JP3302777B2 - Moving magnet type actuator - Google Patents

Moving magnet type actuator

Info

Publication number
JP3302777B2
JP3302777B2 JP12035493A JP12035493A JP3302777B2 JP 3302777 B2 JP3302777 B2 JP 3302777B2 JP 12035493 A JP12035493 A JP 12035493A JP 12035493 A JP12035493 A JP 12035493A JP 3302777 B2 JP3302777 B2 JP 3302777B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
permanent magnets
movable body
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12035493A
Other languages
Japanese (ja)
Other versions
JPH06315255A (en
Inventor
康之 平林
貴俊 大山
尋之 宗野
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP12035493A priority Critical patent/JP3302777B2/en
Priority to EP9393111583A priority patent/EP0580117A3/en
Priority to US08/093,677 priority patent/US5434549A/en
Publication of JPH06315255A publication Critical patent/JPH06315255A/en
Application granted granted Critical
Publication of JP3302777B2 publication Critical patent/JP3302777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、制御機器、電子機器、
工作機械等において電気エネルギーを電磁作用により往
復運動エネルギー等に変換させる可動磁石式アクチュエ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control equipment, electronic equipment,
The present invention relates to a movable magnet type actuator for converting electric energy into reciprocating kinetic energy or the like by electromagnetic action in a machine tool or the like.

【0002】[0002]

【従来の技術】従来、可動磁石式の往復運動装置として
は、図6に示す構成のものが知られている。図6の従来
例において、10は軸方向に着磁した棒状の永久磁石か
らなる磁石可動体であり、両端面に磁極を有している。
コイル11A,11Bは、磁石可動体10の端部外周側
をそれぞれ環状に周回するように巻回され、隣合う部分
に同極が発生するようになっている。なお、コイル11
A,11Bは通常磁石可動体10を軸方向に移動自在に
ガイドするためのガイド筒体12に装着される。そし
て、磁石可動体10の各端面からの磁束がそれぞれコイ
ル11A,11Bと鎖交している。
2. Description of the Related Art A movable magnet type reciprocating apparatus having a structure shown in FIG. 6 is conventionally known. In the conventional example of FIG. 6, reference numeral 10 denotes a magnet movable body composed of a rod-shaped permanent magnet magnetized in the axial direction, and has magnetic poles on both end surfaces.
The coils 11A and 11B are respectively wound around the outer peripheral side of the end portion of the magnet movable body 10 in a ring shape, so that the same polarity is generated in adjacent portions. The coil 11
A and 11B are usually mounted on a guide cylinder 12 for guiding the magnet movable body 10 movably in the axial direction. The magnetic flux from each end face of the magnet movable body 10 is linked with the coils 11A and 11B, respectively.

【0003】また、本出願人が先に提案しているものと
して図7の参考例がある。図7の参考例において、磁石
可動体15は同極対向配置の2個の棒状永久磁石16
A,16Bと、これらの永久磁石16A,16B間に固
着される棒状軟磁性体17とを固着一体化したものであ
り、3連のコイル18A,18B,18Cは、磁石可動
体15の外周側を周回する如く巻回され、磁石可動体1
5を構成する永久磁石16Aの左端、永久磁石16A,
16Bの同極対向端、及び永久磁石16Bの右端の磁極
からの磁束とそれぞれ鎖交するように配置されている。
これらのコイル18A,18B,18Cは永久磁石16
A,16Bの磁極間を境にして相異なる方向に電流が流
れる如く結線されている(磁極間の境は磁極と磁極の間
であれば必ずしも磁極中間位置になくともよい。)。な
お、コイル18A,18B,18Cは通常磁石可動体1
5を軸方向に移動自在にガイドするためのガイド筒体1
9に装着される。コイル18A,18B,18Cと磁石
可動体15との位置関係は、当該磁石可動体15の大部
分の可動位置において、永久磁石磁極間を境にして各コ
イルに流れる電流が相互に逆向きとなるように設定して
おく。
FIG. 7 shows a reference example which has been previously proposed by the present applicant. In the reference example shown in FIG. 7, the magnet movable body 15 has
A, 16B and a bar-shaped soft magnetic body 17 fixed between the permanent magnets 16A, 16B are integrally fixed. The triple coils 18A, 18B, 18C are arranged on the outer peripheral side of the magnet movable body 15. Is wound around the magnet movable body 1
5, the left end of the permanent magnet 16A, the permanent magnet 16A,
The permanent magnet 16B is disposed so as to interlink with the magnetic flux from the same pole opposing end of the permanent magnet 16B and the magnetic pole at the right end of the permanent magnet 16B.
These coils 18A, 18B, 18C are
Connections are made so that currents flow in different directions with the magnetic poles of A and 16B as boundaries (the boundary between magnetic poles does not necessarily have to be at the magnetic pole intermediate position if it is between magnetic poles). Note that the coils 18A, 18B, and 18C are usually
Guide cylinder 1 for movably guiding shaft 5 in the axial direction
9 is attached. The positional relationship between the coils 18A, 18B, 18C and the magnet movable body 15 is such that, at most of the movable positions of the magnet movable body 15, the currents flowing through the coils are opposite to each other with the boundary between the permanent magnet magnetic poles. Set as follows.

【0004】ところで、上述の従来例及び参考例におい
て、磁石可動体10,15に発生する推力は、基本的に
はフレミングの左手の法則に基づいて与えられる推力に
準ずるものである(フレミングの左手の法則はコイルに
対して適用されるが、ここではコイルが固定のため、磁
石可動体にコイルに作用する力の反力としての推力が発
生する。)。したがって、推力に寄与するのは、磁石可
動体が有する永久磁石の磁束の垂直成分(永久磁石の軸
方向に直交する成分)である。
In the above-described conventional example and the reference example, the thrust generated in the magnet movable bodies 10 and 15 basically conforms to the thrust given based on Fleming's left hand rule (Fleming's left hand). Is applied to the coil, but here, since the coil is fixed, a thrust as a reaction force of the force acting on the coil is generated in the magnet movable body.) Therefore, what contributes to the thrust is the vertical component (the component orthogonal to the axial direction of the permanent magnet) of the magnetic flux of the permanent magnet that the movable magnet has.

【0005】そこで、1個の永久磁石の場合、あるいは
2個の同極対向配置の永久磁石の場合について、磁束の
垂直成分がどのようになるのかそれぞれ解析してみた。
[0005] Then, in the case of one permanent magnet or two permanent magnets of the same pole opposition, analysis was made on the vertical component of the magnetic flux.

【0006】図8は、単独の永久磁石の長手側面に沿っ
て表面磁束密度の垂直成分を磁場解析した結果を示す。
但し、永久磁石は希土類永久磁石であって、直径7mm、
長さ14mmで、永久磁石表面から0.8〜1.0mm離れた
位置を計測した。
FIG. 8 shows the result of a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surface of a single permanent magnet.
However, the permanent magnet is a rare earth permanent magnet, with a diameter of 7 mm,
A position having a length of 14 mm and a distance of 0.8 to 1.0 mm from the surface of the permanent magnet was measured.

【0007】図9は、2個の永久磁石を同極対向配置と
し、両永久磁石間に長さ2mmの軟磁性体を配置した場合
において、2個の永久磁石の長手側面に沿って表面磁束
密度の垂直成分を磁場解析した結果を示す。但し、各永
久磁石は希土類永久磁石であって、直径7mm、長さ7mm
で、永久磁石表面から0.8〜1.0mm離れた位置を計測
した。
FIG. 9 shows a case where two permanent magnets are arranged at the same pole opposition, and a soft magnetic material having a length of 2 mm is arranged between the two permanent magnets, the surface magnetic flux along the longitudinal side surfaces of the two permanent magnets. The result of the magnetic field analysis of the vertical component of the density is shown. However, each permanent magnet is a rare earth permanent magnet, 7 mm in diameter and 7 mm in length.
Then, a position 0.8 to 1.0 mm away from the surface of the permanent magnet was measured.

【0008】図10は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ2mmの軟磁性体を配置し、か
つ両永久磁石の外側端面にも長さ2mmの軟磁性体をそれ
ぞれ配置した場合において、2個の永久磁石の長手側面
に沿って表面磁束密度の垂直成分を磁場解析した結果を
示す。但し、各永久磁石は希土類永久磁石であって、直
径7mm、長さ7mmで、永久磁石表面から0.8〜1.0mm
離れた位置を計測した。
FIG. 10 shows two permanent magnets of the same polarity facing each other, a soft magnetic material having a length of 2 mm disposed between the two permanent magnets, and a soft magnetic material having a length of 2 mm also disposed on the outer end faces of the two permanent magnets. FIG. 9 shows the results of a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of two permanent magnets when the bodies are arranged. However, each permanent magnet is a rare earth permanent magnet, 7 mm in diameter and 7 mm in length, and 0.8 to 1.0 mm from the surface of the permanent magnet.
The distance was measured.

【0009】[0009]

【発明が解決しようとする課題】上述したように、磁石
可動体に発生する推力は、基本的にはフレミングの左手
の法則に基づいて与えられる推力に準ずるものであり、
コイルと鎖交する永久磁石の磁束の垂直成分(永久磁石
の軸方向に直交する成分)が多いことが望まれるが、図
6の従来例では、表面磁束密度の垂直成分は図8のよう
になり、図9及び図10の2個の永久磁石を同極対向配
置とした場合に比較して垂直成分が少ないことが判明し
た。このため図6の従来例の構成では、推力の向上に限
界がある。例えば、磁石可動体10を直径7mm、長さ1
4mmの希土類永久磁石で構成し、2個のコイル11A,
11Bの隣合う部分に同極が発生するように両コイル1
1A,11Bに合計5Wの電力を入力したとき(117
mAの電流を流したとき)に発生する推力F1は後に記
載の表に示すように165(gf)であった。
As described above, the thrust generated on the magnet movable body basically conforms to the thrust given based on Fleming's left hand rule.
Although it is desired that the perpendicular component of the magnetic flux of the permanent magnet interlinking with the coil be large (a component orthogonal to the axial direction of the permanent magnet), the perpendicular component of the surface magnetic flux density is, as shown in FIG. That is, it was found that the vertical component was smaller than that in the case where the two permanent magnets of FIGS. For this reason, in the configuration of the conventional example shown in FIG. 6, there is a limit in improving the thrust. For example, the magnet movable body 10 has a diameter of 7 mm and a length of 1 mm.
It is composed of a 4 mm rare earth permanent magnet, and has two coils 11A,
11B so that the same polarity is generated in adjacent portions of both coils 1B.
When a total of 5 W of power is input to 1A and 11B (117
The thrust F1 generated when a current of mA was applied) was 165 (gf) as shown in the table below.

【0010】一方、図7の参考例では、2個の同極対向
の永久磁石16A,16B間に軟磁性体17を配した磁
石可動体15を用いており、磁束密度の垂直成分は図9
に示す如くなり、同極対向の永久磁石16A,16Bの
磁極から出る磁束は1個の永久磁石の場合(図8参照)
よりも多くなり、推力の向上が可能となっている。例え
ば、図7の参考例において磁石可動体15として直径7
mm、長さ7mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は従来例と同じとする)、かつ両者間に長さ
2mmの軟磁性体を配置したものを用い、図6の従来例と
同じ消費電力となるように作成したコイル18A,18
B,18Cに合計5Wの電力を入力したとき(117m
Aの電流を流したとき)に発生する推力F2は以下の表
のように215(gf)であった。ただし、図7の参考例
の場合、永久磁石16A,16Bの外側端面から出る磁
束に着目したとき、当該磁束の垂直成分がやや少ない嫌
いが有る。
On the other hand, in the reference example of FIG. 7, a magnet movable body 15 in which a soft magnetic body 17 is arranged between two permanent magnets 16A and 16B of the same polarity is used, and the vertical component of the magnetic flux density is shown in FIG.
As shown in FIG. 8, the magnetic flux emitted from the magnetic poles of the permanent magnets 16A and 16B facing each other is a single permanent magnet (see FIG. 8).
It is possible to improve the thrust. For example, in the reference example of FIG.
6, two rare earth permanent magnets having a length of 7 mm and a length of 7 mm are used (the performance of the rare earth permanent magnets is assumed to be the same as that of the conventional example), and a soft magnetic material having a length of 2 mm is arranged between the two. Coil 18A, 18 made to have the same power consumption as the example
When a total of 5 W of power is input to B and 18C (117 m
The thrust F2 generated when the current of A was applied was 215 (gf) as shown in the following table. However, in the case of the reference example of FIG. 7, when focusing on the magnetic flux emitted from the outer end surfaces of the permanent magnets 16A and 16B, the vertical component of the magnetic flux tends to be slightly smaller.

【0011】 表 ヨーク有り ヨーク無し 従来例 190gf 165gf 参考例 250gf 215gf 本発明 275gf 235gf [0011] Table With yoke Without yoke Conventional example 190 gf 165 gf Reference example 250 gf 215 gf The present invention 275 gf 235 gf

【0012】なお、図6の従来例及び図7の参考例にお
いて、仮想線の如くコイルの外側に軟磁性体の円筒状ヨ
ーク20を配置すれば、永久磁石の磁束密度の垂直成分
が増加するため、推力は増大する。
In the conventional example shown in FIG. 6 and the reference example shown in FIG. 7, if the cylindrical yoke 20 made of a soft magnetic material is arranged outside the coil as indicated by a virtual line, the vertical component of the magnetic flux density of the permanent magnet increases. Therefore, the thrust increases.

【0013】本発明は、上記の点に鑑み、少なくとも2
個の永久磁石を同極対向配置とした磁石可動体を用いる
とともに永久磁石の各磁極が発生する磁束を有効利用す
ることで、推力の向上及び効率の向上を図った可動磁石
式アクチュエータを提供することを目的とする。
The present invention has been made in view of the above points, and
Provided is a movable magnet type actuator that improves thrust and efficiency by using a magnet movable body in which pieces of permanent magnets are arranged in the same polarity and facing each other, and by effectively utilizing magnetic flux generated by each magnetic pole of the permanent magnet. The purpose is to:

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の可動磁石式アクチュエータは、同極対向さ
れた少なくとも2個の永久磁石間に中間部磁性体を設
け、かつ両端に位置する永久磁石の外側端面に端部磁性
体を設けて磁石可動体を構成し、少なくとも3連のコイ
ルの内側に当該磁石可動体を移動自在に設け、前記少な
くとも3連のコイルのうち中間位置のものは端部位置の
ものよりも幅広であって前記永久磁石の同極対向端から
の磁束と鎖交する配置であり、前記端部位置のものは前
記永久磁石の端部磁極からの磁束と鎖交する配置であ
り、かつ各コイルを、各永久磁石の磁極間を境にして相
異なる方向に電流が流れる如く結線した構成としてい
る。
In order to achieve the above object, a movable magnet type actuator according to the present invention is provided with an intermediate magnetic body between at least two permanent magnets having the same polarity and opposed to each other. An end magnetic body is provided on the outer end surface of the permanent magnet to form a magnet movable body, and the magnet movable body is movably provided inside at least three coils , and is located at an intermediate position among the at least three coils. Thing at the end position
Wider than that of the permanent magnet from the opposite end of the same pole
The arrangement is to interlink with the magnetic flux of
The arrangement is to link with the magnetic flux from the end poles of the permanent magnet.
In addition, the coils are connected such that currents flow in different directions from the magnetic poles of the permanent magnets as boundaries.

【0015】なお、前記コイル外周側に磁性体ヨークを
設けて、前記永久磁石の着磁方向に垂直な方向の磁束成
分を増加させるための磁気回路を構成してもよい。
A magnetic circuit for increasing a magnetic flux component in a direction perpendicular to the magnetization direction of the permanent magnet may be provided by providing a magnetic yoke on the outer periphery of the coil.

【0016】また、前記永久磁石、中間磁性体及び端部
磁性体を非磁性ホルダで一体化して前記磁石可動体を構
成してもよい。
Further, the permanent magnet, the intermediate magnetic body and the end magnetic body may be integrated with a non-magnetic holder to constitute the movable magnet body.

【0017】さらに、前記磁石可動体に出力取り出し用
ピンを設ける場合もある。
Further, there is a case where an output extracting pin is provided on the magnet movable body.

【0018】[0018]

【作用】本発明の可動磁石式アクチュエータの基本構成
を図5の概略構成図によって説明する。この図5で、磁
石可動体3は同極対向配置の2個の円柱状永久磁石5
A,5Bと、これらの永久磁石5A,5B間に固着され
る円柱状の中間部軟磁性体6Aと、永久磁石5A,5B
の外側端面に固着される端部軟磁性体6B,6Cとを一
体化したものであり、図10に示したように、永久磁石
5A,5Bの同極対向部分のみならず永久磁石5A,5
Bの外側端部分での磁束密度の垂直成分(永久磁石の軸
方向に直交する成分)が多い構造となっている。これ
は、端部磁性体6B,6Cの存在で永久磁石外側端面か
ら出た磁束が垂直方向に曲がり易くなるからと考えられ
る。3連のコイル2A,2B,2Cは、磁石可動体3の
外周側を周回する如く巻回され、磁石可動体3を構成す
る永久磁石5Aの左端、永久磁石5A,5Bの同極対向
端、及び永久磁石5Bの右端の磁極からの磁束とそれぞ
れ鎖交するように配置されている。これらのコイル2
A,2B,2Cは永久磁石5A,5Bの磁極間を境にし
て相異なる方向に電流が流れる如く結線されている(磁
極間の境は磁極と磁極の間であれば必ずしも磁極中間位
置になくともよい。)。なお、図示は省略してあるが、
コイル2A,2B,2Cは通常磁石可動体3を軸方向に
移動自在にガイドするためのガイド筒体に装着される。
コイル2A,2B,2Cと磁石可動体3との位置関係
は、当該磁石可動体3の大部分の可動位置において、永
久磁石磁極間を境にして各コイルに流れる電流が相互に
逆向きとなるように設定しておく。
The basic structure of the movable magnet type actuator according to the present invention will be described with reference to the schematic diagram of FIG. In FIG. 5, the magnet movable body 3 is composed of two columnar permanent magnets 5 arranged in the same pole opposition.
A, 5B, a columnar intermediate soft magnetic body 6A fixed between these permanent magnets 5A, 5B, and permanent magnets 5A, 5B.
As shown in FIG. 10, not only the permanent magnets 5A, 5B but also the permanent magnets 5A, 5B are integrated with the permanent magnets 5A, 5B.
B has a structure in which a vertical component (a component perpendicular to the axial direction of the permanent magnet) of the magnetic flux density at the outer end portion is large. This is presumably because the presence of the end magnetic bodies 6B and 6C makes it easier for the magnetic flux emitted from the outer end face of the permanent magnet to bend in the vertical direction. The triple coils 2A, 2B, and 2C are wound so as to go around the outer peripheral side of the movable magnet 3, and the left end of the permanent magnet 5A constituting the movable magnet 3, the opposite end of the permanent magnets 5A and 5B, And the magnetic flux from the rightmost magnetic pole of the permanent magnet 5B. These coils 2
A, 2B, and 2C are connected so that current flows in different directions with the boundary between the magnetic poles of the permanent magnets 5A and 5B (the boundary between the magnetic poles is not necessarily at the magnetic pole intermediate position if the magnetic pole is between the magnetic poles). May be.). Although illustration is omitted,
The coils 2A, 2B, 2C are usually mounted on guide cylinders for guiding the magnet movable body 3 movably in the axial direction.
The positional relationship between the coils 2A, 2B, 2C and the magnet movable body 3 is such that at most of the movable positions of the magnet movable body 3, the currents flowing through the respective coils are opposite to each other with the boundary between the permanent magnet magnetic poles. Set as follows.

【0019】図5における磁石可動体3の構造は、図1
0のように2個の永久磁石を同極対向させ、永久磁石間
に中間部軟磁性体を配置するとともに両側の永久磁石の
外側端面に端部軟磁性体を配置したものである。この図
10のときは端部軟磁性体位置に相当する領域の表面磁
束密度の垂直成分は、端部軟磁性体の無い図9よりも幾
分優れている(1個の永久磁石のみの場合の図8よりも
優れていることは勿論である。)。
The structure of the magnet movable body 3 in FIG.
As shown in FIG. 2, two permanent magnets are made to face each other with the same polarity, an intermediate soft magnetic material is arranged between the permanent magnets, and an end soft magnetic material is arranged on the outer end surfaces of the permanent magnets on both sides. In the case of FIG. 10, the vertical component of the surface magnetic flux density in the region corresponding to the position of the end soft magnetic material is somewhat superior to that of FIG. 9 without the end soft magnetic material (in the case of only one permanent magnet). Of course, it is superior to that of FIG. 8).

【0020】このように、2個の永久磁石5A,5Bを
同極対向させかつ永久磁石間に中間部軟磁性体6Aを、
永久磁石5A,5Bの外側端面に端部軟磁性体6B,6
Cを設けた磁石可動体3は、フレミングの左手の法則に
基づく推力に寄与できる磁石可動体3の長手方向に垂直
な磁束成分をいっそう大きくでき、かつ3連のコイル2
A,2B,2Cは永久磁石の全磁極の磁束と有効に鎖交
するので、3連のコイル2A,2B,2Cに交互に逆極
性の磁界を発生する向きに電流を通電することにより、
図6の従来例では到達し得ない大きな推力を発生するこ
とができ、さらに図7の参考例の推力をも上回る推力を
発生可能である。各コイルの電流を反転させれば磁石可
動体3の推力の向きも反転する。交流電流を流した場合
には、一定周期で振動を繰り返すバイブレータとして働
く。
As described above, the two permanent magnets 5A and 5B are made to oppose each other with the same polarity, and the intermediate soft magnetic body 6A is placed between the permanent magnets.
End soft magnetic bodies 6B, 6 are provided on the outer end faces of the permanent magnets 5A, 5B.
The magnet movable body 3 provided with C can further increase the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3 that can contribute to the thrust based on Fleming's left-hand rule, and has three coils 2
Since A, 2B, and 2C effectively interlink with the magnetic flux of all the magnetic poles of the permanent magnet, by applying a current to the three coils 2A, 2B, and 2C alternately to generate a magnetic field of opposite polarity,
A large thrust that cannot be reached in the conventional example of FIG. 6 can be generated, and a thrust that exceeds the thrust of the reference example of FIG. 7 can be generated. When the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is passed, it works as a vibrator that repeats oscillation at a constant cycle.

【0021】本発明に係る図5の場合、例えば、磁石可
動体3として直径7mm、長さ7mmの希土類永久磁石を2
個用い(希土類永久磁石の性能は従来例と同じとす
る)、かつ両者間に長さ2mmの中間部軟磁性体を、各永
久磁石の外側端面に長さ2mmの端部軟磁性体をそれぞれ
配置したものを用い、図6の従来例、図7の参考例と同
じ消費電力となるように作成した3連のコイル2A,2
B,2Cに合計5Wの電力を入力したとき(117mA
の電流を流したとき)に発生する推力F3は前掲の表の
ように235(gf)であった。これは、従来例の165
(gf)の1.42倍、参考例の215(gf)の1.1倍の
推力であり、本発明の構成が推力向上に有効であること
が判る。従って、小型、小電流で大きな推力を発生可能
な可動磁石式アクチュエータを得ることができる。
In the case of FIG. 5 according to the present invention, for example, a rare earth permanent magnet having a diameter of 7 mm and a length of 7 mm is used as the magnet movable body 3.
Using a single piece (the performance of the rare earth permanent magnet is assumed to be the same as the conventional example), and a middle soft magnetic body with a length of 2 mm between them, and a soft magnetic body with a length of 2 mm on the outer end face of each permanent magnet The three coils 2A and 2A which are arranged so as to have the same power consumption as the conventional example in FIG. 6 and the reference example in FIG.
When a total of 5 W of electric power is input to B and 2C (117 mA
The thrust F3 generated when the current of (1) was applied was 235 (gf) as shown in the table above. This is 165 of the conventional example.
The thrust is 1.42 times as large as (gf) and 1.1 times as large as 215 (gf) in the reference example, indicating that the configuration of the present invention is effective for improving the thrust. Therefore, it is possible to obtain a movable magnet type actuator that can generate a large thrust with a small size and a small current.

【0022】[0022]

【実施例】以下、本発明に係る可動磁石式アクチュエー
タの実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a movable magnet type actuator according to the present invention will be described below with reference to the drawings.

【0023】図1及び図2は本発明の第1実施例を示
す。これらの図において、1は軟磁性体の円筒状ヨーク
であり、該円筒状ヨーク1の内側に3連のコイル2A,
2B,2Cが配置され、磁石可動体3を摺動自在に案内
するためのガイド筒体4を構成する絶縁樹脂等の絶縁部
材で円筒状ヨーク1に固着されている。磁石可動体3
は、同極対向配置の2個の円柱状希土類永久磁石5A,
5Bと、これらの永久磁石5A,5B間に固着される円
柱状の中間部軟磁性体6Aと、永久磁石5A,5Bの外
側端面に固着される円柱状の端部軟磁性体6B,6Cと
からなり、それらの永久磁石5A,5B及び軟磁性体6
A,6B,6Cは接着剤等で相互に一体化されている。
前記3連のコイル2A,2B,2Cは永久磁石5A,5
Bの磁極間を境にして相異なる方向に電流が流れる如く
結線されている。すなわち、中央のコイル2Bは中間部
軟磁性体6及び永久磁石5A,5BのN極を含む端部を
囲み、両側のコイル2A,2Cは、永久磁石5A,5B
のS極及び端部軟磁性体6B,6Cを含む領域をそれぞ
れ囲むことができるようになっており、かつ中央のコイ
ル2Bに流れる電流の向きと、両側のコイル2A,2C
の電流の向きとは逆向きである(図1の各コイルに付し
たN,Sを参照)。なお、端部軟磁性体6B,6Cの肉
厚は、中間部軟磁性体6Aの1/2〜1倍程度に設定さ
れる。
FIGS. 1 and 2 show a first embodiment of the present invention. In these figures, reference numeral 1 denotes a cylindrical yoke made of a soft magnetic material, and a triple coil 2A,
2B and 2C are arranged and fixed to the cylindrical yoke 1 with an insulating member such as an insulating resin constituting a guide cylinder 4 for slidably guiding the magnet movable body 3. Magnet movable body 3
Are two columnar rare earth permanent magnets 5A,
5B, a cylindrical intermediate soft magnetic body 6A fixed between the permanent magnets 5A, 5B, and cylindrical end soft magnetic bodies 6B, 6C fixed to the outer end surfaces of the permanent magnets 5A, 5B. And the permanent magnets 5A and 5B and the soft magnetic material 6
A, 6B and 6C are integrated with each other by an adhesive or the like.
The three coils 2A, 2B, 2C are composed of permanent magnets 5A, 5A.
The wires are connected such that currents flow in different directions from the boundary between the magnetic poles of B. That is, the center coil 2B surrounds the ends including the intermediate soft magnetic body 6 and the N poles of the permanent magnets 5A and 5B, and the coils 2A and 2C on both sides surround the permanent magnets 5A and 5B.
, And the direction of the current flowing through the central coil 2B and the coils 2A, 2C on both sides.
(See N and S attached to each coil in FIG. 1). The thickness of the end soft magnetic bodies 6B and 6C is set to about 1/2 to 1 times the thickness of the intermediate soft magnetic body 6A.

【0024】この第1実施例では、各コイル2A,2
B,2Cの外周側に軟磁性体の円筒状ヨーク1が設けら
れているため、磁石可動体3の表面磁束密度の垂直成分
は、図10の場合よりもさらに増大する。このため、フ
レミングの左手の法則に基づく推力に寄与できる磁石可
動体3の長手方向に垂直な磁束成分を大きくでき、磁石
可動体3の周囲を環状に巻回する3連のコイル2A,2
B,2Cに交互に逆極性の磁界を発生する向きに電流を
通電することにより、いっそう大きな推力を発生するこ
とができる。例えば、磁石可動体3として直径7mm、長
さ7mmの希土類永久磁石を2個用い(希土類永久磁石の
性能は従来例と同じとする)、かつ両者間に長さ2mmの
中間部軟磁性体を配置し、両端に端部軟磁性体を配置し
たものを用い、図6の従来例や図7の参考例と同じ消費
電力となるように作成した3連のコイル2A,2B,2
Cに合計5Wの電力を入力したとき(117mAの電流
を流したとき)に発生する推力F4は前掲の表のように
275(gf)であった。これは、軟磁性体の円筒状ヨー
ク無しの235(gf)の1.17倍となり、より一層の
推力向上が可能であることが判る。推力F4の向きは、
図1の極性では、磁石可動体3が右方向に移動する向き
であり、各コイルの電流を反転させれば磁石可動体3の
推力の向きも反転する。交流電流を流した場合には、一
定周期で振動を繰り返すバイブレータとして働く。
た、中央のコイル2Bは端部のコイル2A,2Cに比し
て幅広に構成されており、永久磁石5A,5Bの同極対
向側の磁束分布(端部の磁束よりも多く、磁束の多い領
域の幅も広い)を有効利用するようにしている。また、
端部のコイル2A,2Cは幅が狭い分、電流密度は高く
なり永久磁石5A,5Bの端部側の磁束分布(磁束の多
い領域の幅が狭い)との間で効果的に推力を発生でき
る。
In the first embodiment, each of the coils 2A, 2A
Since the cylindrical yoke 1 made of a soft magnetic material is provided on the outer peripheral side of B and 2C, the vertical component of the surface magnetic flux density of the magnet movable body 3 is further increased as compared with the case of FIG. For this reason, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3 that can contribute to the thrust based on Fleming's left-hand rule can be increased, and the triple coils 2A and 2 wound around the magnet movable body 3 in an annular shape.
A larger thrust can be generated by supplying a current in a direction in which magnetic fields of opposite polarities are alternately generated in B and 2C. For example, two rare earth permanent magnets each having a diameter of 7 mm and a length of 7 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnets is assumed to be the same as the conventional example), and an intermediate soft magnetic body having a length of 2 mm is provided between the two. 6 and three coils 2A, 2B, 2 which are formed so as to have the same power consumption as the conventional example in FIG. 6 and the reference example in FIG.
The thrust F4 generated when a total of 5 W of electric power was input to C (when a current of 117 mA was passed) was 275 (gf) as shown in the above table. This is 1.17 times the 235 (gf) of the soft magnetic material without the cylindrical yoke, and it can be seen that the thrust can be further improved. The direction of thrust F4 is
In the polarity of FIG. 1, the direction in which the magnet movable body 3 moves to the right direction is reversed. If the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is passed, it works as a vibrator that repeats oscillation at a constant cycle. Ma
The center coil 2B is smaller than the end coils 2A and 2C.
The same pole pair of permanent magnets 5A and 5B
Magnetic flux distribution on the opposite side (more than the magnetic flux at the end,
Area is wide). Also,
The current density is high due to the narrow width of the end coils 2A and 2C.
The magnetic flux distribution on the end side of the permanent magnets 5A and 5B (multiple magnetic flux
Thrust can be generated effectively between
You.

【0025】なお、前記端部軟磁性体6B又は6Cに、
図1の仮想線の如く出力取り出し用ピン7を一体的に設
けて、推力を外部に伝達できるようにしてもよい。但
し、ポケットベル用等のバイブレータとして用いる場
合、ピン7は不要である。
The end soft magnetic material 6B or 6C has
The output take-out pin 7 may be provided integrally as shown by the imaginary line in FIG. 1 so that the thrust can be transmitted to the outside. However, when used as a vibrator for a pager or the like, the pin 7 is unnecessary.

【0026】また、図1の仮想線の如く軟磁性吸着板8
をヨーク1の一方又は両方の端部に固定して磁石可動体
3の移動範囲を規制する構成としてもよい。この場合、
磁石可動体3は軟磁性体吸着板8に吸着状態で停止す
る。
Also, as shown by a virtual line in FIG.
May be fixed to one or both ends of the yoke 1 to restrict the moving range of the magnet movable body 3. in this case,
The magnet movable body 3 stops in a state of being attracted to the soft magnetic material attracting plate 8.

【0027】図3は本発明の第2実施例を示す。この図
において、磁石可動体23は、同極対向配置の2個の円
柱状希土類永久磁石5A,5Bと、これらの永久磁石5
A,5B間に配置される円柱状の中間部軟磁性体6A
と、永久磁石5A,5Bの外側端面に配置される円柱状
の端部軟磁性体6B,6Cとを円筒状の非磁性ホルダ2
4内に収納し、該ホルダ24の端部のかしめ、あるいは
各部材のホルダ24への接着等により一体化したもので
ある。また、磁石可動体23が有する端部軟磁性体6
B,6Cには非磁性ピン25が一体的に設けられてい
る。すなわち、偏平円柱状の端部軟磁性体6B,6Cの
中心部に非磁性ピン25が溶接、接着等で固着一体化さ
れている。一方、軟磁性体の円筒状ヨーク1及びガイド
筒体4の両端部に支持板28が固着され、該支持板28
の中心穴26を前記非磁性ピン25が貫通している。両
非磁性ピン25は中心穴26により摺動自在に支持され
る。そして、永久磁石5A,5Bの外側端面の磁極との
間で反発力を発生するように環状永久磁石27が両方の
支持板28の内側にそれぞれ固定されている。例えば図
3では、永久磁石5A,5Bの外側端面のS極に環状永
久磁石27のS極が対向している。なお、その他の構成
は前述の第1実施例と同じである。
FIG. 3 shows a second embodiment of the present invention. In this figure, a magnet movable body 23 is composed of two columnar rare earth permanent magnets 5A and 5B arranged in the same pole opposition, and these permanent magnets 5A and 5B.
A, a columnar intermediate soft magnetic body 6A arranged between 5A and 5B
And a cylindrical end soft magnetic body 6B, 6C disposed on the outer end face of the permanent magnets 5A, 5B.
4 and integrated by caulking the end of the holder 24 or bonding each member to the holder 24. Also, the end soft magnetic body 6 of the magnet movable body 23
Non-magnetic pins 25 are integrally provided on B and 6C. That is, the non-magnetic pin 25 is fixedly integrated with the center of the flat cylindrical end soft magnetic members 6B and 6C by welding, bonding, or the like. On the other hand, a support plate 28 is fixed to both ends of the cylindrical yoke 1 and the guide cylinder 4 made of a soft magnetic material.
The non-magnetic pin 25 penetrates the center hole 26. Both non-magnetic pins 25 are slidably supported by a center hole 26. The annular permanent magnets 27 are fixed inside the two support plates 28 so as to generate a repulsive force between the outer end faces of the permanent magnets 5A and 5B and the magnetic poles. For example, in FIG. 3, the S pole of the annular permanent magnet 27 faces the S pole on the outer end surfaces of the permanent magnets 5A and 5B. The other configuration is the same as that of the first embodiment.

【0028】この第2実施例によれば、各コイル2A,
2B,2Cに通電されていない状態では、磁石可動体2
3は永久磁石5A,5Bと左右の環状永久磁石27の反
発力で円筒状ヨーク1内の中間位置に復帰しており、各
コイル2A,2B,2Cに直流電流を通電することで磁
石可動体23を一方に駆動することができる。また、交
流電流を通電すれば、磁石可動体23は往復運動してバ
イブレータして動作するが、磁石可動体23はある程度
変位した所で永久磁石5A,5Bと左右の環状永久磁石
27の反発力で中間位置に戻されるため、磁石可動体2
3が支持板28や環状永久磁石27に衝突して衝撃音を
発生することを防止できる。また、永久磁石5A,5
B、各軟磁性体6A,6B,6Cをホルダ24に収納一
体化したので、それらの部品の一体化が確実で、耐久性
が向上し、長寿命化を図り得る。
According to the second embodiment, each coil 2A,
2B, 2C, the magnet movable body 2
Reference numeral 3 denotes a magnet movable body which is returned to an intermediate position in the cylindrical yoke 1 by the repulsive force of the permanent magnets 5A and 5B and the left and right annular permanent magnets 27, and is supplied with a DC current to each of the coils 2A, 2B and 2C. 23 can be driven to one side. When an alternating current is applied, the magnet movable body 23 reciprocates and operates as a vibrator. However, the magnet movable body 23 is displaced to some extent and the repulsive force of the permanent magnets 5A and 5B and the left and right annular permanent magnets 27 is obtained. Return to the intermediate position, the magnet movable body 2
3 can be prevented from colliding with the support plate 28 or the annular permanent magnet 27 and generating an impact sound. In addition, the permanent magnets 5A, 5A
B, since each soft magnetic body 6A, 6B, 6C is housed and integrated in the holder 24, the integration of those parts is assured, the durability is improved, and the life can be extended.

【0029】図4は本発明の第3実施例を示す。この図
において、磁石可動体23が有する端部軟磁性体6B,
6Cにはピン(非磁性でも磁性でもよい)25Aが一体
的に設けられている。すなわち、偏平円柱状の端部軟磁
性体6B,6Cの中心部にピン25Aがそれぞれ溶接、
接着等で固着一体化されてるか、あるいは端部軟磁性体
自体に一体に形成されている。一方、軟磁性体の円筒状
ヨーク1及びガイド筒体4の両端部に支持板28が固着
され、該支持板28の中心穴26を前記ピン25Aが貫
通している。両ピン25Aは中心穴26により摺動自在
に支持される。そして、端部軟磁性体6B,6Cと支持
板28の内面間に圧縮ばね29が配設されている。な
お、その他の構成は前述の第2実施例と同じである。
FIG. 4 shows a third embodiment of the present invention. In this figure, the end soft magnetic body 6B of the magnet movable body 23,
6C is integrally provided with a pin (either non-magnetic or magnetic) 25A. That is, the pin 25A is welded to the center of the flat cylindrical end soft magnetic body 6B, 6C, respectively.
It is fixedly integrated by bonding or the like, or is formed integrally with the end soft magnetic body itself. On the other hand, a support plate 28 is fixed to both ends of the soft magnetic material cylindrical yoke 1 and the guide cylinder 4, and the pin 25A passes through a center hole 26 of the support plate 28. Both pins 25A are slidably supported by the center hole 26. A compression spring 29 is disposed between the end soft magnetic bodies 6B and 6C and the inner surface of the support plate 28. The other configuration is the same as that of the second embodiment.

【0030】この第3実施例によれば、各コイル2A,
2B,2Cに通電されていない状態では、磁石可動体2
3は左右の圧縮ばね29の弾性力で円筒状ヨーク1内の
中間位置に復帰しており、各コイル2A,2B,2Cに
直流電流を通電することで磁石可動体23を一方に駆動
することができる。また、交流電流を通電すれば、磁石
可動体23は往復運動してバイブレータして動作する
が、磁石可動体23はある程度変位した所で圧縮ばね2
9の弾性力で中間位置に戻されるため、磁石可動体23
が支持板28に衝突して衝撃音を発生することを防止で
きる。
According to the third embodiment, each coil 2A,
2B, 2C, the magnet movable body 2
Numeral 3 indicates that the magnet movable body 23 is driven to one side by applying a DC current to each of the coils 2A, 2B, 2C by returning to an intermediate position in the cylindrical yoke 1 by the elastic force of the left and right compression springs 29. Can be. When an AC current is applied, the magnet movable body 23 reciprocates and operates as a vibrator.
9 is returned to the intermediate position by the elastic force of the magnet movable body 23.
Can be prevented from colliding with the support plate 28 and generating an impact sound.

【0031】なお、上記各実施例では、2個の同極対向
の永久磁石と両永久磁石間の中間部軟磁性体と両端の端
部軟磁性体とで磁石可動体を構成したが、3個以上の同
極対向の永久磁石と両永久磁石間の中間部軟磁性体と端
部位置の永久磁石の外側端面に位置する端部軟磁性体で
磁石可動体を構成してもよく、これに対応させてコイル
数も4個以上とすることができる。
In each of the above embodiments, the magnet movable body is composed of two permanent magnets of the same polarity, a soft magnetic body in the middle between the two permanent magnets, and soft magnetic bodies at both ends. A magnet movable body may be constituted by at least two or more same-magnet permanent magnets, an intermediate soft magnetic body between the two permanent magnets, and an end soft magnetic body located on the outer end face of the permanent magnet at the end position. , The number of coils can be set to four or more.

【0032】また、各実施例において、円筒状のヨーク
1及びガイド筒体4を用いたが、角筒状等のヨーク及び
ガイド体を採用することもでき、角柱状の磁石可動体を
用いることもできる。これらの場合も各コイルは磁石可
動体の外周を周回するように巻回すればよい。
In each of the embodiments, the cylindrical yoke 1 and the guide cylinder 4 are used. However, it is also possible to use a rectangular yoke or the like and a guide body, and to use a prismatic magnet movable body. Can also. In these cases as well, each coil may be wound around the outer periphery of the movable magnet.

【0033】さらに、ガイド筒体4を省略して、各コイ
ル2A,2B,2Cをヨーク1の内周面に絶縁固定する
構造を採用することもできる。
Further, a structure in which the guide cylinder 4 is omitted and the coils 2A, 2B, 2C are insulated and fixed to the inner peripheral surface of the yoke 1 may be adopted.

【0034】以上本発明の実施例について説明してきた
が、本発明はこれに限定されることなく請求項の記載の
範囲内において各種の変形、変更が可能なことは当業者
には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. Would.

【0035】[0035]

【発明の効果】以上説明したように、本発明の可動磁石
式アクチュエータによれば、同極対向された少なくとも
2個の永久磁石間に磁性体を設けて磁石可動体を構成し
たので、磁石可動体の長手方向(永久磁石の着磁方向)
に垂直な磁束成分を充分大きくでき、かつ磁石可動体の
周囲を取り巻くように少なくとも3連のコイル(中間位
置のものは端部位置のものよりも幅広)を巻回して磁石
可動体の各磁極が発生する磁束と有効に鎖交可能とした
ので、前記垂直な磁束成分と各コイルに流れる電流との
間のフレミングの左手の法則に基づいて与えられる推力
を充分大きくできる。このため、小型、小電流で大きな
推力の可動磁石式アクチュエータを実現できる。
As described above, according to the movable magnet type actuator of the present invention, a magnetic body is provided by providing a magnetic body between at least two permanent magnets having the same polarity and opposed to each other. Body longitudinal direction (permanent magnet magnetization direction)
At least three coils (middle position) so that the magnetic flux component perpendicular to
Is wider than that at the end position) so that the magnetic flux generated by each magnetic pole of the magnet movable body can be effectively linked with the magnetic flux. The thrust given based on Fleming's left hand rule can be made sufficiently large. For this reason, a small-sized, small-current, large-thrust movable magnet actuator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る可動磁石式アクチュエータの第1
実施例を示す正断面図である。
FIG. 1 is a first view of a movable magnet type actuator according to the present invention.
It is a front sectional view showing an example.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】本発明の第2実施例を示す正断面図である。FIG. 3 is a front sectional view showing a second embodiment of the present invention.

【図4】本発明の第3実施例を示す正断面図である。FIG. 4 is a front sectional view showing a third embodiment of the present invention.

【図5】本発明の基本構成を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a basic configuration of the present invention.

【図6】従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example.

【図7】本出願人が先に提案した参考例を示す構成図で
ある。
FIG. 7 is a configuration diagram showing a reference example proposed earlier by the present applicant.

【図8】単一の永久磁石の長手側面(永久磁石の着磁方
向に平行な面)の表面磁束密度の垂直成分(長手側面に
垂直な成分)を示すグラフである。
FIG. 8 is a graph showing a vertical component (a component perpendicular to the longitudinal side surface) of a surface magnetic flux density on a longitudinal side surface (a surface parallel to the magnetization direction of the permanent magnet) of a single permanent magnet.

【図9】2個の永久磁石を軟磁性体を介し同極対向状態
とした場合の長手側面の表面磁束密度の垂直成分を示す
グラフである。
FIG. 9 is a graph showing a vertical component of a surface magnetic flux density on a longitudinal side surface when two permanent magnets are placed in the same pole opposing state via a soft magnetic material.

【図10】2個の永久磁石を中間部軟磁性体を介し同極
対向状態としかつ両側に端部軟磁性体を配置した場合の
長手側面の表面磁束密度の垂直成分を示すグラフであ
る。
FIG. 10 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same pole opposing state via an intermediate soft magnetic material and end soft magnetic materials are arranged on both sides.

【符号の説明】[Explanation of symbols]

1 円筒状ヨーク 2A,2B,2C コイル 3,23 磁石可動体 4 ガイド筒体 5A,5B 永久磁石 6A 中間部軟磁性体 6B,6C 端部軟磁性体 24 非磁性ホルダ 7,25,25A ピン DESCRIPTION OF SYMBOLS 1 Cylindrical yoke 2A, 2B, 2C Coil 3, 23 Magnet movable body 4 Guide cylinder 5A, 5B Permanent magnet 6A Intermediate soft magnetic body 6B, 6C End soft magnetic body 24 Non-magnetic holder 7, 25, 25A Pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 重男 東京都中央区日本橋一丁目13番1号ティ ーディーケイ株式会社内 (56)参考文献 特開 平1−321854(JP,A) 特開 昭56−1763(JP,A) 実開 昭54−133316(JP,U) 実開 昭54−133314(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02K 33/16 H01F 7/16 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Saito 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (56) References JP-A-1-321854 (JP, A) JP-A Sho56 -1763 (JP, A) Actually open 1979-133316 (JP, U) Actually open 1979-133314 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H02K 33/16 H01F 7/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同極対向された少なくとも2個の永久磁
石間に中間部磁性体を設け、かつ両端に位置する永久磁
石の外側端面に端部磁性体を設けて磁石可動体を構成
し、少なくとも3連のコイルの内側に当該磁石可動体を
移動自在に設け、前記少なくとも3連のコイルのうち中
間位置のものは端部位置のものよりも幅広であって前記
永久磁石の同極対向端からの磁束と鎖交する配置であ
り、前記端部位置のものは前記永久磁石の端部磁極から
の磁束と鎖交する配置であり、かつ各コイルを、各永久
磁石の磁極間を境にして相異なる方向に電流が流れる如
く結線したことを特徴とする可動磁石式アクチュエー
タ。
An intermediate magnetic body is provided between at least two permanent magnets of the same polarity facing each other, and an end magnetic body is provided on outer end surfaces of permanent magnets located at both ends to form a magnet movable body. The magnet movable body is movably provided inside at least three coils, and the magnet movable body is provided inside the at least three coils .
The middle position is wider than the end position,
The arrangement is such that the magnetic flux from the opposite end of the permanent magnet is linked.
The end position is from the end magnetic pole of the permanent magnet.
A movable magnet type actuator, wherein each coil is connected so that currents flow in different directions with magnetic poles of each permanent magnet as a boundary.
【請求項2】 前記コイル外周側に磁性体ヨークを設け
て、前記永久磁石の着磁方向に垂直な方向の磁束成分を
増加させるための磁気回路を構成した請求項1記載の可
動磁石式アクチュエータ。
2. A movable magnet type actuator according to claim 1, wherein a magnetic yoke is provided on an outer peripheral side of said coil to constitute a magnetic circuit for increasing a magnetic flux component in a direction perpendicular to a magnetization direction of said permanent magnet. .
【請求項3】 前記永久磁石、中間磁性体及び端部磁性
体を非磁性ホルダで一体化して前記磁石可動体を構成し
た請求項1又は2記載の可動磁石式アクチュエータ。
3. The movable magnet type actuator according to claim 1, wherein the permanent magnet, the intermediate magnetic body, and the end magnetic body are integrated by a non-magnetic holder to constitute the movable magnet body.
【請求項4】 前記磁石可動体に出力取り出し用ピンが
設けられている請求項1、2又は3記載の可動磁石式ア
クチュエータ。
4. The movable magnet type actuator according to claim 1, wherein said magnet movable body is provided with an output take-out pin.
JP12035493A 1992-07-20 1993-04-26 Moving magnet type actuator Expired - Lifetime JP3302777B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12035493A JP3302777B2 (en) 1993-04-26 1993-04-26 Moving magnet type actuator
EP9393111583A EP0580117A3 (en) 1992-07-20 1993-07-20 Moving magnet-type actuator
US08/093,677 US5434549A (en) 1992-07-20 1993-07-20 Moving magnet-type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12035493A JP3302777B2 (en) 1993-04-26 1993-04-26 Moving magnet type actuator

Publications (2)

Publication Number Publication Date
JPH06315255A JPH06315255A (en) 1994-11-08
JP3302777B2 true JP3302777B2 (en) 2002-07-15

Family

ID=14784147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12035493A Expired - Lifetime JP3302777B2 (en) 1992-07-20 1993-04-26 Moving magnet type actuator

Country Status (1)

Country Link
JP (1) JP3302777B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019383A1 (en) * 1996-10-30 1998-05-07 Omron Corporation Vibration generator
JP3591429B2 (en) * 2000-06-22 2004-11-17 オムロンヘルスケア株式会社 Flow control valve and sphygmomanometer
JP4788092B2 (en) * 2001-01-22 2011-10-05 いすゞ自動車株式会社 Shifting operation device
JP4784021B2 (en) * 2001-08-30 2011-09-28 いすゞ自動車株式会社 Shifting operation device
GB0809542D0 (en) * 2007-10-30 2008-07-02 Sheppard & Charnley Ltd A solenoid
JP5592800B2 (en) * 2007-12-19 2014-09-17 コーニンクレッカ フィリップス エヌ ヴェ Magnetic spring system used in resonant motors
JP5792847B2 (en) * 2009-04-15 2015-10-14 Thk株式会社 Linear motor actuator
JP5604097B2 (en) * 2009-04-15 2014-10-08 Thk株式会社 Linear motor actuator
JP5659426B2 (en) * 2010-02-16 2015-01-28 日本電産セイミツ株式会社 Vibration generator
IT1399082B1 (en) * 2010-03-25 2013-04-05 Claudio Lastrucci MOBILE MAGNETIC ELECTRO-MECHANICAL CONVERSION SYSTEM; ACOUSTIC DIFFUSER INCLUDING THIS SYSTEM AND A MOBILE ORGAN GENERATING ACOUSTIC WAVES.
JP5662095B2 (en) * 2010-09-29 2015-01-28 Thk株式会社 Linear motor actuator
FR2984634B1 (en) * 2011-12-19 2014-11-07 Univ Pierre Et Marie Curie Paris 6 LINEAR MINIATURE VITROTACTILE ACTUATOR
JP6262189B2 (en) * 2013-02-18 2018-01-17 日本電産コパル株式会社 Linear vibration actuator
JP6428040B2 (en) * 2014-08-20 2018-11-28 横河電機株式会社 Excitation device and mass flow meter
CN204810110U (en) * 2015-07-09 2015-11-25 瑞声声学科技(常州)有限公司 Linear vibration motor
JPWO2020027157A1 (en) * 2018-07-31 2021-08-02 アダマンド並木精密宝石株式会社 Linear vibration actuator

Also Published As

Publication number Publication date
JPH06315255A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
JP3302777B2 (en) Moving magnet type actuator
JP3302727B2 (en) Moving magnet type actuator
US5175457A (en) Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
US4924123A (en) Linear generator
US6936937B2 (en) Linear electric generator having an improved magnet and coil structure, and method of manufacture
JP2002011676A (en) Hand-held tool with electromagnetic hammering mechanism
US10707737B2 (en) Linear vibration motor
EP1148620A1 (en) Linear motor
KR20010022929A (en) Magnetic actuator
JP2009060785A (en) Electromagnetic actuator with two movable components in opposite phase
KR20010006239A (en) Improved linear actuator
US6483207B1 (en) Auto-centering linear motor
JP2000253640A (en) Linear vibration motor
Lesquesne Permanent magnet linear motors for short strokes
JP2596857Y2 (en) Moving magnet type actuator
US20040061384A1 (en) Linear electric machine
JP2011200752A (en) Vibration motor
JP2595510Y2 (en) Moving magnet type actuator
JP2595509Y2 (en) Moving magnet type actuator
JP4022140B2 (en) Linear actuator
JP2004112937A (en) Magnetic actuator and tactile display device
KR100302908B1 (en) A permant magnet excited linear actuator
JPH0824787A (en) Shaking device
JP2000116105A (en) Linear motor
KR100518780B1 (en) Mover for linear oscillatory actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

EXPY Cancellation because of completion of term