JPH0644385U - Movable magnet type actuator - Google Patents

Movable magnet type actuator

Info

Publication number
JPH0644385U
JPH0644385U JP8399292U JP8399292U JPH0644385U JP H0644385 U JPH0644385 U JP H0644385U JP 8399292 U JP8399292 U JP 8399292U JP 8399292 U JP8399292 U JP 8399292U JP H0644385 U JPH0644385 U JP H0644385U
Authority
JP
Japan
Prior art keywords
magnet
movable
permanent magnets
magnetic
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8399292U
Other languages
Japanese (ja)
Other versions
JP2595510Y2 (en
Inventor
康之 平林
貴俊 大山
尋之 宗野
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1992083992U priority Critical patent/JP2595510Y2/en
Priority to US08/093,677 priority patent/US5434549A/en
Priority to EP9393111583A priority patent/EP0580117A3/en
Publication of JPH0644385U publication Critical patent/JPH0644385U/en
Application granted granted Critical
Publication of JP2595510Y2 publication Critical patent/JP2595510Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 磁石可動体や出力取り出し用ピンの無用のが
たつきを防止し、信頼性の向上を図った可動磁石式アク
チュエータを実現する。 【構成】 同極対向された2個の永久磁石5A,5B間
に磁性体6を設け、永久磁石外側端面にピン付き部材9
を設けて磁石可動体3を構成し、3連のコイル2A,2
B,2Cの内側に磁石可動体3を移動自在に設け、3連
のコイル2A,2B,2Cを、各永久磁石の磁極間を境
にして相異なる方向に電流が流れる如く結線し、更に軸
受部材20でピン付き部品9のピン部分9Aを摺動自在
に支えた構成とし、フレミングの左手の法則に準ずる推
力を発生するようにしている。
(57) [Abstract] [Purpose] To realize a movable magnet actuator with improved reliability by preventing unnecessary rattling of the movable magnet body and output extraction pin. [Structure] A magnetic body 6 is provided between two permanent magnets 5A and 5B facing each other with the same pole, and a member 9 with a pin is provided on an outer end surface of the permanent magnet.
Is provided to configure the movable magnet body 3, and the three consecutive coils 2A, 2
A movable magnet body 3 is movably provided inside B and 2C, and three coils 2A, 2B and 2C are connected so that currents flow in different directions with the magnetic poles of the permanent magnets as boundaries, and the bearings are further connected. The pin portion 9A of the pinned component 9 is slidably supported by the member 20 so that a thrust force according to Fleming's left-hand rule is generated.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、制御機器、電子機器、工作機械等において電気エネルギーを電磁作 用により往復運動エネルギー等に変換させる可動磁石式アクチュエータに関する 。 The present invention relates to a movable magnet type actuator for converting electric energy into reciprocating kinetic energy and the like by electromagnetic operation in control equipment, electronic equipment, machine tools and the like.

【0002】[0002]

【従来の技術】[Prior art]

従来、可動磁石式の往復運動装置としては、図6の第1従来例の構造を持つも の、及び図7の第2従来例の構造を持つものがある。 Conventionally, as a movable magnet type reciprocating device, there are a reciprocating device having a structure of a first conventional example in FIG. 6 and a structure of a second conventional example in FIG.

【0003】 図6の第1従来例において、10は軸方向に着磁した棒状の永久磁石からなる 磁石可動体であり、両端面に磁極を有している。コイル11A,11Bは、磁石 可動体10の端部外周側をそれぞれ環状に周回するように巻回され、隣合う部分 に同極が発生するようになっている。なお、図示は省略してあるが、コイル11 A,11Bは通常磁石可動体10を軸方向に移動自在にガイドするためのガイド 筒体に装着される。そして、磁石可動体10の各端面からの磁束がそれぞれコイ ル11A,11Bと鎖交している。In the first conventional example shown in FIG. 6, reference numeral 10 denotes a magnet movable body composed of a rod-shaped permanent magnet magnetized in the axial direction, and has magnetic poles on both end faces. The coils 11A and 11B are wound around the outer peripheral side of the end of the magnet movable body 10 so as to circulate in a ring shape, and the same pole is generated in adjacent portions. Although not shown, the coils 11A and 11B are usually mounted on a guide cylinder body for guiding the movable magnet body 10 movably in the axial direction. The magnetic flux from each end surface of the movable magnet body 10 is linked to the coils 11A and 11B, respectively.

【0004】 図7の第2従来例において、磁石可動体15は同極対向配置の2個の棒状永久 磁石16A,16Bと、これらの永久磁石16A,16B間に固着される棒状軟 磁性体17とを固着一体化したものであり、コイル18は磁石可動体15の中間 部外周側をそれぞれ環状に周回するように巻回されている。なお、図示は省略し てあるが、コイル18は通常磁石可動体15を軸方向に移動自在にガイドするた めのガイド筒体に装着される。そして、磁石可動体15の同極対向した永久磁石 端面からの磁束がコイル18と鎖交している。In the second conventional example shown in FIG. 7, the movable magnet body 15 is composed of two rod-shaped permanent magnets 16A and 16B having the same poles facing each other, and a rod-shaped soft magnetic body 17 fixed between these permanent magnets 16A and 16B. Are fixedly integrated with each other, and the coil 18 is wound so as to circulate in an annular shape on the outer peripheral side of the intermediate portion of the magnet movable body 15. Although not shown, the coil 18 is usually attached to a guide cylinder body for guiding the movable magnet body 15 movably in the axial direction. The magnetic fluxes from the end faces of the permanent magnets of the movable magnet body 15 facing each other with the same pole are linked with the coil 18.

【0005】 ところで、第1従来例及び第2従来例において、磁石可動体10,15に発生 する推力は、基本的にはフレミングの左手の法則に基づいて与えられる推力に準 ずるものである(フレミングの左手の法則はコイルに対して適用されるが、ここ ではコイルが固定のため、磁石可動体にコイルに作用する力の反力としての推力 が発生する。)。したがって、推力に寄与するのは、磁石可動体が有する永久磁 石の磁束の垂直成分(永久磁石の軸方向に直交する成分)である。By the way, in the first conventional example and the second conventional example, the thrust generated in the magnet movable bodies 10 and 15 is basically similar to the thrust given based on Fleming's left-hand rule ( Fleming's left-hand rule is applied to the coil, but since the coil is fixed here, thrust is generated as a reaction force of the force acting on the coil in the movable magnet body.) Therefore, it is the vertical component of the magnetic flux of the permanent magnet of the magnet movable body (the component orthogonal to the axial direction of the permanent magnet) that contributes to the thrust.

【0006】 そこで、1個の永久磁石の場合、あるいは2個の同極対向配置の永久磁石の場 合について、磁束の垂直成分がどのようになるのかそれぞれ解析してみた。Therefore, in the case of one permanent magnet or in the case of two permanent magnets of the same pole facing each other, the respective vertical components of the magnetic flux were analyzed.

【0007】 図8は、単独の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場解 析した結果を示す。但し、永久磁石は希土類永久磁石であって、直径2.5mm、 長さ6mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 8 shows the result of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surface of a single permanent magnet. However, the permanent magnet was a rare earth permanent magnet, and the diameter was 2.5 mm, the length was 6 mm, and the position at a distance of 0.25 to 0.45 mm from the surface of the permanent magnet was measured.

【0008】 図9は、2個の永久磁石を同極対向配置とし、かつ直接接合した場合において 、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場解析した結 果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5mm、長さ3m m(2個で6mm)で、永久磁石表面から0.25〜0.45mm離れた位置を計測し た。FIG. 9 shows the results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets are arranged with the same poles facing each other and are directly bonded. Show. However, each permanent magnet was a rare earth permanent magnet, and had a diameter of 2.5 mm, a length of 3 mm (6 mm with two magnets), and the position measured 0.25 to 0.45 mm from the surface of the permanent magnet was measured.

【0009】 図10は、2個の永久磁石を同極対向配置とし、かつ対向間隔を1mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 10 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets are arranged with the same poles facing each other and the facing distance is 1 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0010】 図11は、2個の永久磁石を同極対向配置とし、かつ対向間隔を2mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 11 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets are arranged with the same poles facing each other and the facing distance is 2 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0011】 図12は、2個の永久磁石を同極対向配置とし、かつ対向間隔を3mmとした場 合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成分を磁場 解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直径2.5m m、長さ3mmで、永久磁石表面から0.25〜0.45mm離れた位置を計測した。FIG. 12 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 3 mm. The result is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0012】 図13は、2個の永久磁石を同極対向配置とし、両永久磁石間に長さ1mmの軟 磁性体を配置した場合において、2個の永久磁石の長手側面に沿って表面磁束密 度の垂直成分を磁場解析した結果を示す。但し、各永久磁石は希土類永久磁石で あって、直径2.5mm、長さ3mmで、永久磁石表面から0.25〜0.45mm離れ た位置を計測した。FIG. 13 shows a case where two permanent magnets are arranged so as to face each other with the same pole, and a soft magnetic material having a length of 1 mm is arranged between the permanent magnets. The results of magnetic field analysis of the vertical component of the density are shown. However, each permanent magnet was a rare earth permanent magnet, and had a diameter of 2.5 mm and a length of 3 mm, and the position measured 0.25 to 0.45 mm away from the surface of the permanent magnet was measured.

【0013】 図14は、2個の永久磁石を同極対向配置とし、両永久磁石間に長さ1mmの軟 磁性体を配置し、さらに2個の永久磁石の外周に対向させて軟磁性体ヨークを配 設した場合において、2個の永久磁石の長手側面に沿って表面磁束密度の垂直成 分を磁場解析した結果を示す。但し、各永久磁石は希土類永久磁石であって、直 径2.5mm、長さ3mmで、ヨークは永久磁石を取り囲む円筒形状で厚み0.5mm、 長さ10mmで永久磁石外周から1.25mm離間した位置となっており、表面磁束 密度の垂直成分は永久磁石表面から0.25〜0.45mm離れた位置を計測した。In FIG. 14, two permanent magnets are arranged with the same poles facing each other, a soft magnetic material having a length of 1 mm is arranged between the permanent magnets, and the permanent magnets are opposed to the outer circumferences of the two permanent magnets. The results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the yoke is arranged are shown. However, each permanent magnet is a rare earth permanent magnet with a diameter of 2.5 mm and a length of 3 mm, and the yoke has a cylindrical shape surrounding the permanent magnet and has a thickness of 0.5 mm and a length of 10 mm, and is separated from the outer circumference of the permanent magnet by 1.25 mm. The vertical component of the surface magnetic flux density was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0014】[0014]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述したように、磁石可動体に発生する推力は、基本的にはフレミングの左手 の法則に基づいて与えられる推力に準ずるものであり、コイルと鎖交する永久磁 石の磁束の垂直成分(永久磁石の軸方向に直交する成分)が多いことが望まれる が、図6の第1従来例では、表面磁束密度の垂直成分は図8のようになり、図9 乃至図14の2個の永久磁石を同極対向配置とした場合に比較して垂直成分が少 ないことが判明した。このため図6の第1従来例の構成では、推力の向上に限界 がある。例えば、磁石可動体10を直径2.5mm、長さ6mmの希土類永久磁石で 構成し、2個のコイル11A,11Bの隣合う部分に同極が発生するように各コ イル11A,11Bに40mAの電流を流したときに発生する推力F1は4.7 (gf)であった。 As described above, the thrust generated in the magnet movable body basically complies with the thrust given based on Fleming's left-hand rule, and the vertical component (permanent component) of the magnetic flux of the permanent magnet that interlinks with the coil. It is desired that there are many components (perpendicular to the axial direction of the magnet), but in the first conventional example of FIG. 6, the vertical component of the surface magnetic flux density is as shown in FIG. 8, and the two permanent components of FIGS. It was found that the vertical component is smaller than when the magnets are arranged with the same poles facing each other. Therefore, the structure of the first conventional example shown in FIG. 6 has a limit in improving the thrust. For example, the magnet movable body 10 is composed of a rare earth permanent magnet having a diameter of 2.5 mm and a length of 6 mm, and 40 mA is applied to each coil 11A and 11B so that the same pole is generated in the adjacent portions of the two coils 11A and 11B. The thrust F1 generated when the current of (4) was applied was 4.7 (gf).

【0015】 一方、図7の第2従来例では、2個の同極対向の永久磁石間に軟磁性体を配し た磁石可動体15を用いており、磁束密度の垂直成分は図13に示す如くなり、 同極対向の永久磁石16A,16Bの磁極から出る磁束は1個の永久磁石の場合 (図8参照)や2個の永久磁石のみの場合(図9乃至図12参照)よりも多くな るが、コイルが磁石可動体15の中間部を囲む1個のみであり、磁石可動体15 の両端面の磁極による磁束は有効に利用していない嫌いがある。このため、図7 の第2従来例の場合も推力の向上が難しかった。例えば、図7の第2従来例にお いて磁石可動体15として直径2.5mm、長さ3mmの希土類永久磁石を2個用い (希土類永久磁石の性能は第1従来例と同じとする)、かつ両者間に長さ1mmの 軟磁性体を配置したものを用い、図6の第1従来例と同じ消費電力となるように 作成したコイル18に40mAの電流を流し、第1従来例と同じ消費電力とした ときに発生する推力F2は5.6(gf)であった。On the other hand, in the second conventional example of FIG. 7, the magnet movable body 15 in which the soft magnetic material is arranged between two permanent magnets of the same pole facing each other is used, and the vertical component of the magnetic flux density is shown in FIG. As shown, the magnetic flux emitted from the magnetic poles of the permanent magnets 16A and 16B facing each other is the same as in the case of one permanent magnet (see FIG. 8) or only two permanent magnets (see FIGS. 9 to 12). Although there are many coils, there is only one coil that surrounds the intermediate portion of the magnet movable body 15, and there is a dislike that the magnetic flux from the magnetic poles on both end surfaces of the magnet movable body 15 is not effectively used. Therefore, it was difficult to improve the thrust force in the case of the second conventional example shown in FIG. For example, in the second conventional example of FIG. 7, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 15 (the performance of the rare earth permanent magnet is the same as that of the first conventional example), Moreover, by using a soft magnetic material having a length of 1 mm arranged between the two, a current of 40 mA is applied to the coil 18 made to have the same power consumption as that of the first conventional example in FIG. The thrust F2 generated when used as power consumption was 5.6 (gf).

【0016】 なお、永久磁石に出力取り出し用ピンを設けてアクチュエータを構成する場合 、磁石可動体や出力取り出し用ピンの無用のがたつき等を解消することが望まし く、その点についての配慮も必要となる。When an output take-out pin is provided on the permanent magnet to form an actuator, it is desirable to eliminate unnecessary rattling of the magnet movable body and the output take-out pin, and consideration is given to that point. Will also be required.

【0017】 本考案は、上記の点に鑑み、少なくとも2個の永久磁石を同極対向配置とした 磁石可動体を用いしかも永久磁石の磁極が発生する磁束を有効利用することで、 推力の向上及び効率の向上を図るとともに、磁石可動体や出力取り出し用ピンの 無用のがたつきを防止して動作の信頼性の向上を図った可動磁石式アクチュエー タを提供することを目的とする。In view of the above points, the present invention improves the thrust force by using a magnetic movable body in which at least two permanent magnets are arranged with the same poles facing each other and by effectively using the magnetic flux generated by the magnetic poles of the permanent magnets. It is also an object of the present invention to provide a movable magnet type actuator in which efficiency is improved and unnecessary rattling of a movable magnet body or an output take-out pin is prevented to improve operation reliability.

【0018】[0018]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案の可動磁石式アクチュエータは、同極対向 された少なくとも2個の永久磁石間に磁性体を設けかつ少なくとも一端部の永久 磁石外側端面に出力取り出し用ピンを設けて磁石可動体を構成し、少なくとも3 連のコイルの内側に当該磁石可動体を移動自在に設け、前記少なくとも3連のコ イルを、各永久磁石の磁極間を境にして相異なる方向に電流が流れる如く結線す るとともに、前記3連のコイルに対して一定位置関係に支持された軸受部材で前 記出力取り出し用ピンを摺動自在に支えた構成としている。 In order to achieve the above object, the movable magnet type actuator of the present invention is provided with a magnetic body between at least two permanent magnets facing each other with the same pole, and providing an output take-out pin on at least one outer end surface of the permanent magnet. A movable magnet body, the movable magnet body is movably provided inside at least three continuous coils, and the at least three continuous coils are used to separate currents in different directions with the magnetic poles of the permanent magnets as boundaries. Is connected in such a manner that the current flows, and the output extraction pin is slidably supported by a bearing member that is supported in a fixed positional relationship with the triple coil.

【0019】 また、各永久磁石及び前記磁性体を非磁性筒状ホルダ内に収納するとともに、 少なくとも一端部の永久磁石外側端面に出力取り出し用ピン付き部材を配置し前 記筒状ホルダの端部で固定することによって前記磁石可動体を構成してもよい。Further, each permanent magnet and the magnetic body are housed in a non-magnetic cylindrical holder, and at least one end portion of the permanent magnet outer end surface is provided with a member with an output take-out pin. The magnet movable body may be configured by fixing the magnet movable body.

【0020】[0020]

【作用】[Action]

本考案の可動磁石式アクチュエータの基本動作原理を図4の概略構成図によっ て説明する。この図4で、磁石可動体3は同極対向配置の2個の円柱状永久磁石 5A,5Bと、これらの永久磁石5A,5B間に固着される円柱状軟磁性体6と を一体化したものであり、図13に示したように、磁束密度の垂直成分(永久磁 石の軸方向に直交する成分)が多い構造となっている。3連のコイル2A,2B ,2Cは、磁石可動体3の外周側を周回する如く巻回され、磁石可動体3を構成 する永久磁石5Aの左端、永久磁石5A,5Bの同極対向端、及び永久磁石5B の右端の磁極からの磁束とそれぞれ鎖交するように配置されている。これらのコ イル2A,2B,2Cは永久磁石5A,5Bの磁極間を境にして相異なる方向に 電流が流れる如く結線されている(磁極間の境は磁極と磁極の間であれば必ずし も磁極中間位置になくともよい。)。なお、図示は省略してあるが、コイル2A ,2B,2Cは通常磁石可動体3を軸方向に移動自在にガイドするためのガイド 筒体に装着される。コイル2A,2B,2Cと磁石可動体3との位置関係は、当 該磁石可動体3の全ての可動位置において、永久磁石磁極間を境にして各コイル に流れる電流が相互に逆向きとなるように設定しておく。 The basic operation principle of the movable magnet type actuator of the present invention will be described with reference to the schematic configuration diagram of FIG. In FIG. 4, the movable magnet body 3 is formed by integrating two columnar permanent magnets 5A and 5B, which have the same poles facing each other, and a columnar soft magnetic body 6 fixed between these permanent magnets 5A and 5B. As shown in FIG. 13, the magnetic flux density has a large vertical component (a component orthogonal to the axial direction of the permanent magnet). The three coils 2A, 2B, 2C are wound so as to circulate around the outer circumference of the magnet movable body 3, and the left end of the permanent magnet 5A constituting the magnet movable body 3 and the same pole opposite ends of the permanent magnets 5A, 5B are arranged. And the magnetic flux from the right end magnetic pole of the permanent magnet 5B. These coils 2A, 2B, 2C are connected so that currents flow in different directions with the magnetic poles of the permanent magnets 5A, 5B as the boundary (the boundary between the magnetic poles must be between magnetic poles. It does not have to be in the middle position of the magnetic pole either.) Although not shown, the coils 2A, 2B, 2C are usually mounted on a guide cylinder for guiding the movable magnet body 3 movably in the axial direction. As for the positional relationship between the coils 2A, 2B and 2C and the movable magnet body 3, the currents flowing through the respective coils are opposite to each other with the magnetic poles of the permanent magnets as a boundary at all movable positions of the movable magnet body 3. To set.

【0021】 図4における磁石可動体3の基本構造は、図13のように2個の永久磁石を同 極対向させかつ永久磁石間に軟磁性体を配置したものである。この図13のとき は軟磁性体位置に相当する領域Qの表面磁束密度の垂直成分は、軟磁性体の無い 図9乃至図12よりも優れている(磁束密度0.3T以上のピークの幅が広くか つピークが高い。)。The basic structure of the movable magnet body 3 in FIG. 4 is such that, as shown in FIG. 13, two permanent magnets face each other with the same pole and a soft magnetic body is arranged between the permanent magnets. In this FIG. 13, the vertical component of the surface magnetic flux density in the region Q corresponding to the position of the soft magnetic material is superior to that in FIGS. 9 to 12 without the soft magnetic material (the width of the peak of the magnetic flux density of 0.3T or more. Is wide and has a high peak.).

【0022】 このように、2個の永久磁石5A,5Bを同極対向させかつ永久磁石間に軟磁 性体6を設けた磁石可動体3は、フレミングの左手の法則に基づく推力に寄与で きる磁石可動体3の長手方向に垂直な磁束成分を大きくでき、かつ3連のコイル 2A,2B,2Cは永久磁石の全磁極の磁束と有効に鎖交するので、3連のコイ ル2A,2B,2Cに交互に逆極性の磁界を発生する向きに電流を通電すること により、従来例では到達し得ない大きな推力を発生することができる。各コイル の電流を反転させれば磁石可動体3の推力の向きも反転する。交流電流を流した 場合には、一定周期で振動を繰り返すバイブレータとして働く。As described above, the magnet movable body 3 in which the two permanent magnets 5A and 5B have the same poles facing each other and the soft magnetic body 6 is provided between the permanent magnets can contribute to the thrust based on Fleming's left-hand rule. The magnetic flux component perpendicular to the longitudinal direction of the movable magnet body 3 can be increased, and the triple coils 2A, 2B, 2C effectively interlink with the magnetic fluxes of all the magnetic poles of the permanent magnet, so that the triple coils 2A, 2B. , 2C are alternately supplied with a current in a direction in which a magnetic field of opposite polarity is generated, so that a large thrust that cannot be reached in the conventional example can be generated. If the current of each coil is reversed, the direction of the thrust of the movable magnet body 3 is also reversed. When an alternating current is applied, it acts as a vibrator that vibrates repeatedly in a fixed cycle.

【0023】 本考案の基本となる構成である図4の場合、例えば、磁石可動体3として直径 2.5mm、長さ3mmの希土類永久磁石を2個用い(希土類永久磁石の性能は第1 従来例と同じとする)、かつ両者間に長さ1mmの軟磁性体を配置したものを用い 、図6、図7の第1、第2従来例と同じ消費電力となるように作成した3連のコ イル2A,2B,2Cに40mAの電流を流し、同じ消費電力としたときに発生 する推力F3は6.7(gf)であった。これは、同一消費電力の第1従来例の場 合の約1.42倍の推力であり、また第2従来例の約1.2倍の推力であり、第1 及び第2従来例に比較して格段に優れていることが判る。In the case of FIG. 4 which is the basic configuration of the present invention, for example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is the first conventional one). The same as in the example), and a soft magnetic material having a length of 1 mm arranged between the two was used to create the same power consumption as the first and second conventional examples in FIGS. The thrust F3 generated when a current of 40 mA was applied to the coils 2A, 2B and 2C and the same power consumption was applied was 6.7 (gf). This is about 1.42 times the thrust of the first conventional example with the same power consumption, and about 1.2 times the thrust of the second conventional example, which is a comparison with the first and second conventional examples. And it turns out that it is remarkably excellent.

【0024】 図5の曲線(イ)は図4(ヨーク無し)の場合の磁石可動体3の軸方向変位量 と推力(gf)との関係を示す。但し、永久磁石の寸法、特性は図13に示したも のとするとともに、磁石可動体3の中間点が中央のコイル2Bの中間点に位置す るときを変位量零とし、各コイルの電流は40mAとした。The curve (a) in FIG. 5 shows the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of FIG. 4 (without a yoke). However, the dimensions and characteristics of the permanent magnet are as shown in FIG. 13, and when the midpoint of the magnet movable body 3 is located at the midpoint of the central coil 2B, the amount of displacement is zero, and the current of each coil is Was 40 mA.

【0025】 このように、本考案の可動磁石式アクチュエータは、同極対向の永久磁石の組 み合わせ構造体で磁石可動体を構成しており、永久磁石の着磁方向(軸方向)に 垂直な磁束密度成分を充分大きくできかつ永久磁石の全ての磁極の発生する磁束 を有効利用できるので、磁石可動体を取り巻くように周回した少なくとも3連の コイルに流れる電流との間のフレミングの左手の法則に基づく推力を充分大きく でき、小型、小電流で大きな推力を得ることができる。As described above, in the movable magnet type actuator of the present invention, the movable magnet body is composed of a combination structure of permanent magnets having the same poles facing each other, and is perpendicular to the magnetization direction (axial direction) of the permanent magnets. Since the magnetic flux density component can be made sufficiently large and the magnetic flux generated by all magnetic poles of the permanent magnet can be effectively used, the left hand of Fleming between the current flowing in at least three coils surrounding the movable magnet body The thrust based on the law can be made sufficiently large, and a large thrust can be obtained with a small size and a small current.

【0026】 さらに、図4の基本構成では図示していないが、磁石可動体に出力取り出し用 ピンを一体化し、該ピンを軸受部材で摺動自在に支持することで、磁石可動体及 び出力取り出し用ピンの無用のがたつきを解消しかつピンが軸方向に円滑に摺動 できるようにして動作の安定性を確保できる。Further, although not shown in the basic configuration of FIG. 4, an output take-out pin is integrated with the magnet movable body, and the pin is slidably supported by a bearing member, so that the magnet movable body and the output can be output. Unnecessary rattling of the take-out pin can be eliminated and the pin can slide smoothly in the axial direction, so that the stability of operation can be ensured.

【0027】[0027]

【実施例】【Example】

以下、本考案に係る可動磁石式アクチュエータの実施例を図面に従って説明す る。 An embodiment of a movable magnet type actuator according to the present invention will be described below with reference to the drawings.

【0028】 図1及び図2は本考案の実施例を示す。これらの図において、1は軟磁性体の 円筒状ヨークであり、該円筒状ヨーク1の内側に3連のコイル2A,2B,2C が配置され、磁石可動体3を移動自在に案内するためのガイド筒体4を構成する 絶縁樹脂等の絶縁部材で円筒状ヨーク1に固着されている。磁石可動体3は、同 極対向配置の2個の円柱状希土類永久磁石5A,5Bと、これらの永久磁石5A ,5B間に固着される円柱状軟磁性体6と、永久磁石5A,5Bの外側端面に固 着される出力取り出し用ピン付き部材9とからなり、それらの永久磁石5A,5 B、軟磁性体6及び出力取り出し用ピン付き部材9は接着剤等で相互に一体化さ れている。ピン付き部材9は非磁性又は磁性のどちらでもよい。前記3連のコイ ル2A,2B,2Cは永久磁石5A,5Bの磁極間を境にして相異なる方向に電 流が流れる如く結線されている。すなわち、中央のコイル2Bは軟磁性体6及び 永久磁石5A,5BのN極を含む端部を囲み、両側のコイル2A,2Cは、永久 磁石5A,5BのS極を含む端部をそれぞれ囲むことができるようになっており 、かつ中央のコイル2Bに流れる電流の向きと、両側のコイル2A,2Cの電流 の向きとは逆向きである(図1の各コイルに付したN,Sを参照)。1 and 2 show an embodiment of the present invention. In these figures, 1 is a soft magnetic cylindrical yoke, and three coils 2A, 2B, 2C are arranged inside the cylindrical yoke 1 to guide the movable magnet body 3 movably. The guide cylindrical body 4 is fixed to the cylindrical yoke 1 with an insulating member such as an insulating resin. The magnet movable body 3 includes two columnar rare earth permanent magnets 5A and 5B which are arranged in the same pole facing each other, a columnar soft magnetic body 6 fixed between the permanent magnets 5A and 5B, and the permanent magnets 5A and 5B. The permanent magnets 5A and 5B, the soft magnetic body 6, and the output pickup pin-attached member 9 are integrated with each other by an adhesive or the like. ing. The pinned member 9 may be either non-magnetic or magnetic. The three coils 2A, 2B and 2C are connected so that current flows in different directions with the magnetic poles of the permanent magnets 5A and 5B as boundaries. That is, the center coil 2B surrounds the end portion including the N pole of the soft magnetic body 6 and the permanent magnets 5A and 5B, and the coils 2A and 2C on both sides surround the end portion including the S poles of the permanent magnets 5A and 5B, respectively. In addition, the direction of the current flowing through the central coil 2B is opposite to the direction of the current flowing through the coils 2A and 2C on both sides (N and S attached to each coil in FIG. reference).

【0029】 また、前記軟磁性体の円筒状ヨーク1及び非磁性のガイド筒体4の両端部に非 磁性の側板8A,8Bが嵌合、固着され、該側板8A,8Bの中央部に真鍮等の 金属又は高摺動性樹脂等の円筒状軸受部材20がそれぞれ固定支持されている。 そして、各円筒状軸受部材20の内周面にて永久磁石5A,5Bの外側端面に固 着されたピン付き部材9のピン部分9Aが摺動自在に支えられ、該ピン部分9A は軸受部材外側に突出している。Further, non-magnetic side plates 8A and 8B are fitted and fixed to both ends of the soft-magnetic cylindrical yoke 1 and the non-magnetic guide cylindrical body 4, and brass is attached to the central part of the side plates 8A and 8B. Cylindrical bearing members 20 such as metal or high slidability resin are fixedly supported. The inner peripheral surface of each cylindrical bearing member 20 slidably supports the pin portion 9A of the pin-attached member 9 fixed to the outer end surfaces of the permanent magnets 5A and 5B. It projects to the outside.

【0030】 この実施例では、各コイル2A,2B,2Cの外周側に軟磁性体の円筒状ヨー ク1が設けられているため、磁石可動体3の表面磁束密度の垂直成分は、図14 に示す如く、さらに増大する。このため、フレミングの左手の法則に基づく推力 に寄与できる磁石可動体3の長手方向に垂直な磁束成分を大きくでき、磁石可動 体3の周囲を環状に巻回する3連のコイル2A,2B,2Cに交互に逆極性の磁 界を発生する向きに電流を通電することにより、いっそう大きな推力を発生する ことができる。例えば、磁石可動体3として直径2.5mm、長さ3mmの希土類永 久磁石を2個用い(希土類永久磁石の性能は第1従来例と同じとする)、かつ両 者間に長さ1mmの軟磁性体を配置したものを用い、図6、図7の第1、第2従来 例と同じ消費電力となるように作成した3連のコイル2A,2B,2Cに40m Aの電流を流し、同じ消費電力としたときに発生する推力F4は8.0(gf)で あった。推力F4の向きは、図1の極性では、磁石可動体3が右方向に移動する 向きであり、各コイルの電流を反転させれば磁石可動体3の推力の向きも反転す る。交流電流を流した場合には、一定周期で振動を繰り返すバイブレータとして 働く。In this embodiment, since the soft magnetic cylindrical yoke 1 is provided on the outer peripheral side of each coil 2A, 2B, 2C, the vertical component of the surface magnetic flux density of the magnet movable body 3 is as shown in FIG. Further increase as shown in. Therefore, the magnetic flux component perpendicular to the longitudinal direction of the magnet moving body 3 that can contribute to the thrust based on Fleming's left-hand rule can be increased, and the three coils 2A, 2B, which are wound around the magnet moving body 3 in an annular shape, An even greater thrust can be generated by passing a current in the direction of alternately generating magnetic fields of opposite polarity to 2C. For example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is the same as that of the first conventional example), and the length of 1 mm between both parties. Using a soft magnetic material arranged, a current of 40 mA is applied to the triple coils 2A, 2B and 2C which are made to have the same power consumption as the first and second conventional examples of FIGS. The thrust F4 generated at the same power consumption was 8.0 (gf). In the polarity of FIG. 1, the direction of the thrust F4 is the direction in which the magnet movable body 3 moves to the right, and if the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. When an alternating current is applied, it acts as a vibrator that repeats vibrations at regular intervals.

【0031】 図5の曲線(ロ)は実施例(但し、永久磁石及びヨークの寸法、配置及び永久 磁石の特性は図14の通り)の場合の磁石可動体3の軸方向変位量と推力(gf) との関係であって変位量零の点から離れる方向に磁石可動体が動作するときを示 す。また、曲線(ハ)は実施例(ヨーク有り)の場合の磁石可動体3の軸方向変 位量と推力(gf)との関係であって変位量零の点に近付く方向に動作するときを 示す。但し、磁石可動体3の中間点が中央のコイル2Bの中間点に位置するとき を変位量零とし、各コイルの電流は40mAとした。このように、磁石可動体3 が変位量零の点に近付くか又は離れるかによって推力が相違するのは、磁石可動 体3の永久磁石の磁極とヨーク1との間に磁石可動体3を変位量零点に戻す磁気 吸引力が働いているからである。The curve (b) in FIG. 5 is the axial displacement and thrust force of the magnet movable body 3 in the case of the embodiment (however, the dimensions and arrangement of the permanent magnet and the yoke and the characteristics of the permanent magnet are as shown in FIG. 14). It is related to gf) and shows when the movable magnet moves in the direction away from the point of zero displacement. The curve (c) is the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of the embodiment (with a yoke), and shows the curve when moving toward the point of zero displacement. Show. However, when the midpoint of the magnet movable body 3 is located at the midpoint of the central coil 2B, the displacement amount is set to zero, and the current of each coil is set to 40 mA. In this way, the thrust differs depending on whether the movable magnet body 3 approaches or moves away from the point of zero displacement, because the movable magnet body 3 is displaced between the magnetic pole of the permanent magnet of the movable magnet body 3 and the yoke 1. This is because the magnetic attractive force that returns to the quantity zero is working.

【0032】 さらに、上記実施例の場合、磁石可動体3に一体のピン付き部材9を軸受部材 20で摺動自在に支持することで、磁石可動体3を常時ガイド筒体4の内周中心 と同心状態に規制でき、磁石可動体3及びピン付き部材9の無用のがたつきを防 止できる。また、磁石可動体3がガイド筒体4の内周面に接触しなくなるため、 磁石可動体3を軸方向に円滑に移動させることが可能であり、磁石可動体3やガ イド筒体4の摩耗等の問題も解消できる。Further, in the case of the above-mentioned embodiment, by supporting the member with a pin 9 integral with the movable magnet body 3 by the bearing member 20 so as to be slidable, the movable magnet body 3 is always centered on the inner circumference of the guide cylinder body 4. Therefore, it is possible to prevent the rattling of the magnet movable body 3 and the pinned member 9 from being unnecessary. Moreover, since the magnet movable body 3 does not come into contact with the inner peripheral surface of the guide cylinder 4, the magnet movable body 3 can be smoothly moved in the axial direction, and the magnet movable body 3 and the guide cylinder 4 can be moved smoothly. Problems such as wear can be solved.

【0033】 図3は実施例で用いる磁石可動体の変形例を示す。この場合、磁石可動体3A は、同極対向された2個の永久磁石5A,5B間に円柱状軟磁性体6を配置し、 これらを非磁性筒状ホルダ7内に収納するとともに、各永久磁石5A,5Bの外 側端面に出力取り出し用ピン付き部材9をそれぞれ配置し、該ピン付き部材9の 円板状部9Bを前記筒状ホルダ7の両端部で固定したものである。筒状ホルダ7 に対する永久磁石5A,5B、円柱状軟磁性体6及びピン付き部材9の固定は、 接着剤等で行っても良いし、筒状ホルダ7の端部をかしめて行っても良い。FIG. 3 shows a modification of the movable magnet body used in the embodiment. In this case, the movable magnet body 3A has a cylindrical soft magnetic body 6 arranged between two permanent magnets 5A and 5B facing each other with the same pole, and these are housed in a non-magnetic cylindrical holder 7 and A member 9 with a pin for taking out an output is arranged on the outer end surface of each of the magnets 5A and 5B, and a disk-shaped portion 9B of the member 9 with a pin is fixed at both ends of the cylindrical holder 7. The permanent magnets 5A, 5B, the cylindrical soft magnetic body 6 and the member 9 with the pin may be fixed to the cylindrical holder 7 with an adhesive or the like, or the ends of the cylindrical holder 7 may be caulked. .

【0034】 なお、前述の実施例において、前記側板8A,8Bを軟磁性材で構成して、吸 着板として機能させても良い。この場合には、磁石可動体3は各コイル2A,2 B,2Cに通電していない状態では軟磁性の側板8A,8Bのいずれかに吸着さ れることになる。そして、現在吸着している側板から磁石可動体3が離脱する向 きに各コイル2A,2B,2Cで推力を発生させれば、反対側の側板方向に磁石 可動体3が移動して吸着停止する。In the above-described embodiment, the side plates 8A and 8B may be made of a soft magnetic material and function as a suction plate. In this case, the magnet movable body 3 is attracted to one of the soft magnetic side plates 8A and 8B when the coils 2A, 2B and 2C are not energized. Then, if a thrust force is generated in each of the coils 2A, 2B, and 2C so that the magnet movable body 3 separates from the side plate that is currently attracted, the magnet movable body 3 moves in the opposite side plate direction and the attraction stops. To do.

【0035】 また、上記実施例では、2個の同極対向の永久磁石と両永久磁石間の軟磁性体 を備える磁石可動体3を例示したが、3個以上の同極対向の永久磁石と両永久磁 石間の軟磁性体を備える構成としてもよく、これに対応させてコイル数も4個以 上とすることができる。Further, in the above-described embodiment, the magnet movable body 3 including two permanent magnets of the same pole facing each other and the soft magnetic body between the permanent magnets has been exemplified, but three or more permanent magnets of the same pole facing each other are provided. The soft magnetic material between the two permanent magnets may be provided, and the number of coils may be four or more correspondingly.

【0036】 さらに、実施例では磁石可動体3は両側にピン付き部材9を具備するが、いず れか一方のみにピン付き部材9を設けるようにしても良い。この場合、軸受部材 20も一方のみとなる(但し、軸受部材20を長めにすることが望ましい。)。Furthermore, in the embodiment, the movable magnet body 3 has the pinned members 9 on both sides, but the pinned member 9 may be provided on only one of them. In this case, only one bearing member 20 is provided (however, it is desirable to make the bearing member 20 longer).

【0037】 また、実施例において、ガイド筒体4を省略して各コイル2A,2B,2Cを ヨーク1の内周側に絶縁固定する構造を採用することも可能である。Further, in the embodiment, it is possible to adopt a structure in which the guide cylinder 4 is omitted and the coils 2A, 2B, 2C are insulated and fixed to the inner peripheral side of the yoke 1.

【0038】 前記実施例では、円筒状のヨーク1及びガイド筒体4を用いたが、角筒状等の ヨーク及びガイド体を採用することもでき、この場合も各コイルは磁石可動体の 外周を周回するように巻回すればよい。Although the cylindrical yoke 1 and the guide cylinder 4 are used in the above-described embodiment, it is also possible to employ a rectangular cylinder-shaped yoke and guide body. In this case, each coil also has an outer periphery of the magnet movable body. It may be wound so as to go around.

【0039】[0039]

【考案の効果】[Effect of device]

以上説明したように、本考案の可動磁石式アクチュエータによれば、同極対向 された少なくとも2個の永久磁石間に磁性体を設けた磁石可動体を用い、該ピン を軸受部材で摺動自在に支える構成としたので、磁石可動体の長手方向(永久磁 石の着磁方向)に垂直な磁束成分を充分大きくでき、かつ磁石可動体の周囲を取 り巻くように少なくとも3連のコイルを巻回して磁石可動体の各磁極が発生する 磁束と有効に鎖交可能としたので、前記垂直な磁束成分と各コイルに流れる電流 との間のフレミングの左手の法則に基づいて与えられる推力を充分大きくできる 。また、磁石可動体の一側に出力取り出し用ピンを具備する構成であり、該ピン を前記3連のコイルに対して一定位置関係にある軸受部材で支持することで、磁 石可動体の移動を円滑化することができる。このため、小型、小電流で大きな推 力を持つ信頼性の高い可動磁石式アクチュエータを実現できる。 As described above, according to the movable magnet type actuator of the present invention, the magnetic movable body in which the magnetic body is provided between at least two permanent magnets having the same pole facing each other is used, and the pin is slidable by the bearing member. The magnetic flux component perpendicular to the longitudinal direction of the magnet moving body (the magnetization direction of the permanent magnet) can be sufficiently increased, and at least three coils are wound around the magnet moving body. Since it is possible to effectively interlink with the magnetic flux generated by each magnetic pole of the magnet movable body by winding, the thrust given based on Fleming's left-hand rule between the vertical magnetic flux component and the current flowing in each coil is Can be made large enough. In addition, it is configured such that an output take-out pin is provided on one side of the magnet movable body, and the pin is supported by a bearing member that is in a fixed positional relationship with the triple coil, so that the movable body of the magnet moves. Can be smoothed. Therefore, it is possible to realize a highly reliable movable magnet actuator that is small in size, has a small current, and has large thrust.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る可動磁石式アクチュエータの実施
例を示す正断面図である。
FIG. 1 is a front sectional view showing an embodiment of a movable magnet type actuator according to the present invention.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】実施例で用いる磁石可動体の変形例を示す正断
面図である。
FIG. 3 is a front sectional view showing a modified example of the movable magnet body used in the embodiment.

【図4】本考案の基本構成を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a basic configuration of the present invention.

【図5】図1及び図4の可動磁石式アクチュエータにお
ける磁石可動体の変位量と推力との関係を示すグラフで
ある。
5 is a graph showing the relationship between the amount of displacement of the movable magnet body and the thrust force in the movable magnet actuator shown in FIGS. 1 and 4. FIG.

【図6】第1従来例を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a first conventional example.

【図7】第2従来例を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a second conventional example.

【図8】単一の永久磁石の長手側面(永久磁石の着磁方
向に平行な面)の表面磁束密度の垂直成分(長手側面に
垂直な成分)を示すグラフである。
FIG. 8 is a graph showing a vertical component (a component perpendicular to a longitudinal side surface) of a surface magnetic flux density on a longitudinal side surface (a surface parallel to a magnetizing direction of the permanent magnet) of a single permanent magnet.

【図9】2個の同極対向の永久磁石を直接的に対接状態
とした場合の長手側面の表面磁束密度の垂直成分を示す
グラフである。
FIG. 9 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets of the same pole facing each other are directly brought into contact with each other.

【図10】2個の永久磁石を1mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 10 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with an air gap of 1 mm.

【図11】2個の永久磁石を2mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 11 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 2 mm.

【図12】2個の永久磁石を3mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 12 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the same pole facing state with an air gap of 3 mm.

【図13】2個の永久磁石を軟磁性体を介し同極対向状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 13 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side face when two permanent magnets are in the state of opposing each other with a soft magnetic body interposed therebetween.

【図14】2個の永久磁石を軟磁性体を介し同極対向状
態とし、かつ軟磁性体ヨークを配置した場合の長手側面
の表面磁束密度の垂直成分を示すグラフである。
FIG. 14 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with a soft magnetic material interposed and a soft magnetic material yoke is arranged.

【符号の説明】[Explanation of symbols]

1 円筒状ヨーク 2A,2B,2C コイル 3,3A 磁石可動体 4 ガイド筒体 5 円柱状永久磁石 6 円柱状軟磁性体 7 筒状ホルダ 9 ピン付き部材 8A,8B 側板 20 軸受部材 1 Cylindrical Yoke 2A, 2B, 2C Coil 3, 3A Magnet Moving Body 4 Guide Cylindrical Body 5 Cylindrical Permanent Magnet 6 Cylindrical Soft Magnetic Body 7 Cylindrical Holder 9 Pin Member 8A, 8B Side Plate 20 Bearing Member

───────────────────────────────────────────────────── フロントページの続き (72)考案者 斉藤 重男 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Shigeo Saito 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 同極対向された少なくとも2個の永久磁
石間に磁性体を設けかつ少なくとも一端部の永久磁石外
側端面に出力取り出し用ピンを設けて磁石可動体を構成
し、少なくとも3連のコイルの内側に当該磁石可動体を
移動自在に設け、前記少なくとも3連のコイルを、各永
久磁石の磁極間を境にして相異なる方向に電流が流れる
如く結線するとともに、前記3連のコイルに対して一定
位置関係に支持された軸受部材で前記出力取り出し用ピ
ンを摺動自在に支えたことを特徴とする可動磁石式アク
チュエータ。
1. A magnetic movable body is constructed by providing a magnetic body between at least two permanent magnets facing each other of the same pole, and providing an output take-out pin on an outer end face of the permanent magnet at least at one end thereof, and at least three continuous magnets. The magnet movable body is movably provided inside the coil, and the at least three coils are connected so that currents flow in different directions with the magnetic poles of the permanent magnets as boundaries, and the at least three coils are connected to each other. A movable magnet actuator characterized in that the output take-out pin is slidably supported by a bearing member supported in a fixed positional relationship.
【請求項2】 前記磁石可動体が、各永久磁石及び前記
磁性体を非磁性筒状ホルダ内に収納するとともに、少な
くとも一端部の永久磁石外側端面に出力取り出し用ピン
付き部材を配置し前記筒状ホルダの端部で固定したもの
である請求項1記載の可動磁石式アクチュエータ。
2. The movable magnet body accommodates each permanent magnet and the magnetic body in a non-magnetic cylindrical holder, and at least one end portion of the permanent magnet outside end surface is provided with a member with an output take-out pin. The movable magnet type actuator according to claim 1, wherein the movable holder is fixed at an end of the holder.
JP1992083992U 1992-07-20 1992-11-12 Moving magnet type actuator Expired - Lifetime JP2595510Y2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1992083992U JP2595510Y2 (en) 1992-11-12 1992-11-12 Moving magnet type actuator
US08/093,677 US5434549A (en) 1992-07-20 1993-07-20 Moving magnet-type actuator
EP9393111583A EP0580117A3 (en) 1992-07-20 1993-07-20 Moving magnet-type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992083992U JP2595510Y2 (en) 1992-11-12 1992-11-12 Moving magnet type actuator

Publications (2)

Publication Number Publication Date
JPH0644385U true JPH0644385U (en) 1994-06-10
JP2595510Y2 JP2595510Y2 (en) 1999-05-31

Family

ID=13818035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992083992U Expired - Lifetime JP2595510Y2 (en) 1992-07-20 1992-11-12 Moving magnet type actuator

Country Status (1)

Country Link
JP (1) JP2595510Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106447A (en) * 2001-09-28 2003-04-09 Isuzu Motors Ltd Shift actuator for transmission
JP2003106446A (en) * 2001-09-28 2003-04-09 Isuzu Motors Ltd Variable speed operation device
JP2013208695A (en) * 2012-03-30 2013-10-10 Hitachi Koki Co Ltd Nailing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591429B2 (en) * 2000-06-22 2004-11-17 オムロンヘルスケア株式会社 Flow control valve and sphygmomanometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116713U (en) * 1978-02-06 1979-08-16
JPS54116714U (en) * 1978-02-06 1979-08-16
JPS54133314U (en) * 1978-03-08 1979-09-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116713U (en) * 1978-02-06 1979-08-16
JPS54116714U (en) * 1978-02-06 1979-08-16
JPS54133314U (en) * 1978-03-08 1979-09-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106447A (en) * 2001-09-28 2003-04-09 Isuzu Motors Ltd Shift actuator for transmission
JP2003106446A (en) * 2001-09-28 2003-04-09 Isuzu Motors Ltd Variable speed operation device
JP2013208695A (en) * 2012-03-30 2013-10-10 Hitachi Koki Co Ltd Nailing machine

Also Published As

Publication number Publication date
JP2595510Y2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US5434549A (en) Moving magnet-type actuator
US5175457A (en) Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JP3863429B2 (en) Linear vibration actuator
EP1148620A1 (en) Linear motor
JP3302727B2 (en) Moving magnet type actuator
JP3302777B2 (en) Moving magnet type actuator
JP3470689B2 (en) Linear actuator
US6483207B1 (en) Auto-centering linear motor
JP3945916B2 (en) Movable iron core type linear motor
JP2596857Y2 (en) Moving magnet type actuator
JP3755071B2 (en) Surface movement actuator
JP2010158140A (en) Linear motor
JPS61106058A (en) Ultrafine displacement linear electromagnetic actuator
JPH0644385U (en) Movable magnet type actuator
JPH0644384U (en) Movable magnet type actuator
JP2002112519A (en) Electromagnetially reciprocating driver
JPH06189518A (en) Linear motor
JPH0824787A (en) Shaking device
JPH03112354A (en) Linear actuator
JP3873765B2 (en) Linear actuator
JPS5810946B2 (en) Denjikudo Souchi
JPH08163850A (en) Single pole dc linear motor
JPS591414Y2 (en) Reciprocating drive device
JP2002034224A (en) Magnet-movable linear motor
JP2003235234A (en) Linear actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9