JPH0787941B2 - Double pipe manufacturing method - Google Patents

Double pipe manufacturing method

Info

Publication number
JPH0787941B2
JPH0787941B2 JP2002469A JP246990A JPH0787941B2 JP H0787941 B2 JPH0787941 B2 JP H0787941B2 JP 2002469 A JP2002469 A JP 2002469A JP 246990 A JP246990 A JP 246990A JP H0787941 B2 JPH0787941 B2 JP H0787941B2
Authority
JP
Japan
Prior art keywords
tube
pipe
temperature
cooling
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002469A
Other languages
Japanese (ja)
Other versions
JPH03207522A (en
Inventor
俊光 荒木
雅之 犬塚
猛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002469A priority Critical patent/JPH0787941B2/en
Publication of JPH03207522A publication Critical patent/JPH03207522A/en
Publication of JPH0787941B2 publication Critical patent/JPH0787941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、腐蝕性流体等の輸送用等の配管に於いて、
外管が耐圧性、耐熱性の炭素鋼やステンレス鋼の金属材
料であり、内管が耐蝕性、耐摩耗性の高いステンレス鋼
やクロモリ鋼の金属材料やアルミナに代表されるセラミ
ックス材料であったり等する緊結二重管の製造技術の分
野に属する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The disclosed technology relates to pipes for transporting corrosive fluids, etc.
The outer tube is a pressure-resistant and heat-resistant metallic material of carbon steel or stainless steel, and the inner tube is a highly corrosive and wear-resistant metallic material of stainless steel or chromoly steel, or a ceramic material typified by alumina. Belongs to the field of manufacturing technology of tightly-coupled double tube.

〈要旨の概要〉 而して、この出願の発明は炭素鋼製等の外管とSUS製等
の内管を遊挿状態等に相対重層する等して素管と成した
後に、リング状の高周波誘導加熱装置等により外管に対
し該素管の外側、或いは、金属材料の場合、内側から加
熱して固溶化熱処理を施し、更に、その前後において水
道水によるシャワーリング等を介して急冷する環熱縮径
や環熱膨径を行って外管を内管に、或いは、内管を外管
に対し緊結するようにする二重管の製造方法に関する発
明であり、特に、上記高周波誘導加熱装置等による固溶
化熱処理における環状加熱・冷却を、当該外管の降伏応
力に応じて塑性変形しないように環熱加熱の加熱温度を
制御する等してその後急冷するようにする等し、この
際、高周波誘導加熱装置による環状加熱と環状冷却とを
管体との軸方向相対移動、及び、相対回転を行うように
したり、又更に、環状加熱を管体の板厚方向に温度勾配
を付して行ったり、最高温度を上げるようにする等した
二重管製造方法に係る発明である。
<Summary of summary> The invention of the present application, therefore, has a ring-shaped outer tube made of carbon steel or the like and an inner tube made of SUS or the like, which are laminated to each other in a loosely inserted state to form a raw tube. A high-frequency induction heating device is used to heat the outer tube from the outside of the tube, or in the case of a metal material, from the inside to perform solution heat treatment, and before and after that, it is rapidly cooled via a shower ring with tap water. The present invention relates to a method for producing a double pipe in which an outer pipe is tightly connected to an inner pipe or an inner pipe is tightly connected to an outer pipe by performing ring heat shrinkage or ring heat expansion, and particularly, the high frequency induction heating described above. For the annular heating / cooling in solution heat treatment by an apparatus, etc., the heating temperature of the annular heating is controlled so as not to plastically deform in accordance with the yield stress of the outer tube, and then quenching is performed. , Annular heating and cooling by a high frequency induction heating device A double tube that is designed to perform relative movement and relative rotation in the axial direction of the tube, or to perform annular heating with a temperature gradient in the plate thickness direction of the tube, or to raise the maximum temperature. The invention relates to a manufacturing method.

〈従来の技術〉 周知の如く、配管は多くの分野に於いて各種産業でも広
く用いられており、本来的な流体輸送用ばかりでなく、
近時においては情報伝達用から構造部材等にも用いられ
るようになっており、したがって、配管の機能としては
単に強度、剛性等による耐圧性や耐熱性ばかりでなく、
撓性や耐蝕性、耐摩耗性等多くの複重した機能が求めら
れるようになり、しかも、これらの多重機能が求められ
るような厳しい条件下で稼動するものが必要になってき
ており、原子力産業や重化学工業等に於ける新技術分野
に於いては益々これらの複雑な多,高機能が求められる
ようになってきている。
<Prior Art> As is well known, piping is widely used in many fields and in various industries, and is not only used for fluid transport as it is.
In recent years, it has come to be used not only for information transmission but also for structural members, etc. Therefore, not only the function of piping is not only pressure resistance and heat resistance due to strength, rigidity, etc., but also
Many of the multiple functions such as flexibility, corrosion resistance, and wear resistance are required, and moreover, it is necessary to operate those under severe conditions that require these multiple functions. In the field of new technology in industry, heavy chemical industry, etc., more and more of these complicated functions and higher functions are required.

しかしながら、新素材や新材料の開発が盛んではあるも
のの、現今の技術においてはこれらの複雑な機能や条件
を1つの材料で全て満足するような素材や材質のものは
未だ開発されておらず、したがって、例えば、用途に応
じて外管を炭素鋼製にして耐圧性、耐熱性を司どるよう
にし、内管をステンレス製等にして耐蝕性、耐摩耗性を
司どるようにし、両者を所定に緊結嵌合させた二重管等
の複重管が用いられるようにはなってきている。
However, despite the active development of new materials and materials, in the present technology, materials and materials that satisfy all these complicated functions and conditions with one material have not yet been developed, Therefore, for example, the outer tube is made of carbon steel to control the pressure resistance and heat resistance, and the inner tube is made of stainless steel to control the corrosion resistance and wear resistance according to the application. Double-walled tubes such as double-walled tubes that are tightly fitted to each other have been used.

さりながら、かかる二重管等に於ける外管(外側管)と
内管(内側管)の緊結に際してはこれまで、例えば、ク
ラッド法や焼き嵌め法、更には、水圧拡管法等も開発さ
れているが、それぞれ技術的に一長一短があり、又、経
済的にも見合わず、製品精度の信頼性にも欠ける等とい
う不都合さがあった。
By the way, when the outer tube (outer tube) and the inner tube (inner tube) are tightly bonded in such a double tube, the clad method, the shrink fitting method, and the hydraulic expansion method have been developed so far. However, there are drawbacks such as technical advantages and disadvantages, economically unbalanced, and lack of reliability of product accuracy.

これに対し、出願人の多くの先願発明、考案に示されて
いるような所謂熱拡管法や近時の環熱縮径法(環熱膨径
法)等が有効な二重管製造方法として研究開発実用化さ
れているが、外管と内管の嵌合力を強め、充分な緊結状
態を現出するために二次的に材質向上のための熱処理等
が必要とされており、例えば、環熱縮径法においては、
外管に炭素鋼製のものを用いた場合に、約800℃程度で
実用に耐える外管の縮径が行われ、炭素鋼の変態温度が
900℃程度であることから、これらの温度の範囲で環熱
加熱・冷却により有効な材質向上熱処理(焼準)を縮径
と併用して行うようにしていた。
On the other hand, a so-called heat expansion tube method or a recent ring heat reduction method (ring heat expansion method) as shown in many of the applicant's inventions and inventions of the applicant is a double tube production method effective. Has been put into practical use as research and development, but in order to strengthen the fitting force between the outer tube and the inner tube and to reveal a sufficiently tightly connected state, secondary heat treatment etc. is required to improve the material quality. , In the ring thermal reduction method,
When carbon steel is used for the outer tube, the outer tube is reduced in diameter to withstand practical use at about 800 ° C, and the transformation temperature of the carbon steel increases.
Since the temperature is around 900 ° C, effective heat treatment (normalization) for material improvement by ring heating / cooling in these temperature ranges was performed in combination with diameter reduction.

尚、上述態様はγ系ステンレスとして用いた場合であ
る。
In addition, the above-mentioned aspect is a case where it is used as γ-based stainless steel.

〈発明が解決しようとする課題〉 然して、前述した如く、近時原子力プラントに於ける配
管や腐蝕性流体中等に於ける配管等の技術が必要になっ
てくると、二重管の外管が炭素鋼製のものばかりではな
く、例えば、ステンレス鋼やクロモリ鋼の特殊鋼にさ
れ、セラミックス製の内管に対し緊結嵌合されるような
態様が新しく求められるようになってきている。
<Problems to be Solved by the Invention> However, as described above, when a technique such as piping in a nuclear power plant or piping in a corrosive fluid is recently required, the outer pipe of the double pipe is Not only carbon steel but also special steel such as stainless steel or chromoly steel, which is tightly fitted to a ceramic inner pipe, has been newly demanded.

しかも、かかるセラミックス製等の内管に対するステン
レス鋼やクロモリ鋼製等の外管の緊結嵌合にしてのオー
バーな緊結応力が生じた場合には、当該セラミックス製
の内管の稼動中における熱衝撃破壊や製造中のクラック
等が生ずる虞れがあり、したがって、配管の用途や外管
と内管の選択組合せによる最適緊結嵌合が求められねば
ならず、そのため、一挙に外管と内管を嵌合させること
よりも、複数回のパスを重ねて徐々にバラツキなく最適
嵌合応力を生ずるように緊結する環熱縮径(環熱膨径)
方法がにわかに脚光を浴びるようになってきた。
In addition, when an excessive binding stress occurs when the outer tube made of stainless steel or chromoly steel is tightly fitted to the inner tube made of ceramics, thermal shock during operation of the inner tube made of ceramics is generated. There is a risk of breakage and cracks during manufacturing.Therefore, it is necessary to find the optimum tight fitting by the use of piping and the selected combination of outer and inner pipes. Ring heat shrinkage (ring thermal expansion diameter) that causes multiple fittings to be performed more than once and to be tightly bonded so that optimum fitting stress is generated gradually without variation.
The method has suddenly come into the limelight.

而して、かかる環熱縮径法を図面に従って略設すると、
第1図に示す様に、所定の外管1に対し内管2を間隙を
介して遊挿状態にして相対重層して素管3と成し、次い
で、第2図に示す様に、その相対重層された該素管3の
外管1の所定部位に環状加熱装置としての高周波誘導加
熱装置4と、該高周波誘導加熱装置4の前後で軸方向所
定間隔を介して環状冷却装置としての水道水等によるシ
ャワーリング冷却装置5を一体的にセットし、これらの
高周波誘導加熱装置4、及び、シャワーリング冷却装置
5に対し素管3を軸方向所定速度で相対移動させると共
に相対回転をさせていくと、階高周波誘導加熱装置4に
対応する外管1の部分が短管であってその両端が自由端
である場合には全体的に膨径するが、加熱部の両端がそ
れらの軸方向外側で拘束され、しかも、その前後におい
てシャワーリング冷却装置5により急冷されるために、
第3図に示す様に、押え曲げモーメントFが作用して材
料調質熱処理がなされると共に、所謂環熱縮径がなされ
て第4図に示す様に、外管1は縮径し、かかるプロセス
を反復することにより、外管1は内管3に対し縮径して
所定に緊結嵌合されるようになる。
Then, when the ring thermal contraction method is outlined according to the drawing,
As shown in FIG. 1, an inner tube 2 is loosely inserted into a predetermined outer tube 1 with a gap therebetween, and the layers are relatively laminated to form an elementary tube 3. Then, as shown in FIG. A high-frequency induction heating device 4 as an annular heating device at a predetermined portion of the outer pipe 1 of the base pipe 3 which is relatively overlaid, and a water supply as an annular cooling device before and after the high-frequency induction heating device 4 with a predetermined axial interval. The shower ring cooling device 5 made of water or the like is integrally set, and the base pipe 3 is relatively moved with respect to the high frequency induction heating device 4 and the shower ring cooling device 5 at a predetermined axial speed and is relatively rotated. Then, when the portion of the outer tube 1 corresponding to the high-frequency induction heating device 4 is a short tube and both ends thereof are free ends, the diameter is expanded as a whole, but both ends of the heating portion are in the axial direction. Restraint on the outside, and before and after the shower ring To be quenched by retirement unit 5,
As shown in FIG. 3, the pressing bending moment F acts to heat-treat the material, and the so-called ring thermal contraction is performed, so that the outer tube 1 contracts as shown in FIG. By repeating the process, the outer tube 1 is reduced in diameter with respect to the inner tube 3 to be tightly fitted in a predetermined manner.

尚、内管2の環熱膨径については該内管2の内側に高周
波誘導加熱装置4、及び、シャワーリング冷却装置5を
セットして反り曲がりモーメントを内管2に付与するよ
うにして該内管2の外管1に対する膨径を行うようにす
る。
Regarding the ring thermal expansion diameter of the inner pipe 2, the high frequency induction heating device 4 and the shower ring cooling device 5 are set inside the inner pipe 2 so that a warp bending moment is applied to the inner pipe 2. The inner tube 2 is expanded relative to the outer tube 1.

しかしながら、新しい需要が生じて外管1にステンレス
鋼やクロモリ鋼等を用いる場合には、炭素鋼を用いる場
合よりも変態温度が高く、しかも、降伏応力が高いため
に、従来の外管1が炭素鋼等である場合よりも加熱温度
を高くしなければならず、しかも、変態温度より低く抑
制するための熱管理が難しいという難点があった。
However, when new demand arises and the outer tube 1 is made of stainless steel, chromoly steel, or the like, the transformation temperature is higher and the yield stress is higher than when carbon steel is used. The heating temperature has to be higher than that of carbon steel and the heat management for suppressing the temperature lower than the transformation temperature is difficult.

又、反復して行った複数種の実験によれば、高周波誘導
加熱装置4による外管1の板厚方向の加熱温度が均一分
布状態では充分に顕著な緊結嵌合応力を有する環熱縮径
が設計通りに得られないという不具合が発見された。
Further, according to a plurality of types of repeated experiments, a ring thermal contraction having a sufficiently noticeable tight fitting stress when the heating temperature of the outer tube 1 in the plate thickness direction by the high frequency induction heating device 4 is uniformly distributed. A bug was discovered that could not be obtained as designed.

そして、管体の材質により環熱履歴が異なると熱処理後
の管体の材質が劣化するような場合もあることも発見さ
れた。
It was also discovered that if the ring heat history varies depending on the material of the tube, the material of the tube after heat treatment may deteriorate.

〈発明の目的〉 この出願の発明の目的は上述従来技術に基づく環熱変径
による二重管等の複重管における外管と内管の材質の相
違に基づく環熱縮径(膨径)による緊結嵌合の問題点を
解決すべき技術的課題とし、外管を内管に対しワンパス
ずつ縮径して一定の緊結嵌合を得ることが出来る環熱変
径の利点を用いながらも、当該外管と内管の材質の組合
せに応じて外管熱処理を介しての最適緊結嵌合がなし得
るようにして各種産業に於ける配管技術利用分野に益す
る優れた二重管製造方法提供せんとするものである。
<Object of the Invention> The object of the invention of the present application is a ring thermal contraction (expansion) based on the difference in the material of the outer tube and the inner tube in the double tube such as a double tube due to the ring thermal change based on the above-mentioned prior art. It is a technical issue to solve the problem of tight fitting due to, and while using the advantage of ring heat variable diameter that can obtain a constant tight fitting by reducing the outer pipe by one pass with respect to the inner pipe, Providing an excellent double pipe manufacturing method that can be optimally connected by heat treatment of the outer pipe depending on the combination of the materials of the outer pipe and the inner pipe, and which is useful in the field of piping technology application in various industries. It is something to do.

〈課題を解決するための手段・作用〉 上記目的に沿い先述特許請求の範囲を要旨とするこの出
願の発明の構成は前述課題を解決するために、所定材質
の外管と内管とを間隙を介し遊挿状態にて相対重層して
素管と成し、その管体の所定部位にリング状に高周波誘
導加熱装置等の加熱装置をセットすると共に、その前後
少くともいずれか一方に水道水等によるシャワーリング
冷却装置等のリング状の冷却装置を一体的にセットし、
該環状加熱装置とリング状冷却装置と管体とを相対重層
した素管とを軸方向に所定に相対移動すると共に併せて
相対回転する等し、環状加熱による膨径とその前後によ
る膨径拘束を介し、又、加熱後の急冷等により外管が縮
径し、或いは、内管が膨径し、かかるプロセスを反復す
ることにより外管は内管に、或いは、内管が外管に緊結
嵌合するように際し、当該内外管の材質により加熱温度
を外管の変態温度以下に抑制しその降伏応力に応じた加
熱温度にして最大縮径率を得、確実で且つ顕著な縮径が
得られるように調質し、更には併せて素管の板厚方向に
加熱の加熱温度に勾配(板厚方向に温度差)を付与する
ようにし、より更には加熱温度の最高温度を上げて顕著
な縮径を得ることが出来るようにした技術的手段を講じ
たものである。
<Means / Action for Solving the Problems> In order to solve the above-mentioned problems, the structure of the invention of the present application, which has the above-mentioned claims as its gist, has a gap between an outer pipe and an inner pipe of a predetermined material. While forming a raw pipe by laminating the pipes in a loosely inserted state through a tube, set a ring-shaped heating device such as a high-frequency induction heating device in a predetermined part of the pipe body, and tap water in at least one of the front and back. Set a ring-shaped cooling device such as a shower ring cooling device by
The ring-shaped heating device, the ring-shaped cooling device, and the tube in which the tube body is layered relative to each other are axially moved relative to each other in a predetermined manner and are also rotated together. The outer tube is reduced in diameter by heating or rapid cooling after heating, or the inner tube is expanded, and by repeating this process, the outer tube is bonded to the inner tube or the inner tube is bonded to the outer tube. When mating, the heating temperature is controlled below the transformation temperature of the outer tube by the material of the inner and outer tubes, and the heating temperature is set according to the yield stress to obtain the maximum diameter reduction ratio, and a reliable and remarkable diameter reduction is obtained. In addition, the temperature is improved so that a gradient (temperature difference in the plate thickness direction) is given to the heating temperature in the plate thickness direction of the raw tube, and the maximum heating temperature is raised further It is a technical measure that makes it possible to obtain such a reduced diameter.

〈実施例〉 次に、この出願の発明の実施例を図面を参照して説明す
れば以下の通りである。
<Example> Next, an example of the invention of this application will be described with reference to the drawings.

セラッミッス製の内管2に対して(焼準温度800〜850゜
の炭素鋼(S55C))製の外管1を前述同様第1図に示す
様に、当該内管2に対して所定の間隙を介し遊挿状態で
相対重層して素管の管体3とし、そして、第2図に示す
様に、該炭素鋼製の外管1の所定部位に環状加熱装置と
しての高周波誘導加熱装置4を所定にセツトし、又、管
体3の軸方向所定間隔を介して前後にリング状冷却装置
としての水道水によるシャワーリング冷却装置5を一体
的にセットし、高周波誘導加熱装置4による環状加熱
を、該外管1としての変態温度である900℃より低い例
えば850℃にし、管体3を軸方向に相対移動させると共
に、周方向に均質な縮径が出来るように周方向に相対回
転(管体3、加熱冷却装置4,5のいづれか一方、或い
は、双方の回転)させていくと、前述理論に示したよう
に、外管1としての炭素鋼管は焼準により材質が劣化す
ることなく、環熱縮径をされて縮径され、所定プロセス
上述環熱縮径を反復することにより外管1は内管2に緊
結嵌合するようにされ二重管6が得られる。
The outer pipe 1 made of carbon steel (S55C) having a normalizing temperature of 800 to 850 ° with respect to the inner pipe 2 made of ceramics has a predetermined gap with respect to the inner pipe 2 as shown in FIG. 2 and 3 in a loosely inserted state to form a tubular body 3 of a raw tube, and as shown in FIG. 2, a high frequency induction heating device 4 as an annular heating device at a predetermined portion of the carbon steel outer pipe 1. And the shower ring cooling device 5 with tap water as a ring-shaped cooling device is integrally set at the front and rear through a predetermined axial interval of the tubular body 3, and annular heating by the high frequency induction heating device 4 is performed. To 850 ° C., which is lower than 900 ° C. which is the transformation temperature of the outer tube 1, to relatively move the tube body 3 in the axial direction and to relatively rotate in the circumferential direction so that a uniform diameter reduction can be made in the circumferential direction ( Either one of the tube body 3 and the heating and cooling devices 4 and 5 or both are rotated), As shown in the above theory, the carbon steel pipe as the outer pipe 1 is ring-heat-reduced and reduced in diameter without deterioration of the material due to normalization. The pipe 1 is adapted to be tightly fitted to the inner pipe 2 to obtain a double pipe 6.

尚、環状加熱・冷却の処理において、管、もしくは、環
状加熱・冷却装置4,5を回転させることにより管周方向
の温度ムラを極めて小さくすることが出来る。
In the annular heating / cooling process, the temperature unevenness in the pipe circumferential direction can be made extremely small by rotating the tube or the annular heating / cooling devices 4 and 5.

施工例としては、高周波誘導加熱コイル(コイル長さBm
m)4に対し、ある搬送速度(vmm/分)で管を軸方向に
移動させた場合、回転数(Nrpmの目安として、 とすることにより、コイル直下を回転しながら通過する
管の周方向の局部が必ずコイル直下(この部分での加熱
効果が最も高い)で一周することが出来、管を周方向の
温度ムラなく加熱することが出来る(第2図参照)。
As a construction example, high frequency induction heating coil (coil length Bm
m) 4, when the pipe is moved in the axial direction at a certain transport speed (vmm / min), the number of revolutions (as a guideline for N rpm, By doing so, the local portion in the circumferential direction of the pipe that passes while rotating just below the coil can always make a round immediately below the coil (the heating effect is the highest in this part), and the pipe can be heated without uneven temperature in the circumferential direction. It can be done (see FIG. 2).

そして、各環熱縮径プロセスにおける高周波誘導加熱装
置4による外管1に対する環状加熱に際し、外管1に付
与する加熱温度を焼準に合わせて850℃から800℃の差を
以って付与する。
Then, in the annular heating of the outer tube 1 by the high frequency induction heating device 4 in each ring thermal contraction process, the heating temperature applied to the outer tube 1 is applied with a difference of 850 ° C. to 800 ° C. according to the normalization. .

又、上述加熱条件の変化等により素管3の受ける熱履歴
によっては該素管3の調質を行って材質の劣化を防止す
るようにする。
Further, depending on the thermal history of the base pipe 3 due to the above-mentioned changes in heating conditions, the base pipe 3 is conditioned to prevent deterioration of the material.

このようにすることにより、顕著な環熱縮径が得られ、
製造中における内管2のクラックや据付後の稼動中に於
ける破壊等が生じない。
By doing so, a remarkable ring heat shrinkage can be obtained,
There is no crack of the inner pipe 2 during manufacturing or breakage during operation after installation.

又、上述環熱縮径において、加熱温度の最高温度を、例
えば、1050℃にすることにより縮径量を大きくすること
が出来る。
Further, in the above-mentioned ring thermal shrinkage, the maximum amount of heating temperature is set to, for example, 1050 ° C., whereby the amount of shrinkage can be increased.

次に、第2の実施例においては外管1としてステンレス
鋼を用い固溶化熱処理温度より僅かに高い温度に環状加
熱・冷却する固溶化熱処理条件で行い、又、第5図に示
す様に、外管1の板厚方向にてその外表面と内表面の間
に100℃以内、例えば、50℃の温度勾配を付与したとこ
ろ、均質で大きな縮径率の縮径が得られた。
Next, in the second embodiment, stainless steel is used as the outer tube 1 under the solution heat treatment condition of annular heating and cooling to a temperature slightly higher than the solution heat treatment temperature, and as shown in FIG. When a temperature gradient of 100 ° C. or less, for example, 50 ° C., was applied between the outer surface and the inner surface of the outer tube 1 in the plate thickness direction, a uniform diameter reduction with a large diameter reduction ratio was obtained.

このようにすることにより、外管1には熱処理による変
質もおこらず、内管2にはクラック等が生ぜず、設計通
りの嵌合応力を有する二重管6が得られる。
By doing so, the outer tube 1 is not deteriorated by heat treatment, the inner tube 2 is not cracked, and the double tube 6 having the fitting stress as designed is obtained.

又、かかる結果は実験により確認されているものであ
る。
Moreover, such results have been confirmed by experiments.

尚、この出願の発明の実施態様は上述各実施例に限るも
のではないことは勿論であり、例えば、加熱温度を変化
させて管径変化量をコントロールしたり、又、先述した
如く外管1の縮径に代えて内管2の膨径を行って該内管
2を外管1に緊結し、その際、加熱部の最高温度を高く
したり、管の受ける熱履歴により管体の材質を調節した
りする等種々の態様が作用可能である。
Of course, the embodiment of the invention of this application is not limited to each of the above-mentioned embodiments. For example, the heating temperature is changed to control the amount of change in the pipe diameter, or as described above, the outer pipe 1 The inner tube 2 is expanded in place of the reduced diameter to tightly connect the inner tube 2 to the outer tube 1. At that time, the maximum temperature of the heating section is increased, and the heat history of the tube causes the material of the tube body to be increased. It is possible to operate various modes such as adjusting

そして、又、設計変更としては、外管1についてはその
材質は上記炭素鋼,ステンレス鋼に限らず、他の特殊鋼
の材質にも適用出来、又、設計態様によっては内管2を
縮径させることで外管1からの剥離を行うと共に該外管
1を膨径して内管2からの剥離を行い、該内管2や外管
1の交換等を行うようにすることも可能である。
Further, as a design change, the material of the outer tube 1 is not limited to the above carbon steel and stainless steel, but can be applied to other special steel materials, and the inner tube 2 may be reduced in diameter depending on the design mode. By doing so, it is possible to separate the outer tube 1 from the inner tube 2 by expanding the outer tube 1 so as to separate the inner tube 2 from the outer tube 1. is there.

そして、対象とする管体は二重管以外に三重管以上の複
重管についても適用可能であることも又勿論のことであ
る。
And, as a matter of course, the target pipe body can be applied not only to a double pipe but also to a double pipe of three or more pipes.

〈発明の効果〉 以上、この出願の発明によれば、基本的に近時多様な新
規ニーズのある外管と内管の組合せ材質の異なる二重管
等の複重管の環熱縮径(膨径)による緊結嵌合に際し、
内管(外管)に対する用途別の外管(内管)の降伏応力
に応じた環状加熱の温度を材質を劣化させる熱処理条件
に制御して付与するようにし、又、加熱・冷却設備と管
体を相対回転するようにしたことにより、外管は内管に
対し最適な縮径率で(内管は外管に最適な膨径を行っ
て)均一精度で嵌合され、したがって、製造中に於ける
オーバーな嵌合応力が外管や内管に付与されず、そのた
め、クラックや稼動中に於ける破壊等が生ぜず、配管の
耐久性が向上するという優れた効果が奏される。
<Effects of the Invention> As described above, according to the invention of the present application, the ring thermal contraction diameter of a double-walled tube such as a double tube in which the combination material of the outer tube and the inner tube, which have various new needs recently, is basically different ( For tight fitting by bulging
The temperature of the annular heating according to the yield stress of the outer tube (inner tube) for each application to the inner tube (outer tube) is controlled and given to the heat treatment condition that deteriorates the material, and the heating and cooling equipment and tube Due to the relative rotation of the body, the outer tube is fitted to the inner tube with the optimum diameter reduction ratio (the inner tube has the optimum expansion diameter to the outer tube) with uniform accuracy, and therefore during manufacturing The excessive fitting stress in the above is not applied to the outer pipe and the inner pipe, and therefore, the cracks and the breakage during the operation are not generated, and the excellent effect that the durability of the pipe is improved is exhibited.

而して、管体に対する環状加熱・冷却処理を該外管の板
厚方向に温度勾配を付して付与するようにすることによ
り管径変化量を変えられ、大きな緊結量が得られる優れ
た効果が奏される。そして、より更に顕著な縮径(膨
径)を得ることが出来るという効果が奏される。
Thus, the annular heating / cooling treatment is applied to the tubular body with a temperature gradient in the plate thickness direction of the outer tube, whereby the variation of the tubular diameter can be changed and a large amount of tight binding can be obtained. The effect is played. Then, there is an effect that a more remarkable diameter reduction (expansion) can be obtained.

このようにすることにより、二重管製造における外管の
材質を劣化することなく熱処理が効率的に行われ、設計
通りの理想的な二重管等が得られる効果がある。
By doing so, there is an effect that the heat treatment is efficiently performed without deteriorating the material of the outer pipe in the double pipe manufacturing, and an ideal double pipe or the like as designed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図面は環熱縮径の基本的態様を示すものであり、第1図
は外管と内管の相対重層部分断面図、第2図は環状加熱
と環状冷却の部分断面図、第3図は外管に対する押え曲
げモーメント付与の模式斜視図、第4図は二重管形成部
分断面図、第5図は環状加熱の管肉厚方向の温度分布の
グラフ図である。 1……外管、2……内管 3……素管、4……環熱加熱装置 5……冷却装置、6……二重管
The drawings show the basic mode of ring thermal contraction. Fig. 1 is a partial cross-sectional view of relative layers of an outer pipe and an inner pipe, Fig. 2 is a partial cross-sectional view of annular heating and annular cooling, and Fig. 3 is FIG. 4 is a schematic perspective view of applying a pressing bending moment to the outer tube, FIG. 4 is a partial sectional view of a double tube formation, and FIG. 5 is a graph of temperature distribution in the tube thickness direction of annular heating. 1 ... Outer tube, 2 ... Inner tube 3 ... Element tube, 4 ... Ring heat heating device 5 ... Cooling device, 6 ... Double tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−233012(JP,A) 特開 平1−118306(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 1-233012 (JP, A) JP-A 1-118306 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】外管と内管を相対重層した素管に対し環状
の局部加熱・冷却を付与することにより二重管を製造す
る方法において、上記素管に対し、外管に対する加熱温
度を該外管の変態温度以下に抑制しその降伏応力に応じ
た加熱温度にし、而して素管と環状局部加熱・冷却とを
相対回転させるようにすることを特徴とする二重管製造
方法。
1. A method for producing a double pipe by applying annular local heating / cooling to a raw pipe in which an outer pipe and an inner pipe are layered relative to each other. A method for producing a double tube, which is characterized by suppressing the temperature to a temperature not higher than the transformation temperature of the outer tube and setting it to a heating temperature according to its yield stress, and thereby rotating the element tube and the annular local heating / cooling relative to each other.
【請求項2】上記環状局部加熱・冷却を相対回転させて
行う処理を板厚方向に温度差を付与しながら行うように
することを特徴とする特許請求の範囲第1項記載の二重
管製造方法。
2. The double pipe according to claim 1, wherein the process of performing the relative rotation of the annular local heating / cooling is performed while imparting a temperature difference in the plate thickness direction. Production method.
【請求項3】上記環状局部加熱・冷却を相対回転させて
行う処理をその加熱温度を変化させながら縮径量を変え
て行うようにすることを特徴とする特許請求の範囲第1
項記載の二重管製造方法。
3. The process according to claim 1, wherein the process of rotating the annular local heating / cooling relative to each other is performed while changing the heating temperature and changing the diameter reduction amount.
The method for producing a double tube according to the item.
【請求項4】上記環状局部加熱・冷却を相対回転させて
行う処理をその最高加熱温度を一定温度まで上げて行う
ようにすることを特徴とする特許請求の範囲第2項記載
の二重管製造方法。
4. The double pipe according to claim 2, wherein the process of performing relative rotation of the annular local heating / cooling is performed by raising the maximum heating temperature to a constant temperature. Production method.
【請求項5】上記環状局部加熱・冷却を相対回転させて
行う処理付与に際し、管体の材料を調質して行うように
することを特徴とする特許請求の範囲第1項記載の二重
管製造方法。
5. The double structure according to claim 1, wherein when applying the treatment in which the annular local heating / cooling is relatively rotated, the material of the tubular body is tempered. Pipe manufacturing method.
JP2002469A 1990-01-11 1990-01-11 Double pipe manufacturing method Expired - Lifetime JPH0787941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002469A JPH0787941B2 (en) 1990-01-11 1990-01-11 Double pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002469A JPH0787941B2 (en) 1990-01-11 1990-01-11 Double pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPH03207522A JPH03207522A (en) 1991-09-10
JPH0787941B2 true JPH0787941B2 (en) 1995-09-27

Family

ID=11530178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002469A Expired - Lifetime JPH0787941B2 (en) 1990-01-11 1990-01-11 Double pipe manufacturing method

Country Status (1)

Country Link
JP (1) JPH0787941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790269B2 (en) * 1992-07-10 1995-10-04 川崎重工業株式会社 Method of manufacturing double-heavy pipe
KR100788204B1 (en) * 2006-06-07 2007-12-26 (주)원에스티 Manufacturing method of a feeding shaft of a transferring device
CN115971263B (en) * 2023-03-20 2023-06-23 太原理工大学 Online gradient temperature control equipment for seamless metal composite pipe and rolling and heat treatment method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118306A (en) * 1987-10-30 1989-05-10 Kawasaki Heavy Ind Ltd Manufacture of tightly bonded multi-layer pipe
JPH0745064B2 (en) * 1988-03-11 1995-05-17 川崎重工業株式会社 Double pipe manufacturing method

Also Published As

Publication number Publication date
JPH03207522A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
FI106054B (en) Thermo roll for a paper / cardboard machine or finishing machine and process for making the thermo roll
US5056209A (en) Process for manufacturing clad metal tubing
JP2554107B2 (en) Pilger equipment die
US4727641A (en) Thermoplastic method of reducing the diameter of a metal tube
CN101652596A (en) Seamless bend tube, weld joint with seamless straight tube, and method of producing them
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
JPH0787941B2 (en) Double pipe manufacturing method
JP2003342639A (en) Process for manufacturing uoe steel pipe showing excellent crushing strength
US4258756A (en) Composite shell
WO1989005698A1 (en) Method of working double tube
JPH0342116A (en) Manufacture of double tube
JPH0576385B2 (en)
US3131725A (en) High tensile multi-layer cylinder
JP2554470B2 (en) Tube manufacturing method
US4331497A (en) Composite shell
JPH0576379B2 (en)
CN111957865B (en) Manufacturing process and application of large-sized sealing gasket metal framework welding-free technology
CN110405090B (en) Method for determining outer diameter of heating coil for thermal expansion of large-diameter seamless steel tube
JP2577051B2 (en) Method of manufacturing multilayer curved tube
EP1025919A2 (en) Method for producing multilayer thin-walled bellows
JPS58184073A (en) Manufacture of welded tube
JPS5819416B2 (en) Triple pipe manufacturing method
JPH0576384B2 (en)
CN1045725A (en) Double-wall pipes and processing method
JPS5978715A (en) Production of double pipe