久磁石の長手側面に沿って表面磁
束密度の垂直成分を磁場解析した結果を示す。但し、各
永久磁石は希土類永久磁石であって、直径2.5mm、長
さ3mmで、永久磁石表面から0.25〜0.45mm離れた
位置を計測した。FIG. 13 shows a case where two permanent magnets are arranged so as to face each other with the same pole and a soft magnetic material having a length of 1 mm is arranged between the two permanent magnets. The result of magnetic field analysis of the vertical component of the density is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.
【0013】図14は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置し、さ
らに2個の永久磁石の外周に対向させて軟磁性体ヨーク
を配設した場合において、2個の永久磁石の長手側面に
沿って表面磁束密度の垂直成分を磁場解析した結果を示
す。但し、各永久磁石は希土類永久磁石であって、直径
2.5mm、長さ3mmで、ヨークは永久磁石を取り囲む円
筒形状で厚み0.5mm、長さ10mmで永久磁石外周から
1.25mm離間した位置となっており、表面磁束密度の
垂直成分は永久磁石表面から0.25〜0.45mm離れた
位置を計測した。In FIG. 14, two permanent magnets are arranged with the same poles facing each other, a soft magnetic material having a length of 1 mm is arranged between the permanent magnets, and the soft magnetic material is further opposed to the outer circumferences of the two permanent magnets. The results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when the yoke is arranged are shown. However, each permanent magnet is a rare earth permanent magnet and has a diameter of 2.5 mm and a length of 3 mm, and the yoke has a cylindrical shape surrounding the permanent magnet and has a thickness of 0.5 mm and a length of 10 mm, and is separated from the outer circumference of the permanent magnet by 1.25 mm. The vertical component of the surface magnetic flux density was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.
【0014】[0014]
【発明が解決しようとする課題】上述したように、磁石
可動体に発生する推力は、基本的にはフレミングの左手
の法則に基づいて与えられる推力に準ずるものであり、
コイルと鎖交する永久磁石の磁束の垂直成分(永久磁石
の軸方向に直交する成分)が多いことが望まれるが、図
6の第1従来例では、表面磁束密度の垂直成分は図8の
ようになり、図9乃至図14の2個の永久磁石を同極対
向配置とした場合に比較して垂直成分が少ないことが判
明した。このため図6の第1従来例の構成では、推力の
向上に限界がある。例えば、磁石可動体10を直径2.
5mm、長さ6mmの希土類永久磁石で構成し、2個のコイ
ル11A,11Bの隣合う部分に同極が発生するように
各コイル11A,11Bに40mAの電流を流したとき
に発生する推力F1は4.7(gf)であった。As described above, the thrust generated in the magnet movable body is basically similar to the thrust given based on Fleming's left-hand rule.
It is desirable that the vertical component of the magnetic flux of the permanent magnet interlinking with the coil (the component orthogonal to the axial direction of the permanent magnet) is large, but in the first conventional example of FIG. 6, the vertical component of the surface magnetic flux density is As a result, it was found that the vertical component is smaller than that in the case where the two permanent magnets shown in FIGS. Therefore, the structure of the first conventional example shown in FIG. 6 has a limit in improving the thrust. For example, the magnet movable body 10 has a diameter of 2.
Thrust F1 generated when a current of 40 mA is applied to each coil 11A, 11B so that the same pole is generated in the adjacent portions of the two coils 11A, 11B. Was 4.7 (gf).
【0015】一方、図7の第2従来例では、2個の同極
対向の永久磁石間に軟磁性体を配した磁石可動体15を
用いており、磁束密度の垂直成分は図13に示す如くな
り、同極対向の永久磁石16A,16Bの磁極から出る
磁束は1個の永久磁石の場合(図8参照)や2個の永久
磁石のみの場合(図9乃至図12参照)よりも多くなる
が、コイルが磁石可動体15の中間部を囲む1個のみで
あり、磁石可動体15の両端面の磁極による磁束は有効
に利用していない嫌いがある。このため、図7の第2従
来例の場合も推力の向上が難しかった。例えば、図7の
第2従来例において磁石可動体15として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は第1従来例と同じとする)、かつ両者間に
長さ1mmの軟磁性体を配置したものを用い、図6の第1
従来例と同じ消費電力となるように作成したコイル18
に40mAの電流を流し、第1従来例と同じ消費電力と
したときに発生する推力F2は5.6(gf)であった。On the other hand, in the second conventional example of FIG. 7, the movable magnet body 15 in which the soft magnetic material is arranged between two permanent magnets of the same pole facing each other is used, and the vertical component of the magnetic flux density is shown in FIG. Thus, the magnetic flux generated from the magnetic poles of the permanent magnets 16A and 16B facing each other with the same pole is larger than in the case of one permanent magnet (see FIG. 8) or the case of only two permanent magnets (see FIGS. 9 to 12). However, there is only one coil that surrounds the intermediate portion of the magnet movable body 15, and there is a dislike that the magnetic flux generated by the magnetic poles on both end surfaces of the magnet movable body 15 is not effectively used. For this reason, it was difficult to improve the thrust force in the case of the second conventional example shown in FIG. For example, in the second conventional example of FIG. 7, the magnet movable body 15 has a diameter of 2.5 m.
As shown in FIG. 6, two rare earth permanent magnets having a length of 3 mm and a length of 3 mm are used (the performance of the rare earth permanent magnet is the same as that of the first conventional example), and a soft magnetic material having a length of 1 mm is arranged between them. First of
Coil 18 created to have the same power consumption as the conventional example
The thrust force F2 generated when a current of 40 mA was applied to the same and the same power consumption as that of the first conventional example was 5.6 (gf).
【0016】本発明は、上記の点に鑑み、少なくとも2
個の永久磁石を同極対向配置とした磁石可動体を用いる
とともに永久磁石の磁極が発生する磁束を有効利用する
ことで、推力の向上及び効率の向上を図った可動磁石式
アクチュエータを提供することを目的とする。In view of the above points, the present invention has at least two aspects.
To provide a movable magnet type actuator that improves thrust and efficiency by using a magnetic movable body in which individual permanent magnets are arranged with the same poles facing each other and by effectively utilizing the magnetic flux generated by the magnetic poles of the permanent magnets. With the goal.
【0017】[0017]
【課題を解決するための手段】上記目的を達成するため
に、本発明の可動磁石式アクチュエータは、同極対向さ
れた少なくとも2個の永久磁石間に磁性体を設けて磁石
可動体を構成し、少なくとも3連のコイルの内側に当該
磁石可動体を移動自在に設け、前記少なくとも3連のコ
イルを、各永久磁石の磁極間を境にして相異なる方向に
電流が流れる如く結線した構成としている。In order to achieve the above object, the movable magnet type actuator of the present invention comprises a magnetic body provided between at least two permanent magnets having the same poles facing each other to form a movable magnet body. The movable magnet body is movably provided inside at least three continuous coils, and the at least three continuous coils are connected so that current flows in different directions with the magnetic poles of the permanent magnets as boundaries. .
【0018】また、前記コイル外周側に磁性体ヨークを
設けて、前記永久磁石の着磁方向に垂直な方向の磁束成
分を増加させるための磁気回路を構成してもよい。Further, a magnetic yoke may be provided on the outer peripheral side of the coil to form a magnetic circuit for increasing a magnetic flux component in a direction perpendicular to the magnetizing direction of the permanent magnet.
【0019】さらに、前記磁石可動体をガイド体で移動
自在に案内し、該ガイド体の少なくとも一端に前記磁石
可動体が吸着する磁性吸着体を設ける構成としてもよ
い。Further, the magnet movable body may be movably guided by a guide body, and at least one end of the guide body may be provided with a magnetic attraction body for attracting the magnet movable body.
【0020】[0020]
【作用】本発明の可動磁石式アクチュエータの動作原理
を図4の概略構成図によって説明する。この図4で、磁
石可動体3は同極対向配置の2個の円柱状永久磁石5
A,5Bと、これらの永久磁石5A,5B間に固着され
る円柱状軟磁性体6とを一体化したものであり、図13
に示したように、磁束密度の垂直成分(永久磁石の軸方
向に直交する成分)が多い構造となっている。3連のコ
イル2A,2B,2Cは、磁石可動体3の外周側を周回
する如く巻回され、磁石可動体3を構成する永久磁石5
Aの左端、永久磁石5A,5Bの同極対向端、及び永久
磁石5Bの右端の磁極からの磁束とそれぞれ鎖交するよ
うに配置されている。これらのコイル2A,2B,2C
は永久磁石5A,5Bの磁極間を境にして相異なる方向
に電流が流れる如く結線されている(磁極間の境は磁極
と磁極の間であれば必ずしも磁極中間位置になくともよ
い。)。なお、図示は省略してあるが、コイル2A,2
B,2Cは通常磁石可動体3を軸方向に移動自在にガイ
ドするためのガイド筒体に装着される。コイル2A,2
B,2Cと磁石可動体3との位置関係は、当該磁石可動
体3の全ての可動位置において、永久磁石磁極間を境に
して各コイルに流れる電流が相互に逆向きとなるように
設定しておく。The operation principle of the movable magnet type actuator of the present invention will be described with reference to the schematic diagram of FIG. In FIG. 4, the magnet movable body 3 is composed of two columnar permanent magnets 5 arranged in the same pole and facing each other.
A and 5B and a columnar soft magnetic body 6 fixed between these permanent magnets 5A and 5B are integrated, as shown in FIG.
As shown in, the structure has many vertical components of the magnetic flux density (components orthogonal to the axial direction of the permanent magnet). The three continuous coils 2A, 2B, 2C are wound so as to circulate around the outer circumference of the magnet movable body 3, and the permanent magnets 5 constituting the magnet movable body 3 are wound.
The magnetic fluxes from the left end of A, the opposite ends of the same poles of the permanent magnets 5A and 5B, and the magnetic poles of the right end of the permanent magnet 5B are arranged so as to interlink with each other. These coils 2A, 2B, 2C
Are connected so that currents flow in different directions with the magnetic poles of the permanent magnets 5A and 5B as the boundary (the boundary between the magnetic poles is not necessarily at the magnetic pole intermediate position as long as it is between the magnetic poles). Although not shown, the coils 2A, 2
B and 2C are usually mounted on guide cylinders for guiding the movable magnet body 3 movably in the axial direction. Coils 2A, 2
The positional relationship between B and 2C and the magnet movable body 3 is set so that the currents flowing through the coils are opposite to each other with the permanent magnet magnetic poles as boundaries at all movable positions of the magnet movable body 3. Keep it.
【0021】図4における磁石可動体3の構造は、図1
3のように2個の永久磁石を同極対向させかつ永久磁石
間に軟磁性体を配置したものである。この図13のとき
は軟磁性体位置に相当する領域Qの表面磁束密度の垂直
成分は、軟磁性体の無い図9乃至図12よりも優れてい
る(磁束密度0.3T以上のピークの幅が広くかつピー
クが高い。)。The structure of the movable magnet body 3 in FIG. 4 is as shown in FIG.
As in No. 3, two permanent magnets have the same poles facing each other and a soft magnetic material is arranged between the permanent magnets. In this FIG. 13, the vertical component of the surface magnetic flux density in the region Q corresponding to the position of the soft magnetic material is superior to that in FIGS. 9 to 12 without the soft magnetic material (the width of the peak of the magnetic flux density of 0.3 T or more). Is wide and has a high peak.)
【0022】このように、2個の永久磁石5A,5Bを
同極対向させかつ永久磁石間に軟磁性体6を設けた磁石
可動体3は、フレミングの左手の法則に基づく推力に寄
与できる磁石可動体3の長手方向に垂直な磁束成分を大
きくでき、かつ3連のコイル2A,2B,2Cは永久磁
石の全磁極の磁束と有効に鎖交するので、3連のコイル
2A,2B,2Cに交互に逆極性の磁界を発生する向き
に電流を通電することにより、従来例では到達し得ない
大きな推力を発生することができる。各コイルの電流を
反転させれば磁石可動体3の推力の向きも反転する。交
流電流を流した場合には、一定周期で振動を繰り返すバ
イブレータとして働く。As described above, the magnet movable body 3 in which the two permanent magnets 5A and 5B are opposed to each other with the same pole and the soft magnetic body 6 is provided between the permanent magnets can contribute to the thrust based on Fleming's left-hand rule. The magnetic flux component perpendicular to the longitudinal direction of the movable body 3 can be increased, and the triple coils 2A, 2B, 2C effectively interlink with the magnetic fluxes of all the magnetic poles of the permanent magnet, so that the triple coils 2A, 2B, 2C. By alternately passing a current in a direction in which a magnetic field of opposite polarity is generated, a large thrust that cannot be reached in the conventional example can be generated. If the current of each coil is reversed, the direction of the thrust of the movable magnet body 3 is also reversed. When an alternating current is applied, it works as a vibrator that vibrates repeatedly in a fixed cycle.
【0023】本発明に係る図4の場合、例えば、磁石可
動体3として直径2.5mm、長さ3mmの希土類永久磁石
を2個用い(希土類永久磁石の性能は第1従来例と同じ
とする)、かつ両者間に長さ1mmの軟磁性体を配置した
ものを用い、図6、図7の第1、第2従来例と同じ消費
電力となるように作成した3連のコイル2A,2B,2
Cに40mAの電流を流し、同じ消費電力としたときに
発生する推力F3は6.7(gf)であった。これは、同
一消費電力の第1従来例の場合の約1.42倍の推力で
あり、また第2従来例の約1.2倍の推力であり、第1
及び第2従来例に比較して格段に優れていることが判
る。In the case of FIG. 4 according to the present invention, for example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is the same as that of the first conventional example). ), And a triple magnetic coil 2A, 2B which is made to have the same power consumption as that of the first and second conventional examples of FIGS. , 2
The thrust F3 generated when a current of 40 mA was applied to C and the power consumption was the same was 6.7 (gf). This is about 1.42 times the thrust of the first conventional example with the same power consumption, and about 1.2 times the thrust of the second conventional example.
Also, it is understood that it is remarkably superior to the second conventional example.
【0024】図5の曲線(イ)は図4(ヨーク無し)の
場合の磁石可動体3の軸方向変位量と推力(gf)との関
係を示す。但し、永久磁石の寸法、特性は図13に示し
たものとするとともに、磁石可動体3の中間点が中央の
コイル2Bの中間点に位置するときを変位量零とし、各
コイルの電流は40mAとした。The curve (a) in FIG. 5 shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of FIG. 4 (without yoke). However, the dimensions and characteristics of the permanent magnet are as shown in FIG. 13, and when the midpoint of the magnet movable body 3 is located at the midpoint of the central coil 2B, the displacement amount is zero, and the current of each coil is 40 mA. And
【0025】このように、本発明の可動磁石式アクチュ
エータは、同極対向の永久磁石の組み合わせ構造体で磁
石可動体を構成しており、永久磁石の着磁方向(軸方
向)に垂直な磁束密度成分を充分大きくできかつ永久磁
石の全ての磁極の発生する磁束を有効利用できるので、
磁石可動体を取り巻くように周回した少なくとも3連の
コイルに流れる電流との間のフレミングの左手の法則に
基づく推力を充分大きくでき、小型、小電流で大きな推
力を得ることができる。As described above, in the movable magnet type actuator of the present invention, the movable magnet body is constituted by the combined structure of permanent magnets having the same poles facing each other, and the magnetic flux perpendicular to the magnetizing direction (axial direction) of the permanent magnets. Since the density component can be made sufficiently large and the magnetic flux generated by all the magnetic poles of the permanent magnet can be effectively used,
The thrust force based on Fleming's left-hand rule between the currents flowing in at least three coils surrounding the magnet movable body can be sufficiently increased, and a large thrust force can be obtained with a small size and a small current.
【0026】[0026]
【実施例】以下、本発明に係る可動磁石式アクチュエー
タの実施例を図面に従って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a movable magnet type actuator according to the present invention will be described below with reference to the drawings.
【0027】図1及び図2は本発明の第1実施例を示
す。これらの図において、1は軟磁性体の円筒状ヨーク
であり、該円筒状ヨーク1の内側に3連のコイル2A,
2B,2Cが配置され、磁石可動体3を摺動自在に案内
するためのガイド筒体4を構成する絶縁樹脂等の絶縁部
材で円筒状ヨーク1に固着されている。磁石可動体3
は、同極対向配置の2個の円柱状希土類永久磁石5A,
5Bと、これらの永久磁石5A,5B間に固着される円
柱状軟磁性体6とからなり、それらの永久磁石5A,5
B及び軟磁性体6は接着剤等で相互に一体化されてい
る。前記3連のコイル2A,2B,2Cは永久磁石5
A,5Bの磁極間を境にして相異なる方向に電流が流れ
る如く結線されている。すなわち、中央のコイル2Bは
軟磁性体6及び永久磁石5A,5BのN極を含む端部を
囲み、両側のコイル2A,2Cは、永久磁石5A,5B
のS極を含む端部をそれぞれ囲むことができるようにな
っており、かつ中央のコイル2Bに流れる電流の向き
と、両側のコイル2A,2Cの電流の向きとは逆向きで
ある(図1の各コイルに付したN,Sを参照)。なお、
永久磁石5A,5Bの外側端面には必要に応じて推力を
外部に伝達するためのピン7等が図1の仮想線の如く設
けられる。ポケットベル用等のバイブレータとして用い
る場合、ピン7は不要である。1 and 2 show a first embodiment of the present invention. In these figures, reference numeral 1 denotes a soft magnetic cylindrical yoke, and three coils 2A,
2B and 2C are arranged and fixed to the cylindrical yoke 1 by an insulating member such as an insulating resin forming a guide cylinder 4 for slidably guiding the magnet movable body 3. Magnet movable body 3
Is two columnar rare earth permanent magnets 5A, which are arranged to face each other with the same pole,
5B and a columnar soft magnetic body 6 fixed between these permanent magnets 5A and 5B.
B and the soft magnetic material 6 are integrated with each other with an adhesive or the like. The three coils 2A, 2B and 2C are permanent magnets 5.
The wires are connected so that currents flow in different directions with the magnetic poles A and 5B as a boundary. That is, the central coil 2B surrounds the ends of the soft magnetic body 6 and the permanent magnets 5A and 5B including the N pole, and the coils 2A and 2C on both sides are the permanent magnets 5A and 5B.
Each of the end portions including the S pole can be surrounded, and the direction of the current flowing through the central coil 2B is opposite to the direction of the current flowing through the coils 2A and 2C on both sides (FIG. 1). Refer to N and S attached to each coil of). In addition,
Pins 7 and the like for transmitting the thrust force to the outside are provided on the outer end surfaces of the permanent magnets 5A and 5B as needed, as indicated by the phantom lines in FIG. When used as a vibrator for a pager or the like, the pin 7 is unnecessary.
【0028】この第1実施例では、各コイル2A,2
B,2Cの外周側に軟磁性体の円筒状ヨーク1が設けら
れているため、磁石可動体3の表面磁束密度の垂直成分
は、図14に示す如く、さらに増大する。このため、フ
レミングの左手の法則に基づく推力に寄与できる磁石可
動体3の長手方向に垂直な磁束成分を大きくでき、磁石
可動体3の周囲を環状に巻回する3連のコイル2A,2
B,2Cに交互に逆極性の磁界を発生する向きに電流を
通電することにより、いっそう大きな推力を発生するこ
とができる。例えば、磁石可動体3として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は第1従来例と同じとする)、かつ両者間に
長さ1mmの軟磁性体を配置したものを用い、図6、図7
の第1、第2従来例と同じ消費電力となるように作成し
た3連のコイル2A,2B,2Cに40mAの電流を流
し、同じ消費電力としたときに発生する推力F4は8.
0(gf)であった。推力F4の向きは、図1の極性で
は、磁石可動体3が右方向に移動する向きであり、各コ
イルの電流を反転させれば磁石可動体3の推力の向きも
反転する。交流電流を流した場合には、一定周期で振動
を繰り返すバイブレータとして働く。In the first embodiment, each coil 2A, 2
Since the soft magnetic cylindrical yoke 1 is provided on the outer peripheral sides of B and 2C, the vertical component of the surface magnetic flux density of the movable magnet body 3 is further increased as shown in FIG. Therefore, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3 that can contribute to the thrust force based on Fleming's left-hand rule can be increased, and the triple coils 2A, 2 wound around the magnet movable body 3 in an annular shape.
A larger thrust can be generated by passing a current through B and 2C in the direction of alternately generating magnetic fields of opposite polarities. For example, the magnet movable body 3 has a diameter of 2.5 m.
As shown in FIG. 6, two rare earth permanent magnets having a length of 3 mm and a length of 3 mm are used (the performance of the rare earth permanent magnet is the same as that of the first conventional example), and a soft magnetic material having a length of 1 mm is arranged between them. , Fig. 7
The thrust force F4 generated when a current of 40 mA is applied to the triple coils 2A, 2B, and 2C that are made to have the same power consumption as those of the first and second conventional examples and the power consumption is the same is 8.
It was 0 (gf). In the polarity of FIG. 1, the direction of the thrust F4 is the direction in which the magnet movable body 3 moves to the right, and if the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is applied, it works as a vibrator that vibrates repeatedly in a fixed cycle.
【0029】図5の曲線(ロ)は第1実施例(但し、永
久磁石及びヨークの寸法、配置及び永久磁石の特性は図
14の通り)の場合の磁石可動体3の軸方向変位量と推
力(gf)との関係であって変位量零の点から離れる方向
に磁石可動体が動作するときを示す。また、曲線(ハ)
は第1実施例(ヨーク有り)の場合の磁石可動体3の軸
方向変位量と推力(gf)との関係であって変位量零の点
に近付く方向に動作するときを示す。但し、磁石可動体
3の中間点が中央のコイル2Bの中間点に位置するとき
を変位量零とし、各コイルの電流は40mAとした。こ
のように、磁石可動体3が変位量零の点に近付くか又は
離れるかによって推力が相違するのは、磁石可動体3の
永久磁石の磁極とヨーク1との間に磁石可動体3を変位
量零点に戻す磁気吸引力が働いているからである。The curve (B) in FIG. 5 is the axial displacement of the magnet movable body 3 in the case of the first embodiment (however, the dimensions and arrangement of the permanent magnet and the yoke and the characteristics of the permanent magnet are as shown in FIG. 14). The relation with the thrust (gf) is shown when the movable magnet body moves in the direction away from the point of zero displacement. Also, the curve (C)
Shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of the first embodiment (with a yoke), and shows the case where the movable body 3 operates in a direction approaching the point of zero displacement. However, the displacement amount was set to zero when the midpoint of the movable magnet body 3 was located at the midpoint of the central coil 2B, and the current of each coil was set to 40 mA. As described above, the thrust differs depending on whether the magnet movable body 3 approaches or moves away from the point where the displacement amount is zero. This is because the magnet movable body 3 is displaced between the magnetic pole of the permanent magnet of the magnet movable body 3 and the yoke 1. This is because the magnetic attraction force that returns the quantity to zero is working.
【0030】図3は本発明の第2実施例を示す。この場
合、軟磁性体の円筒状ヨーク1及びガイド筒体4の両端
部に軟磁性の吸着板8A,8Bが嵌合、固着されてい
る。そして、一方の吸着板8Aにあけられた穴から永久
磁石5Aの外側端面に固着されたピン9が突出してい
る。その他の構造は前述の第1実施例と同様である。FIG. 3 shows a second embodiment of the present invention. In this case, soft magnetic attraction plates 8A, 8B are fitted and fixed to both ends of the soft magnetic cylindrical yoke 1 and the guide cylinder 4. Then, a pin 9 fixed to the outer end surface of the permanent magnet 5A projects from a hole formed in one attraction plate 8A. The other structure is similar to that of the first embodiment.
【0031】この第2実施例の場合、各コイル2A,2
B,2Cに通電していない状態では軟磁性の吸着板8
A,8Bのいずれかに吸着されている。いま、図示の状
態に磁石可動体3があるとき、各コイル2A,2B,2
Cに交互に逆極性の磁界を発生する向きに通電して矢印
R方向の推力を発生させれば、磁石可動体3は吸着板8
Aから離脱して矢印R方向に移動し、吸着板8Bに吸着
して停止する。また、各コイル2A,2B,2Cの電流
を反転させて矢印Rの反対向きの推力を発生させれば、
磁石可動体3は吸着板8Bから離脱して吸着板8A方向
に移動しこれに吸着して停止する。このように吸着板8
A,8Bを設けたことで磁石可動体3の移動範囲を正確
に規制することができる。In the case of this second embodiment, each coil 2A, 2
Soft magnetic attraction plate 8 when B and 2C are not energized
Adsorbed on either A or 8B. Now, when the magnet movable body 3 is in the illustrated state, the coils 2A, 2B, 2
If a thrust force in the direction of arrow R is generated by energizing C in a direction that alternately generates a magnetic field of opposite polarity, the magnet movable body 3 will move to the attraction plate 8
It departs from A, moves in the direction of arrow R, adsorbs to the adsorption plate 8B, and stops. Further, if the currents of the coils 2A, 2B, 2C are reversed to generate thrust in the opposite direction of arrow R,
The magnet movable body 3 separates from the attraction plate 8B, moves in the direction of the attraction plate 8A, attracts the magnet plate 3 and stops. In this way, the suction plate 8
By providing A and 8B, the moving range of the magnet movable body 3 can be accurately regulated.
【0032】なお、上記各実施例では、2個の同極対向
の永久磁石と両永久磁石間の軟磁性体で磁石可動体3を
構成したが、3個以上の同極対向の永久磁石と両永久磁
石間の軟磁性体で磁石可動体を構成してもよく、これに
対応させてコイル数も4個以上とすることができる。In each of the above embodiments, the magnet movable body 3 is composed of two permanent magnets of the same pole facing each other and the soft magnetic material between the permanent magnets, but three or more permanent magnets of the same pole facing each other. The magnet movable body may be formed of a soft magnetic material between both permanent magnets, and the number of coils may be four or more in correspondence with this.
【0033】また、第2実施例では円筒状ヨーク1及び
ガイド筒体4の両側に軟磁性吸着板8A,8Bを設けた
が、いずれか一方のみに吸着板を設ける構造を採用して
もよい。Although the soft magnetic attraction plates 8A and 8B are provided on both sides of the cylindrical yoke 1 and the guide cylinder 4 in the second embodiment, a structure in which the attraction plates are provided on only one of them may be adopted. .
【0034】さらに、各実施例において、円筒状のヨー
ク1及びガイド筒体4を用いたが、角筒状等のヨーク及
びガイド体を採用することもでき、この場合も各コイル
は磁石可動体の外周を周回するように巻回すればよい。Further, in each of the embodiments, the cylindrical yoke 1 and the guide cylinder 4 are used, but it is also possible to employ a square cylinder-shaped yoke and guide body. In this case, each coil also has a movable magnet body. It may be wound so as to wrap around the outer circumference of.
【0035】[0035]
【発明の効果】以上説明したように、本発明の可動磁石
式アクチュエータによれば、同極対向された少なくとも
2個の永久磁石間に磁性体を設けて磁石可動体を構成し
たので、磁石可動体の長手方向(永久磁石の着磁方向)
に垂直な磁束成分を充分大きくでき、かつ磁石可動体の
周囲を取り巻くように少なくとも3連のコイルを巻回し
て磁石可動体の各磁極が発生する磁束と有効に鎖交可能
としたので、前記垂直な磁束成分と各コイルに流れる電
流との間のフレミングの左手の法則に基づいて与えられ
る推力を充分大きくできる。このため、小型、小電流で
大きな推力の可動磁石式アクチュエータを実現できる。As described above, according to the movable magnet type actuator of the present invention, since the magnetic movable body is constructed by providing the magnetic body between at least two permanent magnets having the same poles facing each other, it is possible to move the magnet. Longitudinal direction of body (permanent magnetizing direction)
Since the magnetic flux component perpendicular to the magnetic flux can be made sufficiently large and at least three coils are wound so as to surround the magnet movable body, the magnetic flux generated by each magnetic pole of the magnet movable body can be effectively linked. The thrust given based on Fleming's left-hand rule between the vertical magnetic flux component and the current flowing through each coil can be made sufficiently large. Therefore, it is possible to realize a small-sized movable magnet actuator having a large thrust with a small current.
【図1】本発明に係る可動磁石式アクチュエータの第1
実施例を示す正断面図である。FIG. 1 is a first part of a movable magnet type actuator according to the present invention.
It is a right sectional view showing an example.
【図2】同側面図である。FIG. 2 is a side view of the same.
【図3】本発明の第2実施例を示す正断面図である。FIG. 3 is a front sectional view showing a second embodiment of the present invention.
【図4】本発明の基本構成を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a basic configuration of the present invention.
【図5】図1及び図4の可動磁石式アクチュエータにお
ける磁石可動体の変位量と推力との関係を示すグラフで
ある。5 is a graph showing the relationship between the amount of displacement of the movable magnet body and the thrust force in the movable magnet actuator shown in FIGS. 1 and 4. FIG.
【図6】第1従来例を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a first conventional example.
【図7】第2従来例を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a second conventional example.
【図8】単一の永久磁石の長手側面(永久磁石の着磁方
向に平行な面)の表面磁束密度の垂直成分(長手側面に
垂直な成分)を示すグラフである。FIG. 8 is a graph showing a vertical component (a component perpendicular to a longitudinal side surface) of a surface magnetic flux density on a longitudinal side surface (a surface parallel to a magnetizing direction of the permanent magnet) of a single permanent magnet.
【図9】2個の同極対向の永久磁石を直接的に対接状態
とした場合の長手側面の表面磁束密度の垂直成分を示す
グラフである。FIG. 9 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets of the same pole facing each other are directly brought into contact with each other.
【図10】2個の永久磁石を1mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。FIG. 10 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with an air gap of 1 mm.
【図11】2個の永久磁石を2mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。FIG. 11 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 2 mm.
【図12】2個の永久磁石を3mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。FIG. 12 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with an air gap of 3 mm.
【図13】2個の永久磁石を軟磁性体を介し同極対向状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。FIG. 13 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the state of opposing each other with a soft magnetic body interposed therebetween.
【図14】2個の永久磁石を軟磁性体を介し同極対向状
態とし、かつ軟磁性体ヨークを配置した場合の長手側面
の表面磁束密度の垂直成分を示すグラフである。FIG. 14 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with a soft magnetic material interposed and a soft magnetic material yoke is arranged.
1 円筒状ヨーク 2A,2B,2C コイル 3 磁石可動体 4 ガイド筒体 5 円柱状永久磁石 6 円柱状軟磁性体 7,9 ピン 8A,8B 吸着板 1 Cylindrical Yoke 2A, 2B, 2C Coil 3 Magnet Moving Body 4 Guide Cylindrical Body 5 Cylindrical Permanent Magnet 6 Cylindrical Soft Magnetic Body 7, 9 Pin 8A, 8B Adsorption Plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宗野 尋之 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Sono 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation
Claims (3)
石間に磁性体を設けて磁石可動体を構成し、少なくとも
3連のコイルの内側に当該磁石可動体を移動自在に設
け、前記少なくとも3連のコイルを、各永久磁石の磁極
間を境にして相異なる方向に電流が流れる如く結線した
ことを特徴とする可動磁石式アクチュエータ。1. A magnetic movable body is formed by providing a magnetic body between at least two permanent magnets facing each other with the same pole, and the movable magnet body is movably provided inside at least three coils. A movable magnet actuator, wherein three coils are connected so that currents flow in different directions with the magnetic poles of the permanent magnets as boundaries.
て、前記永久磁石の着磁方向に垂直な方向の磁束成分を
増加させるための磁気回路を構成した請求項1記載の可
動磁石式アクチュエータ。2. The movable magnet type actuator according to claim 1, wherein a magnetic yoke is provided on the outer peripheral side of the coil to form a magnetic circuit for increasing a magnetic flux component in a direction perpendicular to the magnetizing direction of the permanent magnet. .
案内され、該ガイド体の少なくとも一端に前記磁石可動
体が吸着する磁性吸着体を設けた請求項1記載の可動磁
石式アクチュエータ。3. The movable magnet type actuator according to claim 1, wherein the movable magnet body is movably guided by a guide body, and a magnetic attraction body for attracting the movable magnet body is provided on at least one end of the guide body.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21326792A JP3302727B2 (en) | 1992-07-20 | 1992-07-20 | Moving magnet type actuator |
EP9393111583A EP0580117A3 (en) | 1992-07-20 | 1993-07-20 | Moving magnet-type actuator |
US08/093,677 US5434549A (en) | 1992-07-20 | 1993-07-20 | Moving magnet-type actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21326792A JP3302727B2 (en) | 1992-07-20 | 1992-07-20 | Moving magnet type actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0638486A true JPH0638486A (en) | 1994-02-10 |
JP3302727B2 JP3302727B2 (en) | 2002-07-15 |
Family
ID=16636275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21326792A Expired - Fee Related JP3302727B2 (en) | 1992-07-20 | 1992-07-20 | Moving magnet type actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3302727B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501357B2 (en) | 2000-03-16 | 2002-12-31 | Quizix, Inc. | Permanent magnet actuator mechanism |
KR100426616B1 (en) * | 2002-04-25 | 2004-04-14 | 한국과학기술연구원 | Bearingless linear motor |
JP2005245047A (en) * | 2004-02-24 | 2005-09-08 | Nippon Pulse Motor Co Ltd | Linear actuator |
US6966760B1 (en) | 2000-03-17 | 2005-11-22 | Brp Us Inc. | Reciprocating fluid pump employing reversing polarity motor |
JP2006207472A (en) * | 2005-01-28 | 2006-08-10 | Aisin Seiki Co Ltd | Linear compressor |
JP2007282475A (en) * | 2006-03-13 | 2007-10-25 | Iai:Kk | Linear motor and actuator |
JP2007282349A (en) * | 2006-04-05 | 2007-10-25 | Sanyo Denki Co Ltd | Linear motor |
DE10256165B4 (en) * | 2002-01-17 | 2008-01-03 | Smc Corp. | Air servo valve |
JP2008086145A (en) * | 2006-09-28 | 2008-04-10 | Murata Mach Ltd | Linear motor and machine tool having the motor mounted thereon |
WO2008096479A1 (en) * | 2007-02-07 | 2008-08-14 | Iai Corporation | Linear motor, linear motor type gripper, and actuator |
US7753657B2 (en) | 2005-02-02 | 2010-07-13 | Brp Us Inc. | Method of controlling a pumping assembly |
JP2013128367A (en) * | 2011-12-19 | 2013-06-27 | Daiko Denki Kk | Vibration device, bell ringing device, and resonance device |
KR101286471B1 (en) * | 2011-08-30 | 2013-07-16 | 한국과학기술원 | Vibration generating module, actuator using the same, and handheld device |
JP2015205708A (en) * | 2014-04-18 | 2015-11-19 | 大森機械工業株式会社 | Top seal device |
TWI562834B (en) * | 2009-04-15 | 2016-12-21 | Thk Co Ltd | Linear moter actuator |
KR101976369B1 (en) * | 2018-12-28 | 2019-05-08 | 홍승표 | Fuse with permanent magnet inducing arc directional nature |
JP2019195787A (en) * | 2018-05-11 | 2019-11-14 | 株式会社東京マイクロ | Vibration actuator and equipment comprising same |
CN111022548A (en) * | 2019-12-31 | 2020-04-17 | 中科振声(苏州)电子科技有限公司 | Modular vibration absorber, vibration absorber module and machine tool |
-
1992
- 1992-07-20 JP JP21326792A patent/JP3302727B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501357B2 (en) | 2000-03-16 | 2002-12-31 | Quizix, Inc. | Permanent magnet actuator mechanism |
US6966760B1 (en) | 2000-03-17 | 2005-11-22 | Brp Us Inc. | Reciprocating fluid pump employing reversing polarity motor |
US7410347B2 (en) | 2000-03-17 | 2008-08-12 | Brp Us Inc. | Reciprocating fluid pump assembly employing reversing polarity motor |
DE10256165B4 (en) * | 2002-01-17 | 2008-01-03 | Smc Corp. | Air servo valve |
KR100426616B1 (en) * | 2002-04-25 | 2004-04-14 | 한국과학기술연구원 | Bearingless linear motor |
JP2005245047A (en) * | 2004-02-24 | 2005-09-08 | Nippon Pulse Motor Co Ltd | Linear actuator |
JP2006207472A (en) * | 2005-01-28 | 2006-08-10 | Aisin Seiki Co Ltd | Linear compressor |
US7753657B2 (en) | 2005-02-02 | 2010-07-13 | Brp Us Inc. | Method of controlling a pumping assembly |
JP2007282475A (en) * | 2006-03-13 | 2007-10-25 | Iai:Kk | Linear motor and actuator |
JP2007282349A (en) * | 2006-04-05 | 2007-10-25 | Sanyo Denki Co Ltd | Linear motor |
JP2008086145A (en) * | 2006-09-28 | 2008-04-10 | Murata Mach Ltd | Linear motor and machine tool having the motor mounted thereon |
WO2008096479A1 (en) * | 2007-02-07 | 2008-08-14 | Iai Corporation | Linear motor, linear motor type gripper, and actuator |
TWI562834B (en) * | 2009-04-15 | 2016-12-21 | Thk Co Ltd | Linear moter actuator |
KR101286471B1 (en) * | 2011-08-30 | 2013-07-16 | 한국과학기술원 | Vibration generating module, actuator using the same, and handheld device |
JP2013128367A (en) * | 2011-12-19 | 2013-06-27 | Daiko Denki Kk | Vibration device, bell ringing device, and resonance device |
JP2015205708A (en) * | 2014-04-18 | 2015-11-19 | 大森機械工業株式会社 | Top seal device |
JP2019195787A (en) * | 2018-05-11 | 2019-11-14 | 株式会社東京マイクロ | Vibration actuator and equipment comprising same |
KR101976369B1 (en) * | 2018-12-28 | 2019-05-08 | 홍승표 | Fuse with permanent magnet inducing arc directional nature |
CN111022548A (en) * | 2019-12-31 | 2020-04-17 | 中科振声(苏州)电子科技有限公司 | Modular vibration absorber, vibration absorber module and machine tool |
Also Published As
Publication number | Publication date |
---|---|
JP3302727B2 (en) | 2002-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0638486A (en) | Movable magnet type actuator | |
US5434549A (en) | Moving magnet-type actuator | |
US4937481A (en) | Permanent magnet linear electromagnetic machine | |
US5175457A (en) | Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets | |
JP3302777B2 (en) | Moving magnet type actuator | |
CA2351144A1 (en) | Electromagnetic linear oscillator | |
JP3584473B2 (en) | Magnetic damper device | |
JP2003199311A (en) | Linear vibrating actuator | |
JP2000253640A (en) | Linear vibration motor | |
JP2596857Y2 (en) | Moving magnet type actuator | |
US20020175570A1 (en) | Auto-centering linear motor | |
US5239277A (en) | Electromagnetic solenoid actuator | |
JP2004088884A (en) | Linear vibration electric machine | |
US6700230B1 (en) | Linear actuator | |
US6365993B1 (en) | Round linear actuator utilizing flat permanent magnets | |
EP1485981A1 (en) | Long stroke linear voice coil actuator with the proportional solenoid type characteristic | |
JP2595510Y2 (en) | Moving magnet type actuator | |
JP2595509Y2 (en) | Moving magnet type actuator | |
KR100302908B1 (en) | A permant magnet excited linear actuator | |
JP2002057026A (en) | Linear actuator using basic factor | |
JPH0824787A (en) | Shaking device | |
JPS61200386A (en) | Electromagnetic pump | |
JPS60123005A (en) | Polarized bistable solenoid | |
JPS5810946B2 (en) | Denjikudo Souchi | |
JP2002051531A (en) | Movable magnet type actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120426 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |