JP2595509Y2 - Moving magnet type actuator - Google Patents

Moving magnet type actuator

Info

Publication number
JP2595509Y2
JP2595509Y2 JP1992083991U JP8399192U JP2595509Y2 JP 2595509 Y2 JP2595509 Y2 JP 2595509Y2 JP 1992083991 U JP1992083991 U JP 1992083991U JP 8399192 U JP8399192 U JP 8399192U JP 2595509 Y2 JP2595509 Y2 JP 2595509Y2
Authority
JP
Japan
Prior art keywords
magnet
movable body
magnetic
permanent magnets
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992083991U
Other languages
Japanese (ja)
Other versions
JPH0644384U (en
Inventor
康之 平林
貴俊 大山
尋之 宗野
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1992083991U priority Critical patent/JP2595509Y2/en
Priority to US08/093,677 priority patent/US5434549A/en
Priority to EP9393111583A priority patent/EP0580117A3/en
Publication of JPH0644384U publication Critical patent/JPH0644384U/en
Application granted granted Critical
Publication of JP2595509Y2 publication Critical patent/JP2595509Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、制御機器、電子機器、
工作機械等において電気エネルギーを電磁作用により往
復運動エネルギー等に変換させる可動磁石式アクチュエ
ータに関する。
The present invention relates to control devices, electronic devices,
The present invention relates to a movable magnet type actuator for converting electric energy into reciprocating kinetic energy or the like by electromagnetic action in a machine tool or the like.

【0002】[0002]

【従来の技術】従来、可動磁石式の往復運動装置として
は、図7の第1従来例の構造を持つもの、及び図8の第
2従来例の構造を持つものがある。
2. Description of the Related Art Conventionally, as a movable magnet type reciprocating device, there are a device having a structure of a first conventional example shown in FIG. 7 and a device having a structure of a second conventional example shown in FIG.

【0003】図7の第1従来例において、10は軸方向
に着磁した棒状の永久磁石からなる磁石可動体であり、
両端面に磁極を有している。コイル11A,11Bは、
磁石可動体10の端部外周側をそれぞれ環状に周回する
ように巻回され、隣合う部分に同極が発生するようにな
っている。なお、図示は省略してあるが、コイル11
A,11Bは通常磁石可動体10を軸方向に移動自在に
ガイドするためのガイド筒体に装着される。そして、磁
石可動体10の各端面からの磁束がそれぞれコイル11
A,11Bと鎖交している。
In the first conventional example shown in FIG. 7, reference numeral 10 denotes a magnet movable body made of a rod-shaped permanent magnet magnetized in the axial direction.
It has magnetic poles on both end faces. The coils 11A and 11B are
The magnet movable body 10 is wound around the outer periphery of the end portion in an annular manner, and the same polarity is generated in adjacent portions. Although not shown, the coil 11
A and 11B are usually mounted on a guide cylinder for guiding the magnet movable body 10 movably in the axial direction. The magnetic flux from each end face of the magnet movable body 10 is
A and 11B are linked.

【0004】図8の第2従来例において、磁石可動体1
5は同極対向配置の2個の棒状永久磁石16A,16B
と、これらの永久磁石16A,16B間に固着される棒
状軟磁性体17とを固着一体化したものであり、コイル
18は磁石可動体15の中間部外周側をそれぞれ環状に
周回するように巻回されている。なお、図示は省略して
あるが、コイル18は通常磁石可動体15を軸方向に移
動自在にガイドするためのガイド筒体に装着される。そ
して、磁石可動体15の同極対向した永久磁石端面から
の磁束がコイル18と鎖交している。
In the second conventional example shown in FIG.
Reference numeral 5 denotes two rod-shaped permanent magnets 16A and 16B which are arranged in the same pole opposition.
And a bar-shaped soft magnetic body 17 fixed between the permanent magnets 16A and 16B. The coil 18 is wound around the outer periphery of the intermediate portion of the magnet movable body 15 in an annular manner. Has been turned. Although not shown, the coil 18 is usually mounted on a guide cylinder for guiding the magnet movable body 15 movably in the axial direction. The magnetic flux from the end face of the permanent magnet facing the same pole of the magnet movable body 15 is linked with the coil 18.

【0005】ところで、第1従来例及び第2従来例にお
いて、磁石可動体10,15に発生する推力は、基本的
にはフレミングの左手の法則に基づいて与えられる推力
に準ずるものである(フレミングの左手の法則はコイル
に対して適用されるが、ここではコイルが固定のため、
磁石可動体にコイルに作用する力の反力としての推力が
発生する。)。したがって、推力に寄与するのは、磁石
可動体が有する永久磁石の磁束の垂直成分(永久磁石の
軸方向に直交する成分)である。
In the first and second conventional examples, the thrust generated in the movable magnets 10 and 15 basically conforms to the thrust given based on Fleming's left-hand rule (Fleming). Is applied to the coil, but here the coil is fixed, so
A thrust as a reaction force of the force acting on the coil is generated in the magnet movable body. ). Therefore, what contributes to the thrust is the vertical component (the component orthogonal to the axial direction of the permanent magnet) of the magnetic flux of the permanent magnet that the movable magnet has.

【0006】そこで、1個の永久磁石の場合、あるいは
2個の同極対向配置の永久磁石の場合について、磁束の
垂直成分がどのようになるのかそれぞれ解析してみた。
[0006] Then, in the case of one permanent magnet or two permanent magnets of the same polarity opposing arrangement, the vertical component of the magnetic flux was analyzed.

【0007】図9は、単独の永久磁石の長手側面に沿っ
て表面磁束密度の垂直成分を磁場解析した結果を示す。
但し、永久磁石は希土類永久磁石であって、直径2.5m
m、長さ6mmで、永久磁石表面から0.25〜0.45mm
離れた位置を計測した。
FIG. 9 shows a result of a magnetic field analysis of a vertical component of a surface magnetic flux density along a longitudinal side surface of a single permanent magnet.
However, the permanent magnet is a rare earth permanent magnet and has a diameter of 2.5 m.
m, length 6mm, 0.25 ~ 0.45mm from the surface of permanent magnet
The distance was measured.

【0008】図10は、2個の永久磁石を同極対向配置
とし、かつ直接接合した場合において、2個の永久磁石
の長手側面に沿って表面磁束密度の垂直成分を磁場解析
した結果を示す。但し、各永久磁石は希土類永久磁石で
あって、直径2.5mm、長さ3mm(2個で6mm)で、永
久磁石表面から0.25〜0.45mm離れた位置を計測し
た。
FIG. 10 shows the results of a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when two permanent magnets are arranged in the same polarity and are directly joined. . However, each permanent magnet was a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm (6 mm for two pieces), and measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0009】図11は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を1mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。
FIG. 11 shows a magnetic field analysis of a vertical component of a surface magnetic flux density along a longitudinal side surface of two permanent magnets when two permanent magnets are arranged at the same pole opposition and the opposing interval is 1 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm, and was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0010】図12は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を2mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。
FIG. 12 shows a vertical magnetic field analysis of the surface magnetic flux density along the longitudinal side surfaces of two permanent magnets when two permanent magnets are arranged at the same pole opposition and the opposing interval is 2 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm, and was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0011】図13は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を3mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。
FIG. 13 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of two permanent magnets when two permanent magnets are arranged in the same pole opposition and the opposing interval is 3 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm, and was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0012】図14は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置した場
合において、2個の永久磁石の長手側面に沿って表面磁
束密度の垂直成分を磁場解析した結果を示す。但し、各
永久磁石は希土類永久磁石であって、直径2.5mm、長
さ3mmで、永久磁石表面から0.25〜0.45mm離れた
位置を計測した。
FIG. 14 shows a case where two permanent magnets are arranged in the same polarity and opposed to each other, and a soft magnetic material having a length of 1 mm is arranged between the two permanent magnets. The result of the magnetic field analysis of the vertical component of the density is shown. However, each permanent magnet was a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm, and was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0013】図15は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置し、さ
らに2個の永久磁石の外周に対向させて軟磁性体ヨーク
を配設した場合において、2個の永久磁石の長手側面に
沿って表面磁束密度の垂直成分を磁場解析した結果を示
す。但し、各永久磁石は希土類永久磁石であって、直径
2.5mm、長さ3mmで、ヨークは永久磁石を取り囲む円
筒形状で厚み0.5mm、長さ10mmで永久磁石外周から
1.25mm離間した位置となっており、表面磁束密度の
垂直成分は永久磁石表面から0.25〜0.45mm離れた
位置を計測した。
FIG. 15 shows two permanent magnets having the same polarity facing each other, a soft magnetic body having a length of 1 mm disposed between the two permanent magnets, and further facing the outer periphery of the two permanent magnets. The result of performing a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when the yoke is provided is shown. However, each permanent magnet is a rare earth permanent magnet, having a diameter of 2.5 mm and a length of 3 mm, a yoke having a cylindrical shape surrounding the permanent magnet, a thickness of 0.5 mm, a length of 10 mm and a distance of 1.25 mm from the outer periphery of the permanent magnet. The vertical component of the surface magnetic flux density was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0014】[0014]

【考案が解決しようとする課題】上述したように、磁石
可動体に発生する推力は、基本的にはフレミングの左手
の法則に基づいて与えられる推力に準ずるものであり、
コイルと鎖交する永久磁石の磁束の垂直成分(永久磁石
の軸方向に直交する成分)が多いことが望まれるが、図
7の第1従来例では、表面磁束密度の垂直成分は図9の
ようになり、図10乃至図15の2個の永久磁石を同極
対向配置とした場合に比較して垂直成分が少ないことが
判明した。このため図7の第1従来例の構成では、推力
の向上に限界がある。例えば、磁石可動体10を直径
2.5mm、長さ6mmの希土類永久磁石で構成し、2個の
コイル11A,11Bの隣合う部分に同極が発生するよ
うに各コイル11A,11Bに40mAの電流を流した
ときに発生する推力F1は4.7(gf)であった。
[Problems to be Solved by the Invention] As described above, the thrust generated in the magnet movable body basically conforms to the thrust given based on Fleming's left-hand rule.
Although it is desired that the vertical component of the magnetic flux of the permanent magnet interlinking with the coil (the component orthogonal to the axial direction of the permanent magnet) is large, the vertical component of the surface magnetic flux density in the first conventional example of FIG. As a result, it has been found that the vertical component is smaller as compared with the case where the two permanent magnets of FIGS. For this reason, in the configuration of the first conventional example shown in FIG. 7, there is a limit in improving the thrust. For example, the magnet movable body 10 is composed of a rare-earth permanent magnet having a diameter of 2.5 mm and a length of 6 mm, and each coil 11A, 11B has a current of 40 mA so that the same polarity is generated in an adjacent portion of the two coils 11A, 11B. The thrust F1 generated when a current was applied was 4.7 (gf).

【0015】一方、図8の第2従来例では、2個の同極
対向の永久磁石間に軟磁性体を配した磁石可動体15を
用いており、磁束密度の垂直成分は図14に示す如くな
り、同極対向の永久磁石16A,16Bの磁極から出る
磁束は1個の永久磁石の場合(図9参照)や2個の永久
磁石のみの場合(図10乃至図13参照)よりも多くな
るが、コイルが磁石可動体15の中間部を囲む1個のみ
であり、磁石可動体15の両端面の磁極による磁束は有
効に利用していない嫌いがある。このため、図8の第2
従来例の場合も推力の向上が難しかった。例えば、図8
の第2従来例において磁石可動体15として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は第1従来例と同じとする)、かつ両者間に
長さ1mmの軟磁性体を配置したものを用い、図7の第1
従来例と同じ消費電力となるように作成したコイル18
に40mAの電流を流し、第1従来例と同じ消費電力と
したときに発生する推力F2は5.6(gf)であった。
On the other hand, the second conventional example shown in FIG. 8 uses a magnet movable body 15 in which a soft magnetic material is arranged between two permanent magnets of the same polarity facing each other, and the vertical component of the magnetic flux density is shown in FIG. Thus, the magnetic flux emitted from the magnetic poles of the permanent magnets 16A and 16B opposed to each other with the same polarity is larger than that in the case of one permanent magnet (see FIG. 9) or in the case of only two permanent magnets (see FIGS. 10 to 13). However, there is only one coil surrounding the intermediate portion of the movable magnet 15, and there is a dislike that the magnetic flux generated by the magnetic poles on both end surfaces of the movable magnet 15 is not effectively used. For this reason, FIG.
Also in the case of the conventional example, it was difficult to improve the thrust. For example, FIG.
In the second conventional example, the magnet movable body 15 has a diameter of 2.5 m.
FIG. 7 shows an example in which two rare-earth permanent magnets having a length of 3 mm and a length of 3 mm are used (the performance of the rare-earth permanent magnets is assumed to be the same as that of the first conventional example), and a soft magnetic material having a length of 1 mm is arranged between them. First
Coil 18 created to have the same power consumption as the conventional example
And a thrust F2 generated when the same power consumption as that of the first conventional example was applied was 5.6 (gf).

【0016】なお、複数個の永久磁石を組み合わせて磁
石可動体を構成する場合、各永久磁石を確実に一体化す
る必要があり、この点についての配慮も必要である。
When a magnet movable body is formed by combining a plurality of permanent magnets, it is necessary to surely integrate the permanent magnets, and it is necessary to consider this point.

【0017】本考案は、上記の点に鑑み、少なくとも2
個の永久磁石を同極対向配置としかつ確実に一体化した
磁石可動体を用いるとともに永久磁石の磁極が発生する
磁束を有効利用することで、信頼性の向上、推力及び効
率の向上を図った可動磁石式アクチュエータを提供する
ことを目的とする。
According to the present invention, at least two
The use of a magnet movable body in which two permanent magnets are arranged in the same pole opposition and are surely integrated, and the magnetic flux generated by the magnetic poles of the permanent magnets are effectively used to improve reliability, thrust and efficiency. It is an object to provide a movable magnet type actuator.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本考案の可動磁石式アクチュエータは、同極対向さ
れた少なくとも2個の永久磁石間に磁性体を配置しかつ
これらの永久磁石及び磁性体を非磁性筒状ホルダ内に固
定して磁石可動体を構成し、ガイド筒体の内側に該磁石
可動体を摺動自在に設け、当該磁石可動体の外周側を周
回する如く巻回された少なくとも3連のコイルを前記ガ
イド筒体に装着して磁性体ヨークの内側に配置し、前記
少なくとも3連のコイルのうち中間位置のものは端部位
置のものよりも幅広であって前記永久磁石の同極対向端
からの磁束と鎖交する配置であり、前記端部位置のもの
は前記永久磁石の端部磁極からの磁束と鎖交する配置
あり、かつ各コイルは各永久磁石の磁極間を境にして相
異なる方向に電流が流れる如く結線された構成としてい
る。
In order to achieve the above object, a movable magnet type actuator according to the present invention has a magnetic body disposed between at least two permanent magnets of the same polarity, and these permanent magnets and A magnetic body is fixed in a non-magnetic cylindrical holder to form a magnet movable body, the magnet movable body is slidably provided inside a guide cylinder, and wound around an outer peripheral side of the magnet movable body. At least three coils are mounted on the guide cylinder and disposed inside the magnetic yoke, and at least three of the at least three coils are located at end portions.
The permanent magnet is wider than that of the permanent magnet and intersects with the magnetic flux from the same-polarity opposite end of the permanent magnet, and the end position is interposed with the magnetic flux from the end magnetic pole of the permanent magnet. so
The coils are connected so that currents flow in different directions across magnetic poles of the permanent magnets.

【0019】また、前記筒状ホルダの端部をかしめて前
記永久磁石及び磁性体を当該筒状ホルダ内に固定する構
成としてもよい。
The permanent magnet and the magnetic body may be fixed in the cylindrical holder by caulking an end of the cylindrical holder.

【0020】さらに、前記筒状ホルダの端部で出力取り
出し用のピン付き部材を固定する構造としてもよい。
Further, a structure may be employed in which a pinned member for taking out output is fixed at the end of the cylindrical holder.

【0021】[0021]

【作用】本考案の可動磁石式アクチュエータの動作原理
を図5の概略構成図によって説明する。この図5で、磁
石可動体3は同極対向配置の2個の円柱状永久磁石5
A,5Bと、これらの永久磁石5A,5B間に固着され
る円柱状軟磁性体6とを非磁性筒状ホルダ7を用いて一
体化したものであり、図14に示したように、磁束密度
の垂直成分(永久磁石の軸方向に直交する成分)が多い
構造となっている。3連のコイル2A,2B,2Cは、
磁石可動体3の外周側を周回する如く巻回され、磁石可
動体3を構成する永久磁石5Aの左端、永久磁石5A,
5Bの同極対向端、及び永久磁石5Bの右端の磁極から
の磁束とそれぞれ鎖交するように配置されている。これ
らのコイル2A,2B,2Cは永久磁石5A,5Bの磁
極間を境にして相異なる方向に電流が流れる如く結線さ
れている(磁極間の境は磁極と磁極の間であれば必ずし
も磁極中間位置になくともよい。)。なお、図示は省略
してあるが、コイル2A,2B,2Cは通常磁石可動体
3を軸方向に移動自在にガイドするためのガイド筒体に
装着される。コイル2A,2B,2Cと磁石可動体3と
の位置関係は、当該磁石可動体3の静止時を含む大部分
の可動位置において、永久磁石磁極間を境にして各コイ
ルに流れる電流が相互に逆向きとなるように設定してお
く。
The principle of operation of the movable magnet type actuator according to the present invention will be described with reference to the schematic diagram of FIG. In FIG. 5, the magnet movable body 3 is composed of two columnar permanent magnets 5 arranged in the same pole opposition.
A and 5B and a columnar soft magnetic body 6 fixed between these permanent magnets 5A and 5B are integrated using a non-magnetic cylindrical holder 7, and as shown in FIG. The structure has a large number of vertical components of the density (components perpendicular to the axial direction of the permanent magnet). The three coils 2A, 2B, 2C
The left end of the permanent magnet 5A, which is wound around the outer periphery of the magnet movable body 3 and constitutes the magnet movable body 3, the permanent magnets 5A,
The permanent magnet 5B is arranged so as to interlink with the magnetic flux from the same pole facing end and the magnetic flux from the rightmost magnetic pole of the permanent magnet 5B. These coils 2A, 2B, 2C are connected so that currents flow in different directions with the boundary between the magnetic poles of the permanent magnets 5A, 5B (if the boundary between the magnetic poles is between the magnetic poles, it is not necessarily the middle of the magnetic poles). It does not have to be in position.) Although not shown, the coils 2A, 2B, 2C are usually mounted on a guide cylinder for guiding the magnet movable body 3 so as to be movable in the axial direction. The positional relationship between the coils 2A, 2B, 2C and the magnet movable body 3 is such that in most of the movable positions of the magnet movable body 3 including at rest, currents flowing through the respective coils with respect to the permanent magnet magnetic poles are mutually reciprocal. Set in the opposite direction.

【0022】図5における磁石可動体3の構造は、非磁
性筒状ホルダ7を省略して考えると図14のように2個
の永久磁石を同極対向させかつ永久磁石間に軟磁性体を
配置したものである。この図14のときは軟磁性体位置
に相当する領域Qの表面磁束密度の垂直成分は、軟磁性
体の無い図10乃至図13よりも優れている(磁束密度
0.3T以上のピークの幅が広くかつピークが高
い。)。
In the structure of the magnet movable body 3 in FIG. 5, when the nonmagnetic cylindrical holder 7 is omitted, as shown in FIG. It is arranged. In FIG. 14, the vertical component of the surface magnetic flux density in the region Q corresponding to the position of the soft magnetic material is superior to FIGS. 10 to 13 without the soft magnetic material (the width of the peak having a magnetic flux density of 0.3 T or more). Is wide and the peak is high.).

【0023】このように、2個の永久磁石5A,5Bを
同極対向させかつ永久磁石間に軟磁性体6を設けた磁石
可動体3は、フレミングの左手の法則に基づく推力に寄
与できる磁石可動体3の長手方向に垂直な磁束成分を大
きくでき、かつ3連のコイル2A,2B,2Cは永久磁
石の全磁極の磁束と有効に鎖交するので、3連のコイル
2A,2B,2Cに交互に逆極性の磁界を発生する向き
に電流を通電することにより、従来例では到達し得ない
大きな推力を発生することができる。各コイルの電流を
反転させれば磁石可動体3の推力の向きも反転する。交
流電流を流した場合には、一定周期で振動を繰り返すバ
イブレータとして働く。その際、磁石可動体3は、2個
の永久磁石5A,5B及び軟磁性体6を筒状ホルダ7内
に収納固定したものであり、それらの組立精度が良く一
体化が確実であるため、永久磁石5A,5B間の反発力
で永久磁石5A,5B及び軟磁性体6相互間が離散して
不良品となる危険性を解消し、信頼性を保つことができ
る。
As described above, the magnet movable body 3 in which the two permanent magnets 5A and 5B are opposed to each other with the same polarity and the soft magnetic body 6 is provided between the permanent magnets can contribute to the thrust based on Fleming's left-hand rule. The magnetic flux component perpendicular to the longitudinal direction of the movable body 3 can be increased, and the three coils 2A, 2B, 2C are effectively linked to the magnetic flux of all the magnetic poles of the permanent magnet, so that the three coils 2A, 2B, 2C By passing a current in a direction that generates a magnetic field of the opposite polarity alternately, a large thrust that cannot be reached in the conventional example can be generated. When the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is passed, it works as a vibrator that repeats oscillation at a constant cycle. At this time, the magnet movable body 3 is one in which the two permanent magnets 5A, 5B and the soft magnetic body 6 are housed and fixed in the cylindrical holder 7, and their assembly accuracy is good and integration is reliable. The danger of the permanent magnets 5A, 5B and the soft magnetic material 6 being separated from each other due to the repulsive force between the permanent magnets 5A, 5B to eliminate defective products can be eliminated, and reliability can be maintained.

【0024】本考案に係る図5の場合、例えば、磁石可
動体3として直径2.5mm、長さ3mmの希土類永久磁石
を2個用い(希土類永久磁石の性能は第1従来例と同じ
とする)、かつ両者間に長さ1mmの軟磁性体を配置した
ものを用い、図7、図8の第1、第2従来例と同じ消費
電力となるように作成した3連のコイル2A,2B,2
Cに40mAの電流を流し、同じ消費電力としたときに
発生する推力F3は6.7(gf)であった。これは、同
一消費電力の第1従来例の場合の約1.42倍の推力で
あり、また第2従来例の約1.2倍の推力であり、第1
及び第2従来例に比較して格段に優れていることが判
る。
In the case of FIG. 5 according to the present invention, for example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is the same as that of the first conventional example). ) And three coils 2A, 2B made of a soft magnetic material having a length of 1 mm disposed therebetween so as to have the same power consumption as the first and second conventional examples of FIGS. , 2
The thrust F3 generated when a current of 40 mA was passed through C and the power consumption was the same was 6.7 (gf). This is about 1.42 times the thrust of the first conventional example with the same power consumption, and about 1.2 times the thrust of the second conventional example.
Also, it is found that it is much better than the second conventional example.

【0025】図6の曲線(イ)は図5(ヨーク無し)の
場合の磁石可動体3の軸方向変位量と推力(gf)との
関係を示す。但し、永久磁石の寸法、特性は図14に示
したものとするとともに、磁石可動体3の中間点が中央
のコイル2Bの中間点に位置するときを変位量零とし、
各コイルの電流は40mAとした。また、同じコイル電
流条件で、図6の曲線(ロ)は図15(ヨーク有り)の
場合の磁石可動体3の軸方向変位量と推力(gf)との
関係であって変位量零の点から離れる方向に磁石可動体
が動作するときを示し、曲線(ハ)は変位量零の点に近
付く方向に動作するときを示す。ヨーク有りの場合、い
っそうの推力向上が図れる。
The curve (a) in FIG. 6 shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of FIG. 5 (without yoke). However, the dimensions and characteristics of the permanent magnet are as shown in FIG. 14, and the displacement amount is zero when the middle point of the magnet movable body 3 is located at the middle point of the center coil 2B.
The current of each coil was 40 mA. Also, the same coil
Under the flow conditions, the curve (b) in FIG.
Between the axial displacement of the magnet movable body 3 and the thrust (gf)
Magnet moving body in a direction away from the zero displacement point
The curve (c) is close to the point where the displacement is zero.
It shows when it operates in the direction of sticking. Yes if there is a yoke
The thrust can be further improved.

【0026】このように、本考案の可動磁石式アクチュ
エータは、同極対向の永久磁石を非磁性筒状ホルダ内に
組み込んだ構造体で磁石可動体を構成しており、永久磁
石の着磁方向(軸方向)に垂直な磁束密度成分を充分大
きくできかつ永久磁石の全ての磁極の発生する磁束を有
効利用できる。また、磁石可動体を取り巻くように周回
した少なくとも3連のコイルのうち中間位置のものは端
部位置のものよりも幅広に構成し、前記永久磁石の磁束
と各コイルに流れる電流との間のフレミングの左手の法
則に基づく推力を充分大きくできる。つまり、前記中間
位置のコイルは幅広であって永久磁石の同極対向側の磁
束分布(端部の磁束よりも多く、磁束の多い領域の幅も
広い)を有効利用でき、かつ端部のコイルは幅が狭い
分、電流密度は高くなり永久磁石端部側の磁束分布(磁
束の多い領域の幅が狭い)との間で効果的に推力を発生
できる。さらに、磁性体ヨークを前記少なくとも3連の
コイルの外側に配することでも推力向上を図ることがで
きる。この結果、小型、小電流で大きな推力を得ること
ができ、永久磁石及び軟磁性体を非磁性筒状ホルダに収
納し固定したことで、磁石可動体の構造を堅固にして信
頼性を向上させ得る。
As described above, the movable magnet type actuator according to the present invention has a structure in which permanent magnets of the same polarity are incorporated in the non-magnetic cylindrical holder to constitute the magnet movable body, and the magnetizing direction of the permanent magnets. The magnetic flux density component perpendicular to (axial direction) can be made sufficiently large, and the magnetic flux generated by all the magnetic poles of the permanent magnet can be used effectively . It also circulates around the magnet movable body.
Of the at least three coils, the middle one
The width of the permanent magnet is wider than that of the permanent magnet.
Left hand method of framing between the current flowing through each coil
The thrust based on the law can be made sufficiently large. That is, the intermediate
The coil at the position is wide and the magnet on the same pole opposite side of the permanent magnet is
Flux distribution (more than the magnetic flux at the end,
Wide) and the end coil is narrow
And the current density increases, and the magnetic flux distribution (magnetic
Effectively generates thrust between the area where the bundle is large and the width is narrow)
it can. Further, the magnetic yoke is connected to the at least three
Thrust can also be improved by arranging it outside the coil.
Wear. As a result, a large thrust can be obtained with a small size and a small current, and since the permanent magnet and the soft magnetic material are housed and fixed in the non-magnetic cylindrical holder, the structure of the magnet movable body is made firm and the reliability is improved. obtain.

【0027】[0027]

【実施例】以下、本考案に係る可動磁石式アクチュエー
タの実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a movable magnet type actuator according to the present invention will be described below with reference to the drawings.

【0028】図1及び図2は本考案の第1実施例を示
す。これらの図において、1は軟磁性体の円筒状ヨーク
であり、該円筒状ヨーク1の内側に3連のコイル2A,
2B,2Cが配置され、磁石可動体3を摺動自在に案内
するためのガイド筒体4を構成する絶縁樹脂等の絶縁部
材で円筒状ヨーク1に固着されている。磁石可動体3
は、同極対向配置の2個の円柱状希土類永久磁石5A,
5Bと、これらの永久磁石5A,5B間に配置される円
柱状軟磁性体6と、非磁性筒状ホルダ7とからなり、そ
れらの永久磁石5A,5B及び軟磁性体6は筒状ホルダ
7内に収納され接着剤等で固定されている。前記3連の
コイル2A,2B,2Cは永久磁石5A,5Bの磁極間
を境にして相異なる方向に電流が流れる如く結線されて
いる。すなわち、中央のコイル2Bは軟磁性体6及び永
久磁石5A,5BのN極を含む端部を囲み、両側のコイ
ル2A,2Cは、永久磁石5A,5BのS極を含む端部
をそれぞれ囲むことができるようになっており、かつ中
央のコイル2Bに流れる電流の向きと、両側のコイル2
A,2Cの電流の向きとは逆向きである(図1の各コイ
ルに付したN,Sを参照)。
FIGS. 1 and 2 show a first embodiment of the present invention. In these figures, reference numeral 1 denotes a cylindrical yoke made of a soft magnetic material, and a triple coil 2A,
2B and 2C are arranged and fixed to the cylindrical yoke 1 with an insulating member such as an insulating resin constituting a guide cylinder 4 for slidably guiding the magnet movable body 3. Magnet movable body 3
Are two columnar rare earth permanent magnets 5A,
5B, a cylindrical soft magnetic body 6 disposed between the permanent magnets 5A and 5B, and a non-magnetic cylindrical holder 7. The permanent magnets 5A and 5B and the soft magnetic body 6 It is housed inside and fixed with an adhesive or the like. The three coils 2A, 2B, 2C are connected so that currents flow in different directions from the magnetic poles of the permanent magnets 5A, 5B. That is, the center coil 2B surrounds the ends including the N poles of the soft magnetic body 6 and the permanent magnets 5A and 5B, and the coils 2A and 2C on both sides surround the ends including the S poles of the permanent magnets 5A and 5B, respectively. And the direction of the current flowing through the center coil 2B and the directions of the coils 2 on both sides.
The directions of the currents A and 2C are opposite to each other (see N and S attached to each coil in FIG. 1).

【0029】この第1実施例では、各コイル2A,2
B,2Cの外周側に軟磁性体の円筒状ヨーク1が設けら
れているため、磁石可動体3の表面磁束密度の垂直成分
は、図15に示す如く、さらに増大する。このため、フ
レミングの左手の法則に基づく推力に寄与できる磁石可
動体3の長手方向に垂直な磁束成分を大きくでき、磁石
可動体3の周囲を環状に巻回する3連のコイル2A,2
B,2Cに交互に逆極性の磁界を発生する向きに電流を
通電することにより、いっそう大きな推力を発生するこ
とができる。例えば、磁石可動体3として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永
久磁石の性能は第1従来例と同じとする)、かつ両者間
に長さ1mmの軟磁性体を配置したものを用い、図7、
図8の第1、第2従来例と同じ消費電力となるように作
成した3連のコイル2A,2B,2Cに40mAの電流
を流し、同じ消費電力としたときに発生する推力F4は
8.0(gf)であった。推力F4の向きは、図1の極
性では、磁石可動体3が右方向に移動する向きであり、
各コイルの電流を反転させれば磁石可動体3の推力の向
きも反転する。交流電流を流した場合には、一定周期で
振動を繰り返すバイブレータとして働き、ポケットベル
等に組み込み可能である。また、中央のコイル2Bは端
部のコイル2A,2Cに比して幅広に構成されており、
永久磁石5A,5Bの同極対向側の磁束分布(端部の磁
束よりも多く、磁束の多い領域の幅も広い)を有効利用
するようにしている。また、端部のコイル2A,2Cは
幅が狭い分、電流密度は高くなり永久磁石5A,5Bの
端部側の磁束分布(磁束の多い領域の幅が狭い)との間
で効果的に推力を発生できる。
In the first embodiment, each of the coils 2A, 2A
Since the cylindrical yoke 1 made of a soft magnetic material is provided on the outer peripheral side of B and 2C, the vertical component of the surface magnetic flux density of the magnet movable body 3 further increases as shown in FIG. For this reason, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3 that can contribute to the thrust based on Fleming's left-hand rule can be increased, and the triple coils 2A and 2 wound around the magnet movable body 3 in an annular shape.
A larger thrust can be generated by supplying a current in a direction in which magnetic fields of opposite polarities are alternately generated in B and 2C. For example, the magnet movable body 3 has a diameter of 2.5 m.
FIG. 7 shows an example in which two rare earth permanent magnets having a length of 3 mm and a length of 3 mm are used (the performance of the rare earth permanent magnets is assumed to be the same as that of the first conventional example), and a soft magnetic material having a length of 1 mm is arranged between them. ,
The thrust F4 generated when a current of 40 mA flows through the triple coils 2A, 2B, and 2C created to have the same power consumption as the first and second conventional examples in FIG. 0 (gf). The direction of the thrust F4 is a direction in which the magnet movable body 3 moves to the right in the polarity of FIG.
When the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is passed, it works as a vibrator that repeats vibration at a constant cycle and can be incorporated in a pager or the like. The center coil 2B is located at the end.
It is configured wider than the coils 2A and 2C of the section,
The magnetic flux distribution on the opposite side of the permanent magnets 5A and 5B (the magnetic flux at the ends)
More than the bundle and the width of the area with much magnetic flux is wider)
I am trying to do it. The coils 2A and 2C at the ends are
As the width is smaller, the current density increases and the permanent magnets 5A and 5B
Flux distribution on the end side (the width of the area with much magnetic flux is narrow)
And thrust can be generated effectively.

【0030】図6の曲線(ロ)は第1実施例(但し、永
久磁石及びヨークの寸法、配置及び永久磁石の特性は図
15の通り)の場合の磁石可動体3の軸方向変位量と推
力(gf)との関係であって変位量零の点から離れる方向
に磁石可動体が動作するときを示す。また、曲線(ハ)
は第1実施例(ヨーク有り)の場合の磁石可動体3の軸
方向変位量と推力(gf)との関係であって変位量零の点
に近付く方向に動作するときを示す。但し、磁石可動体
3の中間点が中央のコイル2Bの中間点に位置するとき
を変位量零とし、各コイルの電流は40mAとした。こ
のように、磁石可動体3が変位量零の点に近付くか又は
離れるかによって推力が相違するのは、磁石可動体3の
永久磁石の磁極とヨーク1との間に磁石可動体3を変位
量零点に戻す磁気吸引力が働いているからである。
The curve (b) in FIG. 6 shows the axial displacement of the magnet movable body 3 in the case of the first embodiment (however, the dimensions and arrangement of the permanent magnet and the yoke and the characteristics of the permanent magnet are as shown in FIG. 15). This shows the relationship with the thrust (gf) when the magnet movable body moves in a direction away from the zero displacement point. The curve (c)
Shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of the first embodiment (with yoke), and shows the case where the magnet moves in a direction approaching the point of zero displacement. However, when the intermediate point of the magnet movable body 3 was located at the intermediate point of the center coil 2B, the displacement amount was set to zero, and the current of each coil was set to 40 mA. As described above, the thrust differs depending on whether the magnet movable body 3 approaches or moves away from the point where the displacement amount is zero, because the magnet movable body 3 is displaced between the magnetic pole of the permanent magnet of the magnet movable body 3 and the yoke 1. This is because the magnetic attractive force for returning to the quantity zero point is working.

【0031】さらに、上記第1実施例の場合、永久磁石
5A,5B及び軟磁性体6を非磁性筒状ホルダ7に収納
し固定したので、永久磁石の同極反発力で永久磁石相互
がばらばらになる不良がなく、磁石可動体3の構造を堅
固にし、永久磁石の欠けや摩耗を防止して信頼性を向上
させ得る。また、組立精度も向上させ得る。
Further, in the case of the first embodiment, the permanent magnets 5A and 5B and the soft magnetic body 6 are housed and fixed in the non-magnetic cylindrical holder 7, so that the permanent magnets are disjointed by the same repulsive force of the permanent magnets. The structure of the magnet movable body 3 can be made firm, and the permanent magnet can be prevented from being chipped or worn to improve reliability. In addition, assembling accuracy can be improved.

【0032】図3は本考案の第2実施例を示す。この場
合、磁石可動体3Aは、同極対向配置の2個の円柱状希
土類永久磁石5A,5Bと、これらの永久磁石5A,5
B間に配置される円柱状軟磁性体6と、各永久磁石の外
側端面に配置される非磁性のピン付き部材9と非磁性筒
状ホルダ7Aとからなり、それらの永久磁石5A,5
B、軟磁性体6及びピン付き部材9の円板状基部は筒状
ホルダ7A内に収納され接着剤等で固定されている。ま
た、軟磁性体の円筒状ヨーク1及びガイド筒体4の両端
部に軟磁性の吸着板8A,8Bが嵌合、固着されてい
る。そして、吸着板8A,8Bにあけられた穴から永久
磁石5A,5Bの外側端面に固着されたピン付き部材9
のピン部分が出力取り出し用として突出している。な
お、ピン付き部材9のピン部分は吸着板8A,8Bの穴
に対し摺動自在であり、その他の構造は前述の第1実施
例と同様である。
FIG. 3 shows a second embodiment of the present invention. In this case, the magnet movable body 3A is composed of two columnar rare-earth permanent magnets 5A and 5B arranged in the same pole opposition, and these permanent magnets 5A and 5B.
B, a cylindrical soft magnetic body 6, a non-magnetic pinned member 9 and a non-magnetic cylindrical holder 7A disposed on the outer end face of each permanent magnet, and these permanent magnets 5A, 5A.
B, the disk-shaped bases of the soft magnetic body 6 and the member 9 with pins are housed in a cylindrical holder 7A and fixed with an adhesive or the like. Further, soft magnetic attraction plates 8A and 8B are fitted and fixed to both ends of the cylindrical yoke 1 and the guide cylinder 4 made of a soft magnetic material. Then, a member 9 with pins fixed to the outer end surfaces of the permanent magnets 5A, 5B through holes formed in the attraction plates 8A, 8B.
Pins protrude for taking out output. The pin portion of the member 9 with pins is slidable with respect to the holes of the suction plates 8A and 8B, and the other structure is the same as that of the first embodiment.

【0033】この第2実施例の場合、磁石可動体3Aは
各コイル2A,2B,2Cに通電していない状態では軟
磁性の吸着板8A,8Bのいずれかに吸着されている。
いま、図示の状態に磁石可動体3Aがあるとき、各コイ
ル2A,2B,2Cに交互に逆極性の磁界を発生する向
きに通電して矢印R方向の推力を発生させれば、磁石可
動体3Aは吸着板8Aから離脱して矢印R方向に移動
し、吸着板8Bに吸着して停止する。また、各コイル2
A,2B,2Cの電流を反転させて矢印Rの反対向きの
推力を発生させれば、磁石可動体3Aは吸着板8Bから
離脱して吸着板8A方向に移動しこれに吸着して停止す
る。このように吸着板8A,8Bを設けたことで磁石可
動体3Aの移動範囲を正確に規制することができ、磁石
可動体3Aの移動をピン付き部材9を介し外部に伝達す
ることができる。
In the case of the second embodiment, the magnet movable body 3A is attracted to one of the soft magnetic attraction plates 8A and 8B when the coils 2A, 2B and 2C are not energized.
Now, when the magnet movable body 3A is in the state shown in the drawing, if the coils 2A, 2B, 2C are energized alternately to generate a magnetic field of opposite polarity to generate a thrust in the direction of arrow R, the magnet movable body 3A 3A detaches from the suction plate 8A, moves in the direction of the arrow R, stops on the suction plate 8B. In addition, each coil 2
If the currents of A, 2B, and 2C are reversed to generate a thrust in the direction opposite to the arrow R, the magnet movable body 3A separates from the attraction plate 8B, moves toward the attraction plate 8A, attracts and stops. . By providing the suction plates 8A and 8B in this manner, the movement range of the magnet movable body 3A can be accurately regulated, and the movement of the magnet movable body 3A can be transmitted to the outside via the pinned member 9.

【0034】図4は上記第1実施例で使用可能な磁石可
動体の変形例を示す。この場合、磁石可動体3Bは、同
極対向配置の2個の円柱状希土類永久磁石5A,5B
と、これらの永久磁石5A,5B間に配置される円柱状
軟磁性体6と、非磁性筒状ホルダ7Bとからなり、それ
らの永久磁石5A,5B及び軟磁性体6は筒状ホルダ7
B内に収納され、当該筒状ホルダ7Bの端部をかしめる
ことで固定、一体化されている。この構造によれば、磁
石可動体の生産性を上げることができる。
FIG. 4 shows a modification of the movable magnet body usable in the first embodiment. In this case, the magnet movable body 3B is composed of two columnar rare earth permanent magnets 5A, 5B arranged in the same pole opposition.
And a cylindrical soft magnetic body 6 disposed between these permanent magnets 5A and 5B, and a non-magnetic cylindrical holder 7B. The permanent magnets 5A and 5B and the soft magnetic body 6 are
B, and is fixed and integrated by caulking the end of the cylindrical holder 7B. According to this structure, the productivity of the magnet movable body can be increased.

【0035】また、上記第2実施例においても、永久磁
石5A,5B、軟磁性体6及びピン付き部材9の円板状
基部を筒状ホルダ内に収納し、当該筒状ホルダの端部を
かしめることで固定、一体化した磁石可動体を用いるこ
ともできる。
Also in the second embodiment, the disk-shaped bases of the permanent magnets 5A and 5B, the soft magnetic body 6 and the member 9 with pins are housed in a cylindrical holder, and the ends of the cylindrical holder are closed. By caulking, a fixed and integrated magnet movable body can be used.

【0036】なお、上記各実施例では、2個の同極対向
の永久磁石と両永久磁石間の軟磁性体を筒状ホルダ内に
収納固定して磁石可動体を構成したが、3個以上の同極
対向の永久磁石と両永久磁石間の軟磁性体を筒状ホルダ
に収納固定して磁石可動体を構成してもよく、これに対
応させてコイル数も4個以上とすることができる。
In each of the above embodiments, two permanent magnets having the same polarity and a soft magnetic material between the two permanent magnets are housed and fixed in a cylindrical holder to form a magnet movable body. The permanent magnet opposing the same pole and the soft magnetic material between the two permanent magnets may be housed and fixed in a cylindrical holder to form a magnet movable body, and the number of coils may be four or more in accordance with this. it can.

【0037】また、第2実施例では円筒状ヨーク1及び
ガイド筒体4の両側に軟磁性吸着板8A,8Bを設け、
両方の永久磁石5A,5Bの外側端面にピン付き部材9
を設けたが、いずれか一方のみに吸着板及びピン付き部
材を設ける構造を採用してもよい。
In the second embodiment, soft magnetic attraction plates 8A and 8B are provided on both sides of the cylindrical yoke 1 and the guide cylinder 4, respectively.
Pinned members 9 are provided on the outer end surfaces of both permanent magnets 5A and 5B.
However, a structure in which the suction plate and the member with the pin are provided on only one of them may be adopted.

【0038】さらに、各実施例において、円筒状のヨー
ク1及びガイド筒体4を用いたが、角筒状、楕円筒状等
のヨーク及びガイド筒体を採用し、磁石可動体として角
柱状や楕円柱状のものを採用することもできる(この場
合筒状ホルダは角筒状や楕円筒状、永久磁石及び軟磁性
体は角柱状や楕円柱状となる。)。これらの場合も各コ
イルは磁石可動体の外周を周回するように巻回すればよ
い。
Further, in each of the embodiments, the cylindrical yoke 1 and the guide cylinder 4 are used, but a yoke and a guide cylinder such as a rectangular cylinder or an elliptical cylinder are employed, and a prismatic or cylindrical magnet movable body is used. An elliptical cylinder may be employed (in this case, the cylindrical holder has a rectangular cylinder or an elliptical cylinder, and the permanent magnet and the soft magnetic material have a prism or an elliptical cylinder). In these cases as well, each coil may be wound around the outer periphery of the movable magnet.

【0039】[0039]

【考案の効果】以上説明したように、本考案の可動磁石
式アクチュエータによれば、同極対向された少なくとも
2個の永久磁石間に磁性体を配しこれらを非磁性筒状ホ
ルダ内に固定して磁石可動体を構成したので、磁石可動
体を強固な構造体とし耐摩耗性を向上させることができ
るとともに、磁石可動体の長手方向(永久磁石の着磁方
向)に垂直な磁束成分を充分大きくできる。また、磁石
可動体の周囲を取り巻くように少なくとも3連のコイル
(中間位置のものは端部位置のものよりも幅広)を巻回
して磁性体ヨーク内側に設け、磁石可動体の各磁極が発
生する磁束と有効に鎖交可能としたので、前記垂直な磁
束成分と各コイルに流れる電流との間のフレミングの左
手の法則に基づいて与えられる推力を充分大きくでき
る。このため、信頼性が高く、小型、小電流で大きな推
力の可動磁石式アクチュエータを実現できる。
As described above, according to the movable magnet type actuator of the present invention, a magnetic body is arranged between at least two permanent magnets of the same polarity and these are fixed in a non-magnetic cylindrical holder. As a result, the magnet movable body has a strong structure to improve wear resistance, and a magnetic flux component perpendicular to the longitudinal direction of the magnet movable body (permanent magnet magnetization direction). Can be large enough . At least three coils surrounding the magnet movable body
(Middle position is wider than end position)
And provided to the magnetic yoke inside, since the magnetic poles of the magnet moving body was effectively possible linkage with magnetic flux generated, Fleming's left-hand rule between the current flowing in the perpendicular magnetic flux component and the coil , The thrust given on the basis of the pressure can be sufficiently increased. Therefore, a highly reliable, small-sized, small-current, large-thrust movable magnet actuator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案に係る可動磁石式アクチュエータの第1
実施例を示す正断面図である。
FIG. 1 is a first view of a movable magnet type actuator according to the present invention.
It is a front sectional view showing an example.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】本考案の第2実施例を示す正断面図である。FIG. 3 is a front sectional view showing a second embodiment of the present invention.

【図4】第1実施例で使用できる磁石可動体の変形例を
示す正断面図である。
FIG. 4 is a front sectional view showing a modification of the magnet movable body that can be used in the first embodiment.

【図5】本考案の基本構成を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a basic configuration of the present invention.

【図6】図1及び図5の可動磁石式アクチュエータにお
ける磁石可動体の変位量と推力との関係を示すグラフで
ある。
FIG. 6 is a graph showing a relationship between a displacement amount of a magnet movable body and a thrust in the movable magnet type actuator of FIGS. 1 and 5;

【図7】第1従来例を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a first conventional example.

【図8】第2従来例を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a second conventional example.

【図9】単一の永久磁石の長手側面(永久磁石の着磁方
向に平行な面)の表面磁束密度の垂直成分(長手側面に
垂直な成分)を示すグラフである。
FIG. 9 is a graph showing a vertical component (a component perpendicular to the longitudinal side surface) of the surface magnetic flux density on a longitudinal side surface (a surface parallel to the magnetization direction of the permanent magnet) of a single permanent magnet.

【図10】2個の同極対向の永久磁石を直接的に対接状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 10 is a graph showing a vertical component of a surface magnetic flux density on a longitudinal side surface when two permanent magnets of the same polarity facing each other are directly in contact with each other.

【図11】2個の永久磁石を1mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 11 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same-pole opposing state via an air gap of 1 mm.

【図12】2個の永久磁石を2mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 12 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same pole opposing state via an air gap of 2 mm.

【図13】2個の永久磁石を3mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 13 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same pole opposing state via an air gap of 3 mm.

【図14】2個の永久磁石を軟磁性体を介し同極対向状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 14 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same pole opposing state via a soft magnetic material.

【図15】2個の永久磁石を軟磁性体を介し同極対向状
態とし、かつ軟磁性体ヨークを配置した場合の長手側面
の表面磁束密度の垂直成分を示すグラフである。
FIG. 15 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are placed in the same pole opposing state via a soft magnetic material and a soft magnetic yoke is arranged.

【符号の説明】[Explanation of symbols]

1 円筒状ヨーク 2A,2B,2C コイル 3,3A,3B 磁石可動体 4 ガイド筒体 5 円柱状永久磁石 6 円柱状軟磁性体 7,7A,7B 筒状ホルダ 8A,8B 吸着板 DESCRIPTION OF SYMBOLS 1 Cylindrical yoke 2A, 2B, 2C Coil 3, 3A, 3B Magnet movable body 4 Guide cylinder 5 Cylindrical permanent magnet 6 Cylindrical soft magnetic body 7, 7A, 7B Cylindrical holder 8A, 8B Attraction plate

───────────────────────────────────────────────────── フロントページの続き (72)考案者 斉藤 重男 東京都中央区日本橋一丁目13番1号ティ ーディーケイ株式会社内 (56)参考文献 欧州特許出願公開457389(EP,A 1) (58)調査した分野(Int.Cl.6,DB名) H02K 33/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shigeo Saito 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation (56) Reference European Patent Application Publication 457389 (EP, A1) (58) Survey Field (Int.Cl. 6 , DB name) H02K 33/16

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 同極対向された少なくとも2個の永久磁
石間に磁性体を配置しかつこれらの永久磁石及び磁性体
を非磁性筒状ホルダ内に固定して磁石可動体を構成し、
ガイド筒体の内側に該磁石可動体を摺動自在に設け、当
該磁石可動体の外周側を周回する如く巻回された少なく
とも3連のコイルを前記ガイド筒体に装着して磁性体ヨ
ークの内側に配置し、前記少なくとも3連のコイルのう
ち中間位置のものは端部位置のものよりも幅広であって
前記永久磁石の同極対向端からの磁束と鎖交する配置で
あり、前記端部位置のものは前記永久磁石の端部磁極か
らの磁束と鎖交する配置であり、かつ各コイルは各永久
磁石の磁極間を境にして相異なる方向に電流が流れる如
く結線されていることを特徴とする可動磁石式アクチュ
エータ。
A magnet movable body is provided by disposing a magnetic body between at least two permanent magnets of the same polarity and fixing the permanent magnet and the magnetic body in a non-magnetic cylindrical holder.
The magnet movable body is slidably provided inside the guide cylinder, and at least three coils wound around the outer periphery of the magnet movable body are attached to the guide cylinder, and the magnetic body is mounted on the guide cylinder.
And the middle one of the at least three coils is wider than the one at the end, and interlinks with the magnetic flux from the same pole opposite end of the permanent magnet. In an arrangement
The end positions are arranged so as to interlink with the magnetic flux from the end magnetic poles of the permanent magnet , and each coil is connected such that current flows in a different direction with a boundary between the magnetic poles of each permanent magnet. The movable magnet type actuator characterized by being performed.
【請求項2】 前記磁石可動体が前記筒状ホルダの端部
をかしめて前記永久磁石及び磁性体を固定したものであ
る請求項1記載の可動磁石式アクチュエータ。
2. The movable magnet type actuator according to claim 1, wherein the magnet movable body fixes the permanent magnet and the magnetic body by caulking an end of the cylindrical holder.
【請求項3】 前記磁石可動体が出力取り出し用のピン
付き部材を前記筒状ホルダの端部で固定したものである
請求項1記載の可動磁石式アクチュエータ。
3. The movable magnet type actuator according to claim 1, wherein said magnet movable body is formed by fixing a member with a pin for taking out output at an end of said cylindrical holder.
JP1992083991U 1992-07-20 1992-11-12 Moving magnet type actuator Expired - Lifetime JP2595509Y2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1992083991U JP2595509Y2 (en) 1992-11-12 1992-11-12 Moving magnet type actuator
US08/093,677 US5434549A (en) 1992-07-20 1993-07-20 Moving magnet-type actuator
EP9393111583A EP0580117A3 (en) 1992-07-20 1993-07-20 Moving magnet-type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992083991U JP2595509Y2 (en) 1992-11-12 1992-11-12 Moving magnet type actuator

Publications (2)

Publication Number Publication Date
JPH0644384U JPH0644384U (en) 1994-06-10
JP2595509Y2 true JP2595509Y2 (en) 1999-05-31

Family

ID=13818009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992083991U Expired - Lifetime JP2595509Y2 (en) 1992-07-20 1992-11-12 Moving magnet type actuator

Country Status (1)

Country Link
JP (1) JP2595509Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513991B2 (en) * 2008-02-29 2010-07-28 セイコーエプソン株式会社 Droplet ejecting apparatus and manufacturing method thereof, droplet ejecting head and printer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116713U (en) * 1978-02-06 1979-08-16
JPS54116714U (en) * 1978-02-06 1979-08-16
JPS54133314U (en) * 1978-03-08 1979-09-14

Also Published As

Publication number Publication date
JPH0644384U (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US5434549A (en) Moving magnet-type actuator
JP3302727B2 (en) Moving magnet type actuator
KR100918507B1 (en) Linear actuator
US4937481A (en) Permanent magnet linear electromagnetic machine
US5175457A (en) Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
US6249198B1 (en) Magnetic actuator
EP1148620A1 (en) Linear motor
JP3302777B2 (en) Moving magnet type actuator
CA2351144A1 (en) Electromagnetic linear oscillator
KR20010006239A (en) Improved linear actuator
JPH01164256A (en) Linear generator
JP2003199311A (en) Linear vibrating actuator
JP2007037273A (en) Vibratory linear actuator
JP2000253640A (en) Linear vibration motor
JP2596857Y2 (en) Moving magnet type actuator
JP2595509Y2 (en) Moving magnet type actuator
JP2595510Y2 (en) Moving magnet type actuator
JP4478905B2 (en) Linear motor
KR101115895B1 (en) Linear drive device with a magnet yoke body and a permanent magnetic armature
JP3975442B2 (en) Linear motor
KR100302908B1 (en) A permant magnet excited linear actuator
JPS6237912A (en) Magnetic fixture
JP2004180377A (en) Electromagnetic reciprocating drive mechanism
KR20050009501A (en) Mover device of Magnet concentration linear oscillator actuator
JPS61200386A (en) Electromagnetic pump

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9