JP4478905B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP4478905B2
JP4478905B2 JP2000003682A JP2000003682A JP4478905B2 JP 4478905 B2 JP4478905 B2 JP 4478905B2 JP 2000003682 A JP2000003682 A JP 2000003682A JP 2000003682 A JP2000003682 A JP 2000003682A JP 4478905 B2 JP4478905 B2 JP 4478905B2
Authority
JP
Japan
Prior art keywords
field
yoke
linear motor
armature
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003682A
Other languages
Japanese (ja)
Other versions
JP2001197717A (en
JP2001197717A5 (en
Inventor
利之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2000003682A priority Critical patent/JP4478905B2/en
Publication of JP2001197717A publication Critical patent/JP2001197717A/en
Publication of JP2001197717A5 publication Critical patent/JP2001197717A5/ja
Application granted granted Critical
Publication of JP4478905B2 publication Critical patent/JP4478905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体製造装置や工作機などの分野で、一定速送りあるいは精密位置決め送りとして用いられるリニアモータに関する。
【0002】
【従来の技術】
従来、半導体露光装置あるいは工作機などのテーブルの精密位置決め送りとして用いられるリニアモータは、図5のようになっている。図5は、従来のリニアモータであって、(a)はその構成を示す部分側断面図、(b)は(a)の界磁部の拡大図である。
図において、21はリニアモータの電機子、22は電機子取付板、23は電機子コア、24は電機子コイル、25は界磁ヨーク、26は永久磁石である。なお、リニアモータの可動子を支持するためのリニアガイドについては、図示を省略している。
電機子21は、電磁鋼板を櫛歯状に打ち抜いて積層固定した電機子コア23と、電機子コア23の巻線収納溝に収納した電機子コイル24とで構成し、電機子取付板22の裏面に取り付けている。また、永久磁石26は、図5(b)に示すように、界磁を構成する平板状の界磁ヨーク25上に隣同士の磁石の極性が交互に異なるように等間隔に配置すると共に、例えばNd−Fe−B系焼結磁石(最大エネルギ積=45MGOe程度)が用いられている。
このような構成において、リニアモータの電機子コイル24に通電すると、図の点線のように磁束が流れる。この電機子コイル24と永久磁石26との電磁作用により、電機子21が直線方向に移動する。
次に、従来のリニアモータ界磁部の着磁工程について説明する。図6は、従来の界磁用永久磁石の着磁装置を示したものである。
図において、27は着磁装置、28は着磁ヨーク、29は電磁石コイル、30はスイッチ、31はコンデンサ、32は整流器、33は電源である。
まず、界磁ヨーク25上にリニアモータの極数と同じ数の未着磁の永久磁石26を所定の間隔に接着固定する。次に、予め未着磁の永久磁石26の大きさや配置に合わせて形成しておいた、幅が永久磁石2個の配置長さに相当する着磁ヨーク28と電磁石コイル29とからなる着磁装置27を、界磁ヨーク25の長手方向に沿って未着磁の永久磁石26に対向して配設する。続いて、一方の永久磁石26には、界磁ヨーク25との取付面26Aから着磁ヨーク28側に向かって磁化の向きがS極→N極となるように電源33より電磁石コイル29に電流を供給し、また、隣り合う他方の永久磁石26には、着磁ヨーク28側から永久磁石26の界磁ヨーク25との取付面26Aに向かって磁化の向きがS極→N極となるように電磁石コイル29に電流を供給する。このように着磁ヨーク28から漏れる磁界により、隣り合う永久磁石26の極性を交互に変えて着磁している。なお、コンデンサ31と整流器32は、電源33の電流の安定化を図るために用いている。
【0003】
【発明が解決しようとする課題】
ところが、従来のリニアモータでは、次のような問題があった。
(1)リニアモータの界磁部は、モータの極数と同じ数で、かつ。高価な希土類磁石からなる永久磁石を用いているため、リニアモータ全体の部品コストが高くなる。
(2)界磁ヨークに永久磁石を接着等により固定する過程において、モータの極数と同じ数の永久磁石を、界磁ヨーク上に等間隔に固定しなければならないため、磁石の固定における位置決め作業が面倒であると同時に、特に、モータの極数が増えると、永久磁石の組立工数が増え、組立コストが高くなる。
(3)着磁作業については、永久磁石の長手方向の幅と磁石ピッチなどの配置に合わせた専用の着磁ヨークが必要であり、そのために永久磁石と着磁ヨークの位置決めを精密に行なわなければならず面倒であった。
(4)また、着磁作業において、永久磁石と着磁ヨーク間の距離並びに長手方向に位置決めが不十分であると、永久磁石を均一に着磁することができなくなり、その結果、リニアモータの界磁部の発生磁界がばらつき、モータ性能に悪影響を及ぼしていた。
本発明は、上記の問題を解決するためになされたもので、モータ性能の低下を起こすことがなく、永久磁石の着磁や組立が容易で、かつ、安価なリニアモータを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、請求項1の本発明は、界磁用の永久磁石を界磁ヨーク上に複数並べて配置したリニアモータの界磁部と、前記界磁部と対向配置されると共に、前記界磁ヨークの長手方向に沿うように前記永久磁石列と磁気的空隙を介して電機子コイルを巻装してなるリニアモータの電機子部と、を備え、前記界磁ヨークは、その長手方向に向かって等間隔に複数の突起を設けてあり、前記永久磁石は、前記界磁ヨークの隣り合う突起の間に前記磁気的空隙との対向面に向かって極性を同方向に揃えて配置してあり、前記界磁部と前記電機子部の何れか一方を固定子に、他方を可動子として相対的に走行するようしたリニアモータにおいて、前記界磁ヨークは、2列で構成されると共に前記2列の界磁ヨークの間に前記電機子を挟んで配置され、一方の界磁ヨークに配置された突起の位置と他方の界磁ヨークに配置された永久磁石の位置を揃えてあることを特徴としている。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は本発明の第1の実施例を示すリニアモータであって、(a)はその構成の部分側断面図、(b)はその界磁部の拡大図である。
1は電機子、2は電機子取付板、3は電機子コア、4は電機子コイル、5は界磁ヨーク、5Aは突起、6は永久磁石である。なお、本実施例は、界磁ヨークが磁気的空隙を介して電機子に対向するギャップ対向型の構造の例であって、電機子を可動子に、界磁ヨークを固定子としたムービングコイル形リニアモータとする基本構成は従来と同じである。また、可動子の支持機構となるリニアガイドの図示は従来技術と同様に省略している。
本発明が従来と異なる点を、以下説明する。
界磁ヨーク5は、その長手方向に向かって等間隔に複数の突起5Aを設けてあり、永久磁石6は、界磁ヨーク5の隣り合う突起5Aの間に磁気的空隙Gとの対向面に向かって磁化の向きをすべてS極→N極に着磁されると共に極性を同方向に揃えて配置してある。このように界磁ヨーク上に突起と永久磁磁石とを交互に並んで配置して界磁部を構成している。
次に動作について説明する。
リニアモータの界磁部において、極性を揃えて着磁された永久磁石6を界磁ヨーク5の突起5Aと交互になるように界磁ヨーク5上に配置すると、例えば、磁極がN極の永久磁石6とその隣り合う突起5Aは、逆の磁極(S極)となる。このような構成で、電機子コイル4に通電すると、この電機子コイル4に発生する磁束が図の点線に示すように電機子コア3のティース部に沿って流れ、永久磁石6を通って界磁ヨーク5より隣の突起5Aを経て、再び電機子コア3のティース部に流れる。この電機子コイル4と永久磁石6の電磁作用により、リニアモータに必要な極数分だけの磁界が発生し、電機子1が直線方向に移動する。
次に、本実施例に示す界磁構成を有するリニアモータの動作確認を行った。その結果、本実施例のリニアモータが従来技術と同寸法の永久磁石を用いた場合には、従来より低い推力特性を示したが、これに対し、永久磁石の厚みを増加させるなどの対策を施すことによって、従来技術と同等の推力特性を得ることが確認された。
したがって、リニアモータの界磁部を、等間隔に突起を形成した界磁ヨークと、界磁ヨークの突起間に全て同じ方向に着磁し、極性を揃えて設けた永久磁石とで構成し、界磁ヨーク上に永久磁石と界磁ヨークの突起が交互になるように配置したので、従来の、モータ極数と同じ数の永久磁石を必要としていたリニアモータに比べて、永久磁石の数を半減でき、部品コストの安価なリニアモータを提供することができる。
また、界磁ヨークの突起間を永久磁石の接着箇所にしたので、磁石の位置決めが容易なため接着作業を容易にすることができ、永久磁石の接着に要する組立工数も削減でき、組立コストの安価なリニアモータを提供することができる。
さらに、界磁ヨークに配置される永久磁石の数を半減したことで、リニアモータの極数が増加する場合あるいは可動子の長ストローク化が要求される場合に、ムービングコイル型リニアモータの構成で、部品コストや組立コストを大幅に削減することができる。
【0006】
次に、本発明の第2の実施例を説明する。
図2は本発明の第2の実施例を示すリニアモータの側断面図である。なお、本実施例ではコアレス型の電機子を有するコアレスリニアモータの例を示している。
本実施例のリニアモータが、第1の実施例に示したギャップ対向型の構造のものと異なる点は、界磁ヨークが2列(図中の9、91)で構成されると共に、2列の界磁ヨーク9、91の間に電機子7を挟んで配置した、いわゆる磁束貫通型構造のものであって、一方の界磁ヨーク9に配置された突起9Aの位置と他方の界磁ヨーク91に配置された突起91Aの位置を揃えてある点である。なお、動作については、第1の実施例と概略同じなので説明を省略する。
第2の実施例は、このような構成にすることで、第1の実施例と同等のリニアモータ特性を得ることができるほか、永久磁石の着磁や組立が用意で、安価なリニアモータを提供することができる。
【0007】
次に、本発明の第3の実施例を説明する。
図3は、本発明の第3の実施例を示すリニアモータの側断面図である。なお、本実施例は、第2実施例同様にコアレスリニアモータの例を示している。
本実施例が第2実施例と異なる点は、2列からなる界磁ヨーク9,91の構成において、一方の界磁ヨーク9に配置された突起9Aの位置と他方の界磁ヨーク91に配置された永久磁石6の位置を揃えてある点である。なお、動作については、第1、第2の実施例と概略同じなので説明を省略する。
第3の実施例は、このような構成にすることで、第1、第2の実施例と同等のリニアモータ特性を得ることができ、永久磁石の着磁や組立が用意で、安価なリニアモータを提供することができる。
【0008】
次に、本発明の第4の実施例を説明する。
図4は、本発明の第4の実施例を示すリニアモータに適用した場合の、界磁用永久磁石の着磁装置の構成図である。
図において、11は着磁装置、12は着磁ヨーク、13は電磁石コイル、14はスイッチ、15はコンデンサ、16は整流器、17は電源である。
界磁ヨーク5は、その長手方向に向かって突起5Aを等間隔に配置すると共に突起5A間に永久磁石6を配設してある。また、着磁装置11は界磁ヨーク5の長手方向に沿って、永久磁石5の上下を電磁石コイル13と着磁ヨーク12それぞれ2個一組で挟み込むように配設してある。
このような構成において、最初に、界磁ヨーク5の突起5A間に、未着磁の永久磁石6を接着固定する。次に、界磁ヨーク5の長手方向に沿って、界磁ヨーク上5に配設された永久磁石5の上下を電磁石コイル13と着磁ヨーク12それぞれ2個一組で挟み込む。続いて、一方の永久磁石6には、界磁ヨーク5との取付面6Aから界磁ヨーク5との取付面6Aと反対側に向かって磁化の向きがすべてS極→N極となるように一方向に電磁石コイルによって電流を供給する。このように着磁ヨーク12から漏れる磁界により永久磁石6を着磁することにより、隣り合う永久磁石6の極性を同じにしている。
したがって、本実施例による界磁用永久磁石の着磁方法において、従来技術のように隣り合う永久磁石の極性を交互に異なるように着磁するために電磁石コイルに供給する電流の向きを変化させて行っていたものに対して、全ての永久磁石を同じ極性に着磁すれば良いことから、簡単に永久磁石を均一に着磁することができる。また、永久磁石の大きさや配置に合わせた専用の着磁装置が不要であることから、永久磁石と着磁ヨークの位置決めを精密に行なう必要がなく、しかも永久磁石が上下の着磁ヨークの間にあれば着磁磁界強度に大きな変化はなく、リニアモータ界磁部の発生磁界がばらつくこともない。その結果、モータ性能に悪影響を及ぼすこともない。
なお、本実施例では、リニアモータ界磁部を固定子側に用いた実施例を説明したが、可動子として使用しても構わず、リニアモータの種類や構造に限定されるものではない。
また、本実施例で用いた永久磁石は、Nd−Fe−B系焼結磁石に替えて、Sm−Co系焼結磁石やフェライト磁石を用いても構わず、材料の種類に限定されるものではない。
また、本実施例では、一つの着磁ヨークで2個の永久磁石を同時に、かつ、同じ極性に着磁することができる事例を示したが、永久磁石1個ずつ着磁するように永久磁石1個の幅に合わせた構造の着磁ヨークに変更しても良く、あるいは複数の永久磁石を同時に着磁できるように着磁ヨークの永久磁石列方向に沿った長手方向の幅を長くするように適宜変更しても構わない。
また、着磁装置は、電磁石コイルと着磁ヨークとよりなるものを用いたが、発生する着磁磁界が着磁ヨークの飽和磁化の制約を受けるような場合は、このような着磁装置に替えて、着磁ヨークを省いた空芯コイルを用いるようにしてもよく、この場合は、強磁界で着磁する必要がある時に有効である。
【0009】
【発明の効果】
以上述べたように、本発明によれば、リニアモータの界磁部を、等間隔に突起を形成した界磁ヨークと、界磁ヨークの突起間に磁化の向きを全て同じ方向に着磁して極性を揃えて設けた永久磁石とで構成し、永久磁石と界磁ヨークの突起が交互になるように配置することにより、従来の、モータ極数と同じ数の永久磁石を必要としていたリニアモータに比べて、永久磁石の数を半減できると共に、永久磁石の接着に要する組立工数を削減でき、しかも組立も容易にできるので、部品コストおよび組立コストの安価なリニアモータの界磁部を提供することができる。
また、本実施例による界磁用永久磁石の着磁方法において、隣り合う永久磁石の極性を交互に異なるように着磁していた従来技術に対して、隣り合う全ての永久磁石を同じ極性になるように一方向に着磁するようにしたので、簡単に永久磁石を均一に着磁することができる。また、永久磁石の大きさや配置に合わせた専用の着磁装置を不要にすることができるため、永久磁石と着磁ヨークの位置決めを精密に行なう必要がない界磁用永久磁石の着磁方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示すリニアモータであって、(a)はその全体構成の側断面図、(b)は(a)の界磁部の拡大図である。
【図2】本発明の第2の実施例を示すリニアモータの側断面図である。
【図3】本発明の第3の実施例を示すリニアモータの側断面図である。
【図4】本発明の第4の実施例を示すリニアモータに適用した場合の、界磁用永久磁石の着磁装置の構成図である。
【図5】従来のリニアモータであって、(a)はその全体構成の側断面図、(b)は(a)の界磁部の拡大図である。
【図6】従来の界磁用永久磁石の着磁装置を示したものである。
【符号の説明】
1:電機子
2:電機子取付板
3:電機子コア
4:電機子コイル
5:界磁ヨーク
5A:突起
6:永久磁石
6A:永久磁石の界磁ヨークとの取付面
7:電機子
8:電機子コイル
9、91:界磁ヨーク
9A、91A:突起
10:永久磁石
11:着磁装置
12:着磁ヨーク
13:電磁石コイル
14:スイッチ
15:コンデンサ
16:整流器
17:電源
G:磁気的空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear motor used as constant speed feed or precision positioning feed in the fields of semiconductor manufacturing equipment and machine tools, for example.
[0002]
[Prior art]
Conventionally, a linear motor used as a precision positioning feed for a table of a semiconductor exposure apparatus or a machine tool is as shown in FIG. 5A and 5B show a conventional linear motor, in which FIG. 5A is a partial sectional side view showing the configuration, and FIG. 5B is an enlarged view of the field part of FIG.
In the figure, 21 is an armature of a linear motor, 22 is an armature mounting plate, 23 is an armature core, 24 is an armature coil, 25 is a field yoke, and 26 is a permanent magnet. In addition, illustration is abbreviate | omitted about the linear guide for supporting the needle | mover of a linear motor.
The armature 21 includes an armature core 23 in which electromagnetic steel plates are punched in a comb shape and stacked and fixed, and an armature coil 24 housed in a winding housing groove of the armature core 23. It is attached to the back side. Further, as shown in FIG. 5B, the permanent magnets 26 are arranged at equal intervals on the flat field yoke 25 constituting the field so that the polarities of adjacent magnets are alternately different, For example, an Nd—Fe—B based sintered magnet (maximum energy product = about 45 MGOe) is used.
In such a configuration, when the armature coil 24 of the linear motor is energized, a magnetic flux flows as indicated by the dotted line in the figure. The armature 21 moves in the linear direction by the electromagnetic action of the armature coil 24 and the permanent magnet 26.
Next, a conventional magnetizing process of the linear motor field part will be described. FIG. 6 shows a conventional field permanent magnet magnetizing apparatus.
In the figure, 27 is a magnetizing device, 28 is a magnetizing yoke, 29 is an electromagnet coil, 30 is a switch, 31 is a capacitor, 32 is a rectifier, and 33 is a power source.
First, the same number of unmagnetized permanent magnets 26 as the number of poles of the linear motor are bonded and fixed on the field yoke 25 at a predetermined interval. Next, a magnetization formed by a magnetizing yoke 28 and an electromagnet coil 29, which is formed in advance according to the size and arrangement of the unmagnetized permanent magnet 26 and whose width corresponds to the arrangement length of two permanent magnets. The device 27 is disposed along the longitudinal direction of the field yoke 25 so as to face the non-magnetized permanent magnet 26. Subsequently, one permanent magnet 26 is supplied with electric current from the power source 33 to the electromagnet coil 29 so that the direction of magnetization from the attachment surface 26A with the field yoke 25 toward the magnetizing yoke 28 is changed from S pole to N pole. In addition, the magnetization direction of the other adjacent permanent magnet 26 is changed from the S pole to the N pole from the magnetizing yoke 28 side toward the mounting surface 26A of the permanent magnet 26 with the field yoke 25. A current is supplied to the electromagnet coil 29. Thus, the magnetic field leaking from the magnetizing yoke 28 is magnetized by alternately changing the polarities of the adjacent permanent magnets 26. The capacitor 31 and the rectifier 32 are used to stabilize the current of the power supply 33.
[0003]
[Problems to be solved by the invention]
However, the conventional linear motor has the following problems.
(1) The number of field parts of the linear motor is the same as the number of poles of the motor. Since a permanent magnet made of an expensive rare earth magnet is used, the parts cost of the entire linear motor is increased.
(2) In the process of fixing the permanent magnet to the field yoke by bonding or the like, the number of permanent magnets equal to the number of poles of the motor must be fixed on the field yoke at equal intervals. At the same time as the work is troublesome, especially when the number of poles of the motor increases, the number of assembly steps of the permanent magnet increases and the assembly cost increases.
(3) For magnetizing work, a dedicated magnetizing yoke that matches the arrangement of the longitudinal width and magnet pitch of the permanent magnet is required, and for this reason, the permanent magnet and magnetizing yoke must be positioned precisely. It must be troublesome.
(4) Also, in the magnetizing operation, if the distance between the permanent magnet and the magnetizing yoke and the positioning in the longitudinal direction are insufficient, the permanent magnet cannot be magnetized uniformly. The magnetic field generated in the field part was varied, which adversely affected the motor performance.
The present invention has been made to solve the above-described problems, and an object thereof is to provide an inexpensive linear motor that is easy to magnetize and assemble permanent magnets without deteriorating motor performance. And
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention of claim 1 is arranged such that a field portion of a linear motor in which a plurality of field permanent magnets are arranged side by side on a field yoke, and opposed to the field portion, An armature portion of a linear motor in which an armature coil is wound through a permanent magnet row and a magnetic gap so as to extend along the longitudinal direction of the field yoke. Plural protrusions are provided at equal intervals in the direction, and the permanent magnet is arranged between adjacent protrusions of the field yoke with the polarities aligned in the same direction toward the surface facing the magnetic gap. The linear yoke is configured to run relatively with one of the field part and the armature part as a stator and the other as a mover. The field yoke is configured in two rows. And sandwiching the armature between the two rows of field yokes Are arranged, it is characterized in that are aligned position of one of the permanent magnets arranged in a position and the other of the field yoke of projections arranged in field yoke.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a linear motor showing a first embodiment of the present invention, in which (a) is a partial sectional side view of the structure, and (b) is an enlarged view of the field part.
1 is an armature, 2 is an armature mounting plate, 3 is an armature core, 4 is an armature coil, 5 is a field yoke, 5A is a protrusion, and 6 is a permanent magnet. The present embodiment is an example of a gap-facing structure in which the field yoke faces the armature through a magnetic gap, and the moving coil has the armature as a mover and the field yoke as a stator. The basic configuration of the linear motor is the same as the conventional one. The illustration of the linear guide serving as a support mechanism for the mover is omitted as in the prior art.
The points where the present invention is different from the prior art will be described below.
The field yoke 5 is provided with a plurality of protrusions 5A at equal intervals in the longitudinal direction, and the permanent magnet 6 is disposed between the adjacent protrusions 5A of the field yoke 5 on the surface facing the magnetic gap G. All the magnetization directions are magnetized from the S pole to the N pole and the polarities are aligned in the same direction. In this manner, the field portion is configured by alternately arranging the protrusions and the permanent magnets on the field yoke.
Next, the operation will be described.
If the permanent magnet 6 magnetized with the same polarity in the field part of the linear motor is arranged on the field yoke 5 so as to alternate with the protrusions 5A of the field yoke 5, for example, a permanent magnetic pole with N poles is permanent. The magnet 6 and the adjacent protrusion 5A serve as an opposite magnetic pole (S pole). In such a configuration, when the armature coil 4 is energized, the magnetic flux generated in the armature coil 4 flows along the teeth portion of the armature core 3 as indicated by the dotted line in the figure, passes through the permanent magnet 6 and the field. It flows again to the teeth portion of the armature core 3 through the adjacent protrusion 5A from the magnetic yoke 5. Due to the electromagnetic action of the armature coil 4 and the permanent magnet 6, a magnetic field corresponding to the number of poles necessary for the linear motor is generated, and the armature 1 moves in the linear direction.
Next, the operation of the linear motor having the field configuration shown in the present embodiment was confirmed. As a result, when the linear motor of this example used a permanent magnet of the same size as the prior art, the thrust characteristic was lower than that of the conventional one. On the other hand, measures such as increasing the thickness of the permanent magnet were taken. By applying this, it was confirmed that a thrust characteristic equivalent to that of the prior art was obtained.
Therefore, the field portion of the linear motor is composed of a field yoke having protrusions formed at equal intervals, and a permanent magnet that is magnetized in the same direction between the protrusions of the field yoke and has the same polarity, Since the permanent magnets and the projections of the field yoke are arranged alternately on the field yoke, the number of permanent magnets is smaller than that of a conventional linear motor that requires the same number of permanent magnets as the number of motor poles. A linear motor that can be halved and has low component costs can be provided.
Also, since the permanent magnets are bonded between the projections of the field yoke, the positioning of the magnets is easy, making the bonding work easy, reducing the number of assembly steps required for bonding the permanent magnets, and reducing the assembly cost. An inexpensive linear motor can be provided.
Furthermore, if the number of poles of the linear motor is increased by reducing the number of permanent magnets arranged in the field yoke or if a longer stroke of the mover is required, the moving coil type linear motor can be used. , Parts cost and assembly cost can be greatly reduced.
[0006]
Next, a second embodiment of the present invention will be described.
FIG. 2 is a side sectional view of a linear motor showing a second embodiment of the present invention. In this embodiment, an example of a coreless linear motor having a coreless armature is shown.
The linear motor of this embodiment is different from that of the gap facing structure shown in the first embodiment in that the field yoke is composed of two rows (9, 91 in the figure) and two rows. Of the so-called magnetic flux penetration type structure in which the armature 7 is sandwiched between the field yokes 9 and 91, and the position of the projection 9A disposed on one field yoke 9 and the other field yoke This is that the positions of the protrusions 91 </ b> A arranged at 91 are aligned. Since the operation is substantially the same as that of the first embodiment, the description thereof is omitted.
In the second embodiment, the linear motor characteristics equivalent to those of the first embodiment can be obtained by adopting such a configuration, and permanent magnets can be magnetized and assembled to provide an inexpensive linear motor. Can be provided.
[0007]
Next, a third embodiment of the present invention will be described.
FIG. 3 is a sectional side view of a linear motor showing a third embodiment of the present invention. In addition, the present Example has shown the example of the coreless linear motor similarly to 2nd Example.
This embodiment is different from the second embodiment in that in the configuration of the field yokes 9 and 91 formed of two rows, the position of the protrusion 9A disposed in one field yoke 9 and the other field yoke 91 are disposed. The positions of the permanent magnets 6 are aligned. Since the operation is substantially the same as the first and second embodiments, the description thereof is omitted.
In the third embodiment, the linear motor characteristics equivalent to those of the first and second embodiments can be obtained by such a configuration, and permanent magnets can be magnetized and assembled. A motor can be provided.
[0008]
Next, a fourth embodiment of the present invention will be described.
FIG. 4 is a configuration diagram of a field permanent magnet magnetizing device when applied to a linear motor according to a fourth embodiment of the present invention.
In the figure, 11 is a magnetizing device, 12 is a magnetizing yoke, 13 is an electromagnet coil, 14 is a switch, 15 is a capacitor, 16 is a rectifier, and 17 is a power source.
The field yoke 5 has projections 5A arranged at equal intervals in the longitudinal direction, and permanent magnets 6 are arranged between the projections 5A. Further, the magnetizing device 11 is disposed along the longitudinal direction of the field yoke 5 so that the upper and lower sides of the permanent magnet 5 are sandwiched by two sets of the electromagnet coil 13 and the magnetized yoke 12 respectively.
In such a configuration, first, an unmagnetized permanent magnet 6 is bonded and fixed between the projections 5A of the field yoke 5. Next, along the longitudinal direction of the field yoke 5, the upper and lower sides of the permanent magnet 5 disposed on the field yoke 5 are sandwiched between the electromagnet coil 13 and the magnetized yoke 12. Subsequently, the magnetization direction of one permanent magnet 6 is changed from the S pole to the N pole from the mounting surface 6A to the field yoke 5 to the side opposite to the mounting surface 6A to the field yoke 5. Current is supplied by an electromagnetic coil in one direction. In this way, the permanent magnets 6 are magnetized by the magnetic field leaking from the magnetized yoke 12, so that the polarities of the adjacent permanent magnets 6 are the same.
Therefore, in the magnetizing method of the field permanent magnet according to the present embodiment, the direction of the current supplied to the electromagnet coil is changed in order to magnetize the adjacent permanent magnets so that the polarities are alternately different as in the prior art. The permanent magnets can be easily and uniformly magnetized because all permanent magnets have only to be magnetized to the same polarity. In addition, since there is no need for a dedicated magnetizing device that matches the size and arrangement of the permanent magnets, there is no need to precisely position the permanent magnet and the magnetizing yoke, and the permanent magnet is located between the upper and lower magnetizing yokes. Therefore, there is no significant change in the magnetization magnetic field strength, and the magnetic field generated by the linear motor field part does not vary. As a result, the motor performance is not adversely affected.
In this embodiment, the linear motor field part is used on the stator side. However, the linear motor field part may be used as a mover and is not limited to the type or structure of the linear motor.
In addition, the permanent magnet used in this example may be replaced with an Nd—Fe—B based sintered magnet, and may be an Sm—Co based sintered magnet or a ferrite magnet, and is limited to the type of material. is not.
In the present embodiment, an example has been shown in which two permanent magnets can be magnetized simultaneously and with the same polarity by one magnetizing yoke. However, the permanent magnets can be magnetized one by one. It may be changed to a magnetized yoke having a structure matching one width, or the longitudinal width of the magnetized yoke along the permanent magnet row direction is increased so that a plurality of permanent magnets can be magnetized simultaneously. It may be changed as appropriate.
The magnetizing device is composed of an electromagnet coil and a magnetizing yoke. However, when the generated magnetizing magnetic field is restricted by the saturation magnetization of the magnetizing yoke, such a magnetizing device is used. Alternatively, an air-core coil without the magnetizing yoke may be used. This case is effective when it is necessary to magnetize with a strong magnetic field.
[0009]
【The invention's effect】
As described above, according to the present invention, the magnetic field of the linear motor is magnetized in the same direction between the field yoke having protrusions formed at equal intervals and the protrusions of the field yoke. Linear magnets that required the same number of permanent magnets as the number of motor poles in the past by arranging the permanent magnets and the projections of the field yoke alternately. Compared to motors, the number of permanent magnets can be halved, the number of assembly steps required to attach permanent magnets can be reduced, and the assembly can be facilitated, providing a linear motor field section with low parts and assembly costs. can do.
Also, in the method of magnetizing field permanent magnets according to the present embodiment, all the adjacent permanent magnets have the same polarity as in the prior art in which the polarities of adjacent permanent magnets are alternately different. Thus, the permanent magnet can be easily magnetized uniformly. In addition, since a dedicated magnetizing device that matches the size and arrangement of the permanent magnets can be eliminated, there is no need to precisely position the permanent magnet and the magnetizing yoke. Can be provided.
[Brief description of the drawings]
FIG. 1 is a linear motor showing a first embodiment of the present invention, in which (a) is a side sectional view of the overall configuration, and (b) is an enlarged view of a field part of (a).
FIG. 2 is a side sectional view of a linear motor showing a second embodiment of the present invention.
FIG. 3 is a side sectional view of a linear motor showing a third embodiment of the present invention.
FIG. 4 is a configuration diagram of a field permanent magnet magnetizing apparatus when applied to a linear motor according to a fourth embodiment of the present invention.
5A is a side sectional view of the entire configuration of a conventional linear motor, and FIG. 5B is an enlarged view of a field portion of FIG. 5A.
FIG. 6 shows a conventional field permanent magnet magnetizing apparatus.
[Explanation of symbols]
1: Armature 2: Armature mounting plate 3: Armature core 4: Armature coil 5: Field yoke 5A: Projection 6: Permanent magnet 6A: Mounting surface of permanent magnet with field yoke 7: Armature 8: Armature coils 9, 91: Field yoke 9A, 91A: Protrusion 10: Permanent magnet 11: Magnetizing device 12: Magnetizing yoke 13: Electromagnetic coil 14: Switch 15: Capacitor 16: Rectifier 17: Power supply G: Magnetic gap

Claims (1)

界磁用の永久磁石を界磁ヨーク上に複数並べて配置したリニアモータの界磁部と、A field portion of a linear motor in which a plurality of field permanent magnets are arranged on the field yoke;
前記界磁部と対向配置されると共に、前記界磁ヨークの長手方向に沿うように前記永久磁石列と磁気的空隙を介して電機子コイルを巻装してなるリニアモータの電機子部と、  An armature portion of a linear motor that is disposed opposite to the field magnet portion and wound with an armature coil through the permanent magnet row and a magnetic gap along the longitudinal direction of the field yoke;
を備え、With
前記界磁ヨークは、その長手方向に向かって等間隔に複数の突起を設けてあり、  The field yoke is provided with a plurality of protrusions at equal intervals in the longitudinal direction thereof,
前記永久磁石は、前記界磁ヨークの隣り合う突起の間に前記磁気的空隙との対向面に向かって極性を同方向に揃えて配置してあり、  The permanent magnet is arranged between adjacent projections of the field yoke with the polarities aligned in the same direction toward the surface facing the magnetic gap,
前記界磁部と前記電機子部の何れか一方を固定子に、他方を可動子として相対的に走行するようしたリニアモータにおいて、  In a linear motor that travels relatively using either the field part or the armature part as a stator and the other as a mover,
前記界磁ヨークは、2列で構成されると共に前記2列の界磁ヨークの間に前記電機子を挟んで配置され、一方の界磁ヨークに配置された突起の位置と他方の界磁ヨークに配置された永久磁石の位置を揃えてあることを特徴とするリニアモータ  The field yoke is composed of two rows and is disposed with the armature sandwiched between the two rows of field yokes. The position of the protrusion disposed on one field yoke and the other field yoke Linear motors characterized in that the positions of the permanent magnets arranged in
JP2000003682A 2000-01-12 2000-01-12 Linear motor Expired - Fee Related JP4478905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003682A JP4478905B2 (en) 2000-01-12 2000-01-12 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003682A JP4478905B2 (en) 2000-01-12 2000-01-12 Linear motor

Publications (3)

Publication Number Publication Date
JP2001197717A JP2001197717A (en) 2001-07-19
JP2001197717A5 JP2001197717A5 (en) 2007-02-22
JP4478905B2 true JP4478905B2 (en) 2010-06-09

Family

ID=18532587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003682A Expired - Fee Related JP4478905B2 (en) 2000-01-12 2000-01-12 Linear motor

Country Status (1)

Country Link
JP (1) JP4478905B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803682B1 (en) 2002-02-21 2004-10-12 Anorad Corporation High performance linear motor and magnet assembly therefor
US7291953B1 (en) 2002-02-21 2007-11-06 Anorad Corporation High performance motor and magnet assembly therefor
JP5711581B2 (en) * 2011-03-25 2015-05-07 東京エレクトロン株式会社 Plasma processing equipment
CN103023269A (en) * 2012-08-30 2013-04-03 江苏大学 Single-pole flux reverse permanent magnet linear motor
CN105656282B (en) * 2016-02-01 2017-12-01 重庆理工大学 A kind of linear permanent-magnet servomotor with embedded position detecting device
CN107124084B (en) * 2017-06-09 2023-07-25 浙江理工大学 Non-uniform mixed permanent magnet excitation topological structure of permanent magnet linear synchronous motor
KR102529748B1 (en) * 2021-03-29 2023-05-09 미쓰비시덴키 가부시키가이샤 magnetizer

Also Published As

Publication number Publication date
JP2001197717A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US6798089B1 (en) Forcer and associated three phase linear motor system
KR100443590B1 (en) Linear motor and production method therefor
US6407471B1 (en) Linear motor
EP0319096B1 (en) Linear motor with angularly indexed magnetic poles
JP2009545940A (en) Force ripple compensation linear motor
JP2007037273A (en) Vibratory linear actuator
JP4788986B2 (en) Linear motor
JP3302727B2 (en) Moving magnet type actuator
KR102339956B1 (en) linear motor
JP4478905B2 (en) Linear motor
JP2004364374A (en) Linear motor
KR100421372B1 (en) Structure for enagaging linear motor
JP2751684B2 (en) Linear motor stator
JP5931179B2 (en) Cogging force ripple reduction of moving magnet linear motor
JP2001112228A (en) Movable magnet type linear actuator
JP2001095225A (en) Linear motor
JP2002354779A (en) Linear motor
JP2002034230A (en) Armature of linear motor
JP2001008432A (en) Linear motor
JP2006197773A (en) Linear motor
JP2016082623A (en) Stator for linear motor
CN116134712B (en) Magnetizing device
JP2002096233A (en) Linear slider
JPS60200757A (en) Hybrid type linear pulse motor
KR100360255B1 (en) Structure for reducing loss in linear motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150326

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees