JP2007037273A - Vibratory linear actuator - Google Patents

Vibratory linear actuator Download PDF

Info

Publication number
JP2007037273A
JP2007037273A JP2005216373A JP2005216373A JP2007037273A JP 2007037273 A JP2007037273 A JP 2007037273A JP 2005216373 A JP2005216373 A JP 2005216373A JP 2005216373 A JP2005216373 A JP 2005216373A JP 2007037273 A JP2007037273 A JP 2007037273A
Authority
JP
Japan
Prior art keywords
stator
yoke
magnetic
mover
linear actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005216373A
Other languages
Japanese (ja)
Inventor
Mitsumasa Mizuno
光政 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005216373A priority Critical patent/JP2007037273A/en
Publication of JP2007037273A publication Critical patent/JP2007037273A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibratory linear actuator wherein enhancement of thrust by reduction of magnetic reluctance can be accomplished without incurring increase in size. <P>SOLUTION: The vibratory linear actuator is constructed of: a stator 1 having winding 12; and a moving member 2, provided with permanent magnets 22, that is opposed to the stator 1 with a gap in-between and is supported so that it can reciprocate. The winding 12 of the stator 1 is wound on a part of a core 11 having multiple magnetic pole teeth 12. In the moving member 2, the permanent magnets 22 are magnetized in the direction in which they are opposed to the stator 1 and have two or more magnetic poles so arranged that unlike poles are alternately lined in the direction of reciprocation. The magnetic poles of the permanent magnets 22 on the opposite side to the gap are magnetically connected through a yoke 21. The yoke 21 of the moving element 2 has protrusions 23 that are protruded toward the stator 1 at both ends of its reciprocation and/or between unlike poles of the permanent magnets 22 lined in the direction of reciprocation. Part of magnetic flux passes through the protrusions of the yoke, and the magnetic efficiency of the entire magnetic circuit is thereby enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は往復式電気かみそりなどの駆動部材として用いられる振動型リニアアクチュエータに関するものである。   The present invention relates to a vibration type linear actuator used as a driving member such as a reciprocating electric shaver.

従来の振動型リニアアクチュエータの例を図6(a)に示す。磁性材料の焼結体や磁性材料の鉄板を積層したものとして形成されているE字形のコア11と該コア11の中央の磁極歯13に巻回された巻線12とから固定子1が構成され、該固定子1にギャップを介して対向する可動子2は、着磁方向が固定子1との対向方向となっている永久磁石22を往復動方向に並べるとともに固定子1と反対側の磁極間を磁気的につなぐ平板状のヨーク21とから構成されており、固定子1の巻線12に交番電流を流せば、可動子2は往復運動を行う。   An example of a conventional vibration type linear actuator is shown in FIG. The stator 1 is composed of an E-shaped core 11 formed by laminating a sintered body of magnetic material or an iron plate of magnetic material, and a winding 12 wound around a magnetic pole tooth 13 at the center of the core 11. The movable element 2 facing the stator 1 through a gap arranges the permanent magnets 22 whose magnetization direction is the opposite direction to the stator 1 in the reciprocating direction and on the opposite side of the stator 1. It is composed of a flat yoke 21 that magnetically connects between the magnetic poles. When an alternating current is passed through the winding 12 of the stator 1, the mover 2 reciprocates.

この構成のものでは、磁極歯13にギャップを介して対向するのが永久磁石22のみであるために、巻線12の励磁によって発生する磁束はギャップと永久磁石22の両方を通る経路を取ることになるために、磁気抵抗が大きく、発生磁束量が小さくなるため、巻線12への通電時に発生する推力をさほど大きくすることができず、また、推力を増加するには、永久磁石22やコア11の厚さを増加させるか、巻線12の断面積を増加させるといった体積を増加させてしまう方法しかなく、小型化が困難であった。   In this configuration, since only the permanent magnet 22 is opposed to the magnetic pole teeth 13 through the gap, the magnetic flux generated by the excitation of the winding 12 takes a path through both the gap and the permanent magnet 22. Therefore, since the magnetic resistance is large and the amount of generated magnetic flux is small, the thrust generated when the winding 12 is energized cannot be increased so much. To increase the thrust, the permanent magnet 22 or There is only a method for increasing the volume such as increasing the thickness of the core 11 or increasing the cross-sectional area of the winding 12, and it is difficult to reduce the size.

特許文献1には永久磁石22間に絶縁性薄板28を介在させることで渦電流損を低減することが示されているが、推力に関する対策とはならない。
特開2000−253640公報
Patent Document 1 discloses that an eddy current loss is reduced by interposing an insulating thin plate 28 between permanent magnets 22, but it is not a measure for thrust.
JP 2000-253640 A

本発明は上記の従来の問題点に鑑みて発明したものであって、大型化を招くことなく磁気抵抗の減少による推力の向上を図ることができる振動型リニアアクチュエータを提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and an object of the present invention is to provide a vibration type linear actuator capable of improving thrust by reducing magnetic resistance without causing an increase in size. Is.

上記課題を解決するために本発明は、巻線を備えた固定子と、永久磁石を備えて上記固定子に対してギャップを介して対向するとともに往復運動可能に支持されている可動子とからなり、上記固定子は複数の磁極歯を有するコアの一部に上記巻線が巻回されており、上記可動子は、固定子との対向方向において着磁されたものであるとともに上記往復運動方向において異極が交互に並ぶ2極以上の磁極を持つ永久磁石の固定子と反対側の磁極同士がヨークで磁気的に接続されている振動型リニアアクチュエータであり、上記可動子のヨークはその往復動方向の両端及び/または永久磁石の往復動方向に並ぶ異極間に固定子側に向けて突出する突起を有していることに特徴を有している。磁束の一部がヨークの突起を通るようにすることで、磁気回路全体としての磁気効率を向上させたものである。   In order to solve the above-described problems, the present invention includes a stator having a winding, and a mover that includes a permanent magnet and is opposed to the stator via a gap and is supported so as to be able to reciprocate. The stator has the winding wound around a part of a core having a plurality of magnetic pole teeth, and the mover is magnetized in a direction opposite to the stator and has the reciprocating motion. This is a vibration type linear actuator in which a stator of a permanent magnet having two or more magnetic poles with different poles alternately arranged in a direction and magnetic poles opposite to each other are magnetically connected by a yoke. It has a feature in that there are protrusions protruding toward the stator side between both ends in the reciprocating direction and / or different poles arranged in the reciprocating direction of the permanent magnet. The magnetic efficiency of the entire magnetic circuit is improved by allowing a part of the magnetic flux to pass through the protrusions of the yoke.

この時、可動子のヨークは固定子が有する磁極歯の数と等しい数の突起を備えて、固定子の磁極歯と突起とが1:1で対向していると、巻線に通電することにより発生して各磁極歯を通る磁束がいずれも可動子のヨークの突起を通るために、どの磁極歯に対しても磁気抵抗が小さい磁路を得ることができる。   At this time, the yoke of the mover has the same number of protrusions as the number of magnetic pole teeth of the stator, and if the stator magnetic pole teeth and the protrusions are opposed to each other at 1: 1, the coil is energized. Since all the magnetic fluxes generated through the magnetic pole teeth and passing through the magnetic pole teeth pass through the protrusions of the yoke of the mover, a magnetic path having a small magnetic resistance can be obtained for any magnetic pole teeth.

特に固定子が3極の磁極歯をもつE字型のコアの中央の磁極歯にコイルが巻回されたものであり、可動子が往復動方向において並ぶ3つの突起をヨークが備えるとともに各突起間に永久磁石が夫々配されたものであると、巻線が1個でよく、部品数が少なくなる。   In particular, the stator is formed by winding a coil around the central magnetic pole teeth of an E-shaped core having three magnetic pole teeth, and the yoke includes three protrusions arranged in the reciprocating direction. If permanent magnets are arranged between them, only one winding is required, and the number of parts is reduced.

可動子のヨークが固定子が有する磁極歯の数より少ない数の突起を備えたものであってもよい。特に永久磁石間に位置する突起を無くしたものでは、永久磁石の個数を少なくすることができる。   The yoke of the mover may have a smaller number of protrusions than the number of magnetic pole teeth that the stator has. In particular, the number of permanent magnets can be reduced when the protrusions located between the permanent magnets are eliminated.

可動子のヨークが有している突起の先端面と永久磁石のギャップ側の面とが同一面となっていることが磁気抵抗の軽減の点で最も好ましいが、突起の先端面が永久磁石のギャップ側の面まで達していなくても、従来のものよりは磁気抵抗が小さい経路を得られるため、推力も向上させることができる。   It is most preferable from the viewpoint of reducing the magnetic resistance that the tip surface of the protrusion of the yoke of the mover and the gap side surface of the permanent magnet are the same surface. Even if the gap side surface is not reached, a path having a smaller magnetic resistance than the conventional one can be obtained, so that the thrust can also be improved.

可動子のヨークが有している突起側面と永久磁石との接合側面が傾斜面となっていることも好ましい。磁気飽和を軽減もしくは解消による磁気抵抗の低減を得ることができ、推力の更なる向上を得ることができる。   It is also preferable that the projecting side surface of the mover yoke and the side surface where the permanent magnet is joined are inclined surfaces. The magnetic resistance can be reduced by reducing or eliminating the magnetic saturation, and the thrust can be further improved.

本発明は、可動子のヨークに設けた突起の存在により、磁気抵抗の軽減がある上に、磁気飽和の低減や久磁石端部から固定子に向かって振動方向に対して斜めに透過する磁束の増加等を得ることができ、これに伴って大型化を招くことなく推力の向上を得ることができる。   According to the present invention, the magnetic resistance is reduced due to the presence of the protrusion provided on the yoke of the mover, and the magnetic saturation is reduced and the magnetic flux is transmitted obliquely with respect to the vibration direction from the end of the permanent magnet toward the stator. The increase in thrust can be obtained without causing an increase in size.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図1において、固定子1は、磁性材料からなるコア11と巻線12とからなるもので、ここにおけるコア11は、基底部から3つの磁極歯13を突出させた略E字形状のもので、巻線12は中央の磁極歯13に巻回されている。この巻線12には、可動子2の位置や速度等に応じて交番電流を印加する駆動回路Dが接続されている。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. In FIG. 1, a stator 1 includes a core 11 and a winding 12 made of a magnetic material. The winding 12 is wound around the central magnetic pole teeth 13. A drive circuit D that applies an alternating current according to the position and speed of the mover 2 is connected to the winding 12.

この固定子1にギャップを介して対向するとともに、図示しない板ばねなどの手段によって固定子1の磁極歯13が並ぶ方向に往復動自在に支持されている可動子2は、2個の永久磁石22,22とヨーク21とからなるもので、往復動方向に間隔をおいて並んでいる2個の永久磁石22,22は共に固定子1との対向方向において着磁されたものであるとともに、両永久磁石22,22は固定子1側の磁極が異極となっている。そして2つの永久磁石22,22の固定子1とは反対側の面の磁気的接続を担うヨーク21は、上記往復動方向の両端及び中央に固定子1側に向けて突出するとともに先端面が永久磁石22,22の固定子1側の面と同一面となっている突起23を備えており、永久磁石22は上記往復動方向においてこれら突起23,23間に位置するものとなっている。   The mover 2 that is opposed to the stator 1 through a gap and is reciprocally supported in a direction in which the magnetic pole teeth 13 of the stator 1 are arranged by means of a leaf spring (not shown) is provided with two permanent magnets. The two permanent magnets 22, 22, which are composed of 22, 22 and the yoke 21 and are arranged at intervals in the reciprocating direction, are both magnetized in the direction facing the stator 1, The permanent magnets 22 and 22 have different magnetic poles on the stator 1 side. And the yoke 21 which carries out the magnetic connection of the surface on the opposite side to the stator 1 of the two permanent magnets 22 and 22 protrudes toward the stator 1 side at both ends and the center in the reciprocating direction, and the tip end surface is The permanent magnet 22 is provided with a projection 23 that is flush with the surface of the stator 1 on the permanent magnet 22, and the permanent magnet 22 is positioned between the projections 23 and 23 in the reciprocating direction.

このものにおいて、可動子2の位置や速度等に応じた交番電流を駆動回路Dから巻線12に印加すれば、可動子2は矢印で示す方向の往復動を行う。   In this case, when an alternating current corresponding to the position, speed, etc. of the mover 2 is applied from the drive circuit D to the winding 12, the mover 2 reciprocates in the direction indicated by the arrow.

上記の実施例では、固定子1側の3つの磁極歯13に1:1で対応する3つの突起23をヨーク21が備えているが、図2に示すように、ヨーク21の両端にのみ突起23,23が設けられて、2つの永久磁石22,22が両突起23,23に並んでいるものや、突起23がヨーク21の中央にのみ設けられて中央の突起23の両側に永久磁石22,22が位置するものであってもよい。また、図3に示すように、突起23の先端が永久磁石22の固定子1側の面に至っていないものであってもよい。更に、突起23は一定幅のものでなくてもよいが、この場合、基端側の幅を先端側よりも広くするとともに、突起23側面と永久磁石22との接合面は、図4に示すように、傾斜面となるようにしておくのが好ましい。   In the above embodiment, the yoke 21 is provided with three protrusions 23 corresponding to the three magnetic pole teeth 13 on the stator 1 side in a 1: 1 ratio, but as shown in FIG. 23, 23 and two permanent magnets 22 and 22 are arranged on both protrusions 23 and 23, or the protrusion 23 is provided only at the center of the yoke 21 and the permanent magnets 22 on both sides of the central protrusion 23. , 22 may be located. Further, as shown in FIG. 3, the tip of the protrusion 23 may not reach the surface of the permanent magnet 22 on the stator 1 side. Further, the protrusion 23 does not have to have a constant width. In this case, the width on the base end side is made wider than that on the tip end side, and the joint surface between the side face of the protrusion 23 and the permanent magnet 22 is shown in FIG. As described above, it is preferable to have an inclined surface.

ここにおいて、図1に示した実施例における3つの突起23のうちの永久磁石22,22間に位置する中央の突起23の幅を図6(a)に示すように、固定子1との対向面において、固定子1の中央部の磁極歯13の幅aの1/3とし、2個の永久磁石22,22の各外側端部を両側の磁極歯13,13の中央部にほぼ一致させるとともに、ヨーク21の往復動方向の長さは固定子1のコア11の長さと一致させたものとしたものについて、その通電時の磁束線図を図6(b)に示す。また、図7(a)に示した従来例(固定子1は図6(a)に示したものと同じとするとともに永久磁石22を突起23の幅だけ長くしたものにおける通電時の磁束線図を図7(b)に示す。巻線12ヘの通電により発生する磁束は、固定子1の各磁極歯13から可動子2のヨーク21の突起23を経由して永久磁石22裏側のヨーク21に至る経路を通るため、磁気抵抗の減少による磁気効率の向上が期待される。   Here, of the three protrusions 23 in the embodiment shown in FIG. 1, the width of the central protrusion 23 located between the permanent magnets 22 and 22 is opposed to the stator 1 as shown in FIG. 6 (a). On the surface, the width a of the magnetic pole teeth 13 at the center portion of the stator 1 is set to 1/3, and the outer end portions of the two permanent magnets 22 and 22 are substantially aligned with the center portions of the magnetic pole teeth 13 and 13 on both sides. In addition, FIG. 6B shows a magnetic flux diagram at the time of energization of the yoke 21 in which the length in the reciprocating direction coincides with the length of the core 11 of the stator 1. FIG. 7 (a) shows a conventional magnetic flux diagram (when the stator 1 is the same as that shown in FIG. 6 (a) and the permanent magnet 22 is lengthened by the width of the projection 23 when energized. 7 (b), the magnetic flux generated by energizing the winding 12 passes through the projections 23 of the yoke 21 of the mover 2 from each magnetic pole tooth 13 of the stator 1, and the yoke 21 on the back side of the permanent magnet 22. Therefore, it is expected that the magnetic efficiency is improved by reducing the magnetic resistance.

また、永久磁石22の外側の磁束は、可動子2のヨーク21に設けられた突起23を通る経路を描く。このために磁束がギャップを進行方向に横切り、固定子1を透過しない短絡経路をとるものが多くなっている。また、中央の突起23では永久磁石22の距離が離れるため、発生推力に影響の大きい永久磁石22の端部から固定子1に向かって振動方向に対して斜めに透過する磁束が増加している。   Further, the magnetic flux outside the permanent magnet 22 draws a path that passes through the protrusion 23 provided on the yoke 21 of the mover 2. For this reason, there are many cases where the magnetic flux takes a short-circuit path that crosses the gap in the traveling direction and does not pass through the stator 1. Further, since the distance between the permanent magnets 22 is increased at the central protrusion 23, the magnetic flux that is transmitted obliquely with respect to the vibration direction from the end of the permanent magnets 22 having a large influence on the generated thrust toward the stator 1 is increased. .

更に、磁束の可動子2外側の経路により可動子2中央部の飽和が解消され、中央の突起23による透過磁束の方向が変化し、また外側の磁束の短絡経路と巻線12による発生磁束の両方が磁気抵抗の減少により増加する。これらの相互作用によって推力が増加することになる。   Further, the saturation of the central portion of the movable element 2 is canceled by the path outside the movable element 2 of the magnetic flux, the direction of the transmitted magnetic flux by the central projection 23 is changed, and the short circuit path of the outer magnetic flux and the generated magnetic flux by the winding 12 are changed. Both increase with decreasing magnetic resistance. These interactions increase the thrust.

また、可動子2の変位によって可動子2のヨーク21と固定子1のコア11の対向面積が変化して磁路のインダクタンスが変化するが、これに伴ってギャップに蓄えられる磁気エネルギーが変化することでリラクタンス力が得られることになる。この結果、磁気抵抗の減少および飽和の解消による磁束の増加及びリラクタンス力により総推力の向上を得られるものである。   Further, the displacement of the mover 2 changes the facing area of the yoke 21 of the mover 2 and the core 11 of the stator 1 to change the inductance of the magnetic path, and accordingly, the magnetic energy stored in the gap changes. Reluctance power can be obtained. As a result, the total thrust can be improved by the increase in magnetic flux and the reluctance force due to the decrease in magnetic resistance and the elimination of saturation.

図5に発生推力のシミュレーション結果を示す。図中イは図1に示した例を、ロは図2に示した例を、ハは図3に示した例を、ニは図4に示した例を、ホは図7に示した従来例の場合を示している。なお、各構成において、全体幅および各要素の高さ方向の比率は同じとしており、永久磁石22の往復動方向寸法は図1に示したもの(イ)の場合が一番短い。また、シミュレーションは固定子1と可動子2との中心が一致する位置での変位を0とし、可動子2の変位と推力の変化を求めたものである。このシミュレーション結果からすれば、可動子2のヨーク21に突起23を設けたものは、平板状のヨーク21を用いたものより推力が約2割増加するという結果が得られた。   FIG. 5 shows a simulation result of the generated thrust. In the figure, B is the example shown in FIG. 1, B is the example shown in FIG. 2, C is the example shown in FIG. 3, D is the example shown in FIG. 4, and E is the conventional example shown in FIG. An example case is shown. In each configuration, the overall width and the ratio in the height direction of each element are the same, and the dimension of the permanent magnet 22 in the reciprocating direction is the shortest in the case of FIG. In the simulation, the displacement at the position where the centers of the stator 1 and the mover 2 coincide with each other is set to 0, and the displacement of the mover 2 and the change in thrust are obtained. According to this simulation result, it was found that the thrust provided on the yoke 21 of the mover 2 increased by about 20% compared to the one using the flat yoke 21.

ちなみに、図2に示したもの(図5中のロ)では、中央の突起23がないために、中央の磁極歯13を通る磁気回路の磁気抵抗が小さくなる効果を得られないが、両外側の磁路の磁気低抗減少による推力向上の効果が図れるために、従来構成と比較した推力増加率は小さいが推力向上には効果がある。また、この場合は図1に示した例と比較しして、永久磁石22,22を分離する必要がないために、可動子2の製造に当たって1個の永久磁石22を用いることが可能である。   Incidentally, in the case shown in FIG. 2 (b in FIG. 5), since there is no central projection 23, the effect of reducing the magnetic resistance of the magnetic circuit passing through the central magnetic pole teeth 13 cannot be obtained. In order to achieve the effect of improving the thrust by reducing the magnetic resistance of the magnetic path, the thrust increase rate is small compared to the conventional configuration, but it is effective for improving the thrust. Further, in this case, as compared with the example shown in FIG. 1, it is not necessary to separate the permanent magnets 22, 22, so that one permanent magnet 22 can be used in manufacturing the mover 2. .

また図3に示したもの(図5中のハ)では、中央に設けた突起23がギャップ面まで到達していないために、中央の磁極歯13を通る磁気回路の磁気抵抗が図1に示したものよりも大きくなるが、磁気抵抗減少の効果はある。   In the case shown in FIG. 3 (c in FIG. 5), since the projection 23 provided in the center does not reach the gap surface, the magnetic resistance of the magnetic circuit passing through the magnetic pole teeth 13 in the center is shown in FIG. Although it is larger than the above, there is an effect of reducing the magnetoresistance.

更に図4に示したもの(図5中にニ)では、図1に示したものに比して、可動子2の高さは変わらないものの、ヨーク21中央の突起23の両側面が傾斜面となっていて、ヨーク21の厚さが中央に向かって増加する(中央に向かって永久磁石22の厚さが減少する)構成となっているために、可動子2のヨーク21中央部での磁気飽和が解消されることによる磁気抵抗の減少で更に透過磁束が増加するために、より高い推力を得ることができる。   Further, in the case shown in FIG. 4 (d in FIG. 5), the height of the mover 2 is not changed compared with that shown in FIG. 1, but both side surfaces of the projection 23 at the center of the yoke 21 are inclined surfaces. And the thickness of the yoke 21 increases toward the center (the thickness of the permanent magnet 22 decreases toward the center). Since the transmitted magnetic flux is further increased due to a decrease in magnetic resistance due to elimination of magnetic saturation, a higher thrust can be obtained.

以上の各例では3つの磁極歯13の幅を全て同じとしているが、使用形態に応じて磁極歯13ごとに幅を変えてもよい。また、中央の磁極歯13に巻線12を巻回したものを示したが、他の磁極歯13にも巻線12を巻回したものであってもよい。   In the above examples, the widths of the three magnetic pole teeth 13 are all the same, but the width may be changed for each magnetic pole tooth 13 in accordance with the usage pattern. Moreover, although what wound the coil | winding 12 to the center magnetic pole tooth | gear 13 was shown, what wound the coil | winding 12 also to the other magnetic pole tooth | gear 13 may be used.

本発明の実施の形態の一例の概略断面図である。It is a schematic sectional drawing of an example of embodiment of this invention. 他例の概略断面図である。It is a schematic sectional drawing of another example. 更に他例の概略断面図である。Furthermore, it is a schematic sectional drawing of another example. 別の例の概略断面図である。It is a schematic sectional drawing of another example. 各例における推力シミュレーション結果を示す特性図である。It is a characteristic view which shows the thrust simulation result in each example. (a)は一例の説明図、(b)は同上の磁束線の説明図である。(a) is explanatory drawing of an example, (b) is explanatory drawing of a magnetic flux line same as the above. (b)は従来例の説明図、(b)は同上の磁束線の説明図である。(b) is explanatory drawing of a prior art example, (b) is explanatory drawing of a magnetic flux line same as the above.

符号の説明Explanation of symbols

1 固定子
2 可動子
11 コア
12 巻線
13 磁極歯
21 ヨーク
22 永久磁石
23 突起
DESCRIPTION OF SYMBOLS 1 Stator 2 Movable element 11 Core 12 Winding 13 Magnetic pole tooth 21 Yoke 22 Permanent magnet 23 Protrusion

Claims (6)

巻線を備えた固定子と、永久磁石を備えて上記固定子に対してギャップを介して対向するとともに往復運動可能に支持されている可動子とからなり、上記固定子は複数の磁極歯を有するコアの一部に上記巻線が巻回されており、上記可動子は固定子との対向方向において着磁されたものであるとともに上記往復運動方向において異極が交互に並ぶ2極以上の磁極を持つ永久磁石の固定子と反対側の磁極同士がヨークで磁気的に接続されている振動型リニアアクチュエータであって、上記可動子のヨークはその往復動方向の両端及び/または永久磁石の往復動方向に並ぶ異極間に固定子側に向けて突出する突起を有していることを特徴とする振動型リニアアクチュエータ。   A stator having windings, and a mover that has a permanent magnet and is opposed to the stator through a gap and is supported so as to be reciprocally movable. The stator has a plurality of magnetic pole teeth. The winding is wound around a part of the core having, and the mover is magnetized in a direction facing the stator and has two or more poles in which different polarities are alternately arranged in the reciprocating direction. A vibration type linear actuator in which magnetic poles opposite to a stator of a permanent magnet having magnetic poles are magnetically connected by a yoke, wherein the yoke of the mover has both ends in its reciprocating direction and / or a permanent magnet. A vibration type linear actuator characterized by having a protrusion protruding toward the stator side between different poles arranged in the reciprocating direction. 可動子のヨークは固定子が有する磁極歯の数と等しい数の突起を備えて、固定子の磁極歯と突起とが1:1で対向していることを特徴とする請求項1記載の振動型リニアアクチュエータ。   2. The vibration according to claim 1, wherein the yoke of the mover includes a number of protrusions equal to the number of magnetic pole teeth of the stator, and the magnetic pole teeth and protrusions of the stator face each other at a ratio of 1: 1. Type linear actuator. 固定子は3極の磁極歯をもつE字型のコアの中央の磁極歯にコイルが巻回されたものであり、可動子は往復動方向において並ぶ3つの突起をヨークが備えるとともに各突起間に永久磁石が夫々配されたものであることを特徴とする請求項2記載の振動型リニアアクチュエータ。   The stator is obtained by winding a coil around the central magnetic pole teeth of an E-shaped core having three magnetic pole teeth, and the mover includes three protrusions arranged in the reciprocating direction in the yoke and between the protrusions. The vibration type linear actuator according to claim 2, wherein permanent magnets are respectively arranged on the vibration type linear actuator. 可動子のヨークは固定子が有する磁極歯の数より少ない数の突起を備えていることを特徴とする請求項1記載の振動型リニアアクチュエータ。   2. The vibration type linear actuator according to claim 1, wherein the yoke of the mover includes a number of protrusions smaller than the number of magnetic pole teeth of the stator. 可動子のヨークが有している突起の先端面と永久磁石のギャップ側の面とが同一面となっていることを特徴とする請求項1〜4のいずれか1項に記載の振動型リニアアクチュエータ。   5. The vibration type linear device according to claim 1, wherein a tip end surface of the protrusion of the yoke of the mover and a surface on the gap side of the permanent magnet are the same surface. Actuator. 可動子のヨークが有している突起側面と永久磁石との接合側面が傾斜面となっていることを特徴とする請求項1〜5のいずれか1項に記載の振動型リニアアクチュエータ。   The vibration type linear actuator according to any one of claims 1 to 5, wherein a joint side surface between the projecting side surface of the mover yoke and the permanent magnet is an inclined surface.
JP2005216373A 2005-07-26 2005-07-26 Vibratory linear actuator Withdrawn JP2007037273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216373A JP2007037273A (en) 2005-07-26 2005-07-26 Vibratory linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216373A JP2007037273A (en) 2005-07-26 2005-07-26 Vibratory linear actuator

Publications (1)

Publication Number Publication Date
JP2007037273A true JP2007037273A (en) 2007-02-08

Family

ID=37795839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216373A Withdrawn JP2007037273A (en) 2005-07-26 2005-07-26 Vibratory linear actuator

Country Status (1)

Country Link
JP (1) JP2007037273A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172993A (en) * 2006-12-14 2008-07-24 Shinko Electric Co Ltd Linear actuator
JP2009240046A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Electromagnetic actuator
JP2011217536A (en) * 2010-03-31 2011-10-27 Sinfonia Technology Co Ltd Mover and stator of linear drive device
CN102784749A (en) * 2011-05-18 2012-11-21 Lg伊诺特有限公司 Linear vibrator
JP2013529888A (en) * 2011-02-23 2013-07-22 ムーヴィング マグネット テクノロジーズ Electromagnetic actuators with improved force density and application to electric razors
CN104682657A (en) * 2015-02-17 2015-06-03 刘远芳 Alternate mobile power generation structure and remote control device
CN105449972A (en) * 2015-12-31 2016-03-30 温州伏尔特电子科技有限公司 Linear vibration motor
JP2018085791A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Magnetic field generation member and motor including the same
CN109112780A (en) * 2017-06-26 2019-01-01 日立空调·家用电器株式会社 Linear-motion actuator and the use in washing machine vibration absorber for using it
WO2020044631A1 (en) * 2018-08-29 2020-03-05 アルプスアルパイン株式会社 Operation device and vibration generating device
JPWO2020184108A1 (en) * 2019-03-12 2020-09-17
CN111727320A (en) * 2018-02-07 2020-09-29 Lg电子株式会社 Linear motor and linear compressor having the same
EP3845318A4 (en) * 2018-08-29 2022-08-10 Alps Alpine Co., Ltd. Operation device and vibration generating device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172993A (en) * 2006-12-14 2008-07-24 Shinko Electric Co Ltd Linear actuator
JP2009240046A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Electromagnetic actuator
JP2011217536A (en) * 2010-03-31 2011-10-27 Sinfonia Technology Co Ltd Mover and stator of linear drive device
KR101919513B1 (en) 2011-02-23 2018-11-16 무빙 마그네트 테크놀로지스 Electromagnetic actuator having improved force density and use thereof for an electric razor
KR20140010034A (en) * 2011-02-23 2014-01-23 무빙 마그네트 테크놀로지스 Electromagnetic actuator having improved force density and use thereof for an electric razor
JP2014135891A (en) * 2011-02-23 2014-07-24 Moving Magnet Technologies Electromagnetic actuator with improved force density and application to electric shaver
JP2013529888A (en) * 2011-02-23 2013-07-22 ムーヴィング マグネット テクノロジーズ Electromagnetic actuators with improved force density and application to electric razors
CN102784749A (en) * 2011-05-18 2012-11-21 Lg伊诺特有限公司 Linear vibrator
CN104682657A (en) * 2015-02-17 2015-06-03 刘远芳 Alternate mobile power generation structure and remote control device
CN105449972A (en) * 2015-12-31 2016-03-30 温州伏尔特电子科技有限公司 Linear vibration motor
JP2018085791A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Magnetic field generation member and motor including the same
CN109112780B (en) * 2017-06-26 2020-09-15 日立环球生活方案株式会社 Linear actuator and vibration damper for washing machine using the same
CN109112780A (en) * 2017-06-26 2019-01-01 日立空调·家用电器株式会社 Linear-motion actuator and the use in washing machine vibration absorber for using it
CN111727320A (en) * 2018-02-07 2020-09-29 Lg电子株式会社 Linear motor and linear compressor having the same
US11575303B2 (en) 2018-02-07 2023-02-07 Lg Electronics Inc. Linear motor and linear compressor having the same
WO2020044631A1 (en) * 2018-08-29 2020-03-05 アルプスアルパイン株式会社 Operation device and vibration generating device
EP3845318A4 (en) * 2018-08-29 2022-08-10 Alps Alpine Co., Ltd. Operation device and vibration generating device
US11770086B2 (en) 2018-08-29 2023-09-26 Alps Alpine Co., Ltd. Operation device and vibration generating device
JPWO2020184108A1 (en) * 2019-03-12 2020-09-17
WO2020184108A1 (en) * 2019-03-12 2020-09-17 アルプスアルパイン株式会社 Electromagnetic drive device and operation device
JP7154379B2 (en) 2019-03-12 2022-10-17 アルプスアルパイン株式会社 Electromagnetic drive and operating device
US11909290B2 (en) 2019-03-12 2024-02-20 Alps Alpine Co., Ltd. Electromagnetic drive device and operation device

Similar Documents

Publication Publication Date Title
JP2007037273A (en) Vibratory linear actuator
JP5991326B2 (en) Linear motor
RU2006130012A (en) LINEAR DRIVE WITH AN ANCHOR WITH A MAGNETIC CARRIER
JP2000253640A (en) Linear vibration motor
JP3302727B2 (en) Moving magnet type actuator
TWI513150B (en) Linear motor
JP2009240046A (en) Electromagnetic actuator
WO2009119450A1 (en) Electromagnetic actuator and electric shaver
JP2002369492A (en) Permanent magnet, magnetic circuit for generating magentic field and linear actuator using the same
JP3736381B2 (en) Vibration type linear actuator
JP2002064967A (en) Electromagnetic linear actuator
US20180145548A1 (en) Magnetic field generating member and motor including same
TWI756057B (en) Movable element and linear servo motor
US20050104454A1 (en) Linear motor and X-Y stage
JP4950652B2 (en) Electromagnetic actuator
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
JP2002112519A (en) Electromagnetially reciprocating driver
JP5003992B2 (en) Cylindrical linear motor
JP2007209175A (en) Three-phase linear motor
JP2691672B2 (en) Rectilinear electric machine
JP2004229345A (en) Linear motor
KR20050009501A (en) Mover device of Magnet concentration linear oscillator actuator
JP2005229778A (en) Linear motor
JP2015023662A (en) Linear motor
JP5909973B2 (en) Linear drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20081225

Free format text: JAPANESE INTERMEDIATE CODE: A761