JPH01118306A - Manufacture of tightly bonded multi-layer pipe - Google Patents

Manufacture of tightly bonded multi-layer pipe

Info

Publication number
JPH01118306A
JPH01118306A JP27339187A JP27339187A JPH01118306A JP H01118306 A JPH01118306 A JP H01118306A JP 27339187 A JP27339187 A JP 27339187A JP 27339187 A JP27339187 A JP 27339187A JP H01118306 A JPH01118306 A JP H01118306A
Authority
JP
Japan
Prior art keywords
heating
pipe
cooling
outer tube
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27339187A
Other languages
Japanese (ja)
Inventor
Toshimitsu Araki
俊光 荒木
Shigetomo Matsui
繁朋 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP27339187A priority Critical patent/JPH01118306A/en
Publication of JPH01118306A publication Critical patent/JPH01118306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To contract an outer pipe at equal intervals in the circumferential direction and to obtain a tightly bonded multi-layer pipe by putting the outer pipe on an inner pipe through an annular clearance and setting a plurality of local heating devices and local cooling devices in the circumferential direction and in the axial direction but at least in the former direction and relatively traveling them. CONSTITUTION:A long-sided corrosion-resistant inner pipe 1 is put on a pressure- resistant outer pipe 2 through an annular clearance 3. Then, a heating and cooling equipment 10 is set wherein a compression roller 9, a heating device 4 and a cooling device 5 right behind the heating device are arranged coaxially at the initial part of the outer pipe 2 from the front in the forward direction to the ring holder, linearly in the axial direction and at the circumferential positions divided into four equal parts or by 90 degrees. When the heating and cooling equipment 10 is traveled in parallel at a prescribed speed, the local heating by each heating device 4 expands the diameter of the outer pipe 2, expansion to the inside is performed by the compression roller 9 and, immediately after that, the pipe is cooled forcedly by each cooling device 5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は原油輸送管等の腐蝕性流体に対する配管をス
テンレス製等の耐蝕性の内管と炭素鋼製等の耐圧性等を
有する外管とを機械的に緊結させた二重管等の多層管の
製造技術分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is used to construct piping for corrosive fluids such as crude oil transport pipes by using a corrosion-resistant inner pipe made of stainless steel or the like and a pressure-resistant outer pipe made of carbon steel or the like. It belongs to the field of manufacturing technology for multilayer pipes such as double pipes that are mechanically connected.

〈要旨の概要〉 而して、この発明は炭素81111製等の外管に対しス
テンレス製等の内管を相対的に重層し、その一端部から
スポット的にバーナー等により局部加熱を外管の軸方向
に所定速度で移動させながら付与して外管を膨張させ、
その直後に局部加熱に追従するようにシャワーリング等
の冷却手段を付与して冷却させ、それにより内管に対し
外管を周方向に収縮させて内管と外管を緊結するように
した緊結多層管の製造方法に関する発明であり、特に、
局部加熱手段と冷却手段とを外管の周方向、又は、周方
向、及び、軸方向に所定数配列状態にセラ1〜して設定
速度で軸方向に移動させるようにし、内管に対する外管
の膨張、収縮を複数部位に作用させてより確実に内管と
外管の緊結を行うようにした緊結多層管の製造方法に係
る発明である。
<Summary of the gist> Accordingly, the present invention involves laminating an inner tube made of stainless steel or the like over an outer tube made of carbon 81111 or the like, and applying local heating to the outer tube from one end using a burner or the like. The outer tube is expanded by applying it while moving at a predetermined speed in the axial direction,
Immediately after that, a cooling means such as a shower ring is applied to cool the area so as to follow the local heating, thereby causing the outer tube to contract in the circumferential direction relative to the inner tube, thereby tightening the inner tube and the outer tube. This invention relates to a method for manufacturing a multilayer pipe, and in particular,
The local heating means and the cooling means are arranged in a predetermined number in the circumferential direction of the outer tube, or in the circumferential direction and the axial direction, and are moved in the axial direction at a set speed. This invention relates to a method for manufacturing a fastened multilayer pipe in which the inner pipe and the outer pipe are more reliably fastened by applying expansion and contraction to a plurality of parts.

〈従来技術〉 周知の如く、配管は単に流体の輸送手段ばかりでなく建
築構造物の主要部材や、更には、近時、情報伝達手段と
してあらゆる産業に利用されているが、近時、例えば、
原油輸送管等の複雑、且つ、苛酷な環境条件における配
管の機能は始原的な単純さはなくなり、復錐な機能を要
求されるようになってきている。
<Prior Art> As is well known, piping is used not only as a means of transporting fluids, but also as a main component of building structures and, more recently, as a means of transmitting information.
The functions of piping such as crude oil transport pipes under complex and harsh environmental conditions have lost their primitive simplicity and are now required to have double-cone functions.

即ち、冷却等においては腐蝕性流体に対する耐蝕性と地
震や気温の変化等に対する耐圧性を有する機能が要求さ
れ、条件によっては相反する特性に対処するために内管
は耐蝕性等に富むステンレス製内管とし、外管は耐圧性
等に優れる炭素鋼製外管としてこれらを密接に一体化す
る二重管等の重層の要望が強くなってきている。
In other words, for cooling, etc., functions are required that have corrosion resistance against corrosive fluids and pressure resistance against earthquakes, temperature changes, etc., and in order to cope with conflicting characteristics depending on the conditions, the inner tube is made of stainless steel, which has high corrosion resistance. There is an increasing demand for multi-layered pipes, such as double pipes, in which the inner tube is made of carbon steel and the outer tube is made of carbon steel, which has excellent pressure resistance, and these are closely integrated.

而して、核種内管と外管が密接に一体化されている二重
管等の重層を介しての製造には、例えば、クラッド手段
や焼ばめ手段等があるが、装置や条件、及び、コスト的
等の点から近時内管と外管を所定のリング状クリアラン
スを介して相対重層し、機械的に緊結する手段が盛んに
開発されるようになってきており、例えば、特願昭39
−47817号発明にみられる如く、第9.10図に示
す様にステンレス製の内管1を炭素鋼製の外管2に所定
のリング状クリアランス3を介して相対的に重層し、そ
の外管2の始端部分にスポット的にバーナー4を臨ませ
、所定速度で軸方向に沿って移動加熱させることにより
径変化を膨部状態で付与し、その直後にシャワーリング
等の冷却装置5を臨ませて急冷させて収縮を行い、この
スポット的な熱変化部分6を所定速度で軸方向に移動さ
せることにより外管2の熱膨張直後の冷却作用で外管2
を内管1に対し周方向に緊結させて二重管7を得るよう
にした技術が開発されている。
For example, cladding means, shrink fitting means, etc. are available for manufacturing through multi-layered tubes such as double tubes in which the inner and outer tubes of the nuclide are closely integrated, but the equipment, conditions, etc. In addition, from the viewpoint of cost, etc., methods for mechanically connecting the inner tube and the outer tube by layering them relative to each other through a predetermined ring-shaped clearance have recently been actively developed. Gansho 39
As seen in the invention No. 47817, as shown in Fig. 9.10, an inner tube 1 made of stainless steel is layered on an outer tube 2 made of carbon steel through a predetermined ring-shaped clearance 3, and A burner 4 is positioned spot-wise at the starting end of the tube 2 and heated by moving along the axial direction at a predetermined speed to impart a change in diameter to the bulge. Immediately thereafter, a cooling device 5 such as a shower ring is applied. By moving this spot-like thermal change portion 6 in the axial direction at a predetermined speed, the outer tube 2 is
A technique has been developed in which the double tube 7 is obtained by tightly connecting the double tube 7 to the inner tube 1 in the circumferential direction.

〈発明が解決しようとする問題点〉 しかしながら、該種在来技術においてはスポット状の熱
変化部6が周方向で1点であり、該熱変化部6が経時的
に軸方向に移動するため確かに基本的には内管1と外管
2が周方向で緊結されるが、内管の外面と外管の内面が
当接し始めると、両者間に次第に増加する摩擦が生じて
周方向に均一な緊結状態が現出されないという欠点があ
り、それも経時的に軸方向にもムラが生じると二重管7
仝体の緊結分布が不均一になるという難点があった。
<Problems to be Solved by the Invention> However, in the conventional technology, the spot-shaped heat change portion 6 is at one point in the circumferential direction, and the heat change portion 6 moves in the axial direction over time. It is true that basically the inner tube 1 and the outer tube 2 are tightly connected in the circumferential direction, but when the outer surface of the inner tube and the inner surface of the outer tube start to come into contact, a gradually increasing friction occurs between them, and the There is a drawback that a uniform tightening state is not achieved, and if unevenness occurs in the axial direction over time, the double pipe 7
There was a problem that the tightness distribution of the body was uneven.

したがって、その結果、製品としての二重管に製品に対
する信頼性のうえで不具合を生ずるという虞があった。
Therefore, as a result, there is a fear that the double pipe as a product may have problems in terms of product reliability.

〈発明の目的〉 この発明の目的は上述従来技術に基づく周方、面全体に
対する加熱作用を冷却作用を行わなくて済むスポット的
な熱変化部の軸方向移動の経済的なメリット、及び、装
置の構造の簡略化等の利点を生かしながらも、内管の外
面と外管の内面との当接プロセスにおける周方向の緊結
が均一になり、その結果、軸方向に於ける緊結も均一に
なって製品に対する信頼度がより確実に得られるように
して各種産業における配管技術利用分野に益する優れた
緊結多層管の製造方法を提供せんとするものでおる。
<Object of the Invention> The object of the present invention is to provide an economical advantage of the axial movement of a spot-like heat changing part, which eliminates the need to perform a heating action or a cooling action on the entire circumference and surface based on the above-mentioned conventional technology, and an apparatus. While taking advantage of the simplification of the structure, the tightening in the circumferential direction during the contact process between the outer surface of the inner tube and the inner surface of the outer tube is uniform, and as a result, the tightening in the axial direction is also uniform. The purpose of this invention is to provide an excellent method of manufacturing a fastened multilayer pipe that can more reliably obtain product reliability and benefit piping technology applications in various industries.

〈問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの発明の構成は前述
問題点を解決するために、耐蝕性のステンレス製等の内
管に対し炭素鋼製等の耐圧性を有する外管をリング状の
クリアランスを介して相対的に重層し、そこで、外管の
始端部に於ける周方向、或は、周方向、及び、軸方向に
所定間隔で加熱手段と冷却手段を軸方向に前後させてセ
ットし、そこで、セットされた加熱手段と冷却手段を全
体的に設定速度で軸方向に平行移動させ、そのプロセス
において設定数の周方向の加熱手段がスポット的に局部
加熱を行い、外管の径方向変化を膨部状態にし、続いて
、これに追従するように冷却手段がシャワーリング等に
より強制冷却して膨張直後の外管を周方向に強制収縮さ
せることにより周方向に於いて外管は内管に対し確実な
緊結を行い、しかも、局部加熱と冷却作用が周方向で均
一間隔に行われることで、又、加熱装置と冷却装置が軸
方向に平行移動することで確実に二重管等の多層管は内
管と外管が確実に全体的に均一に緊結されるようにした
技術的手段を講じ  “たものである。
<Means/effects for solving the problems> In order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, is based on the inner tube made of corrosion-resistant stainless steel or the like. Pressure-resistant outer tubes made of carbon steel or the like are stacked relatively one on top of the other through a ring-shaped clearance, and then a predetermined distance is formed in the circumferential direction, or in the circumferential direction and the axial direction at the starting end of the outer tube. The heating means and cooling means are set back and forth in the axial direction at intervals, and then the set heating means and cooling means are moved in parallel in the axial direction as a whole at a set speed, and in the process, a set number of circumferential The heating means performs local heating in a spot-like manner to make the outer tube change in the radial direction into an expanded state, and then, following this, the cooling means forcibly cools the outer tube using a shower ring or the like to surround the outer tube immediately after expansion. By forcibly contracting the outer tube in the circumferential direction, the outer tube is securely connected to the inner tube in the circumferential direction, and local heating and cooling effects are performed at uniform intervals in the circumferential direction, which also allows the heating device and the cooling A multi-layer pipe such as a double pipe is provided with technical means to ensure that the inner pipe and the outer pipe are uniformly tightened as a whole by moving the device in parallel in the axial direction.

〈実施例〉 次に、この発明の実施例を第1〜8図に従って説明すれ
ば以下の通りである。尚、第9.10図と同一態様部分
は同一符号を用いて説明するものとする。
<Example> Next, an example of the present invention will be described below with reference to FIGS. 1 to 8. Note that the same parts as in FIG. 9.10 will be explained using the same reference numerals.

尚、図示実施例は原油輸送管としての多層管の二重管の
態様であり、第1.2.3図に示す実施例において、所
定長の長尺の耐蝕性のステンレス製の内管1を耐圧性を
有する炭素!till製の外管2に対し所定のリング状
のクリアランス3を介して相対的に重層し、そこで、外
管2の始端部に於いて同心的にリング状のホルダ8に対
して進行方向前・側から抑圧ローラ9とバーナーの加熱
装置4.4・・・とその直後の冷却装置のシャワーノズ
ル5.5・・・とが軸方向に直線配列になるようになり
、且つ、周方向に90’づつ4等分された位置にセット
されている加熱冷却装置10をセットして各加熱装置4
と各冷却装置5とを稼動状態にし、始端側から終端側に
向けて所定速度で加熱冷却装置10を平行移動させてい
くと、各加熱装置4のバーナー加熱による局部加熱が外
管2の径方向膨部作用を付与し、そこで、押圧ローラ9
.9・・・により第2図に示す様に内側に膨出し、その
直後において各冷却装置5によるシャワーリングを介し
て強制冷却され、したがって、スポット的な加熱冷却部
6は周方向に急激に収縮し、したがって、加熱冷却装置
10の通過後においては外管2は内管1に対し均一な部
分で収縮を起こし外管2の内面が内管1の外面に当接し
、しかも、均一部分に於いて当接するために周方向では
均一な緊結が行われ、しかも、加熱冷却装置10の軸方
向への移動により始端から終端まで経時的に全長に亘り
二重管7層体が周方向、及び、軸方向に完全に緊結した
状態が現出される。
The illustrated embodiment is a double pipe of a multi-layer pipe as a crude oil transport pipe, and in the embodiment shown in Fig. 1.2.3, a long corrosion-resistant stainless steel inner pipe 1 of a predetermined length is used. Carbon with pressure resistance! It is stacked relative to the outer tube 2 made of TILL with a predetermined ring-shaped clearance 3 therebetween, and the outer tube 2 is concentrically placed in front of the ring-shaped holder 8 at the starting end of the outer tube 2 in the traveling direction. From the side, the suppression roller 9, the heating device 4.4 of the burner, and the shower nozzle 5.5 of the cooling device immediately after it are arranged in a straight line in the axial direction, and 90 mm in the circumferential direction. Set the heating/cooling devices 10 set in positions divided into four equal parts, and each heating device 4
and each cooling device 5 are put into operation, and when the heating and cooling device 10 is moved in parallel at a predetermined speed from the starting end side to the terminal end side, the local heating due to burner heating of each heating device 4 changes to the diameter of the outer tube 2. A directional bulge effect is applied, so that the pressure roller 9
.. 9... bulges inward as shown in FIG. 2, and immediately after that, it is forcibly cooled through the shower ring of each cooling device 5, so that the spot heating and cooling portion 6 rapidly contracts in the circumferential direction. Therefore, after passing through the heating/cooling device 10, the outer tube 2 contracts in a uniform portion with respect to the inner tube 1, and the inner surface of the outer tube 2 contacts the outer surface of the inner tube 1. Since the two layers contact each other, uniform tightening is performed in the circumferential direction, and furthermore, due to the movement of the heating and cooling device 10 in the axial direction, the seven-layer double-pipe structure is tightened over the entire length from the starting end to the terminal end in the circumferential direction, and A completely axially tightened state is created.

したがって、当該実施例においては各抑圧ローラ9は機
械的に強固に外管2を内側に抑圧変形させる必要はなく
、移動する加熱装置4のバーナーによる熱変形が行われ
る前方所定部位で外管2を軽く押圧すれば良い。
Therefore, in this embodiment, it is not necessary for each suppression roller 9 to mechanically strongly suppress and deform the outer tube 2 inwardly, and the outer tube 2 is placed at a predetermined front portion where thermal deformation is performed by the burner of the moving heating device 4. Just press lightly.

而して、第4図に示す実施例は加熱冷却装置10の各加
熱装置4と各冷却袋@5による軸方向の前後の局部加熱
と冷却作用による加熱冷却部6.6・・・が周方向に千
鳥状に形成される態様であり、したがって、周方向に於
ける加熱冷却部6.6・・・の間隔は密になり、より確
実に内管1と外管2の緊結状態が形成される態様である
In the embodiment shown in FIG. 4, the heating and cooling parts 6, 6, . The heating and cooling parts 6, 6... are formed in a staggered manner in the circumferential direction, so that the intervals between the heating and cooling parts 6, 6, etc. become close, and the inner tube 1 and the outer tube 2 are more securely connected. This is how it is done.

又、第5図に示す実施例は上述実施例同様に加熱冷却部
6.6・・・が周方向と軸方向にスパイラル状に形成さ
れるように加熱冷却装置10をセットした態様であり、
実質的に上述実施例とは変わりはないものである。
Further, in the embodiment shown in FIG. 5, the heating and cooling device 10 is set so that the heating and cooling portions 6, 6, .
This embodiment is substantially the same as the embodiment described above.

そして、第6図に示す実施例は加熱冷却部6.6・・・
が1つの周方向に密にスポット的に配列され、その直後
において周方向に位相をずらした配列態様で、第二段の
加熱冷却部6.6・・・が配列されて周方向、及び、軸
方向に補完し合うようにした態様であり、当該実施例に
おいても極めて確実な内管1と外管2の緊結が現出され
るものである。
The embodiment shown in FIG. 6 has a heating/cooling section 6.6...
are arranged in a spot-like manner densely in one circumferential direction, and immediately after that, the second stage heating and cooling parts 6,6... are arranged in an arrangement manner in which the phase is shifted in the circumferential direction. This is a mode in which the inner tube 1 and the outer tube 2 are complemented in the axial direction, and the inner tube 1 and the outer tube 2 are extremely securely connected in this embodiment as well.

又、第7図に示す実施例は周方向に所定数複数の加熱冷
却部6.6・・・が配列するようにされると共に、当該
配列態様が軸方向前後の第一、二の周方向の加熱冷却部
6.6・・・を複列にした態様であり、第8図に示す様
に、いづれの態様においても、周方向等間隔で各加熱装
置4と各冷却装置5とが軸方向に前後に設けられた態様
としては同じで、その奏する作用効果は実質的に変わり
はないものである。
Further, in the embodiment shown in FIG. 7, a predetermined number of heating/cooling parts 6, 6, etc. are arranged in the circumferential direction, and the arrangement is arranged in the first and second circumferential directions in front and back in the axial direction. The heating and cooling units 6, 6... are arranged in double rows, and as shown in FIG. The aspects provided front and rear in the direction are the same, and the effects they provide are substantially the same.

尚、この発明の実施態様は上述各実施例に限るものでな
いことは勿論であり、例えば、適用対象は原油輸送管の
みばかりでなく、油井管やプラント配管に用いられるこ
とが出来、適用によっては建築材としても用いられるこ
とが出来るものでおる。
It goes without saying that the embodiments of this invention are not limited to the above-mentioned embodiments. For example, the application target is not only crude oil transport pipes, but also oil country pipes and plant piping, and depending on the application, It can also be used as a building material.

又、多層管は二重管ばかりでなく、二重管以上の多層管
に対しても内管と外管を順次外側に形成させることによ
り4層、5層の多層管をも得ることが出来るものである
In addition, multilayer pipes are not limited to double pipes, but multilayer pipes with four or five layers can also be obtained by sequentially forming an inner pipe and an outer pipe on the outside of multilayer pipes that are more than double pipes. It is something.

〈発明の効果〉 以上、この発明によれば、基本的にクラッドや焼ばめ等
の複雑で、且つ、コスト高になる手段を用いることなく
単なる加熱手段や冷却手段を軸方向に相前後させて周方
向に所定間隔で等間隔状に設けることにより、これらを
軸方向に後段にしたり、スパイラル状にして所定速度で
平行状態に軸方向に移動させることにより、局部加熱に
よる外管の径方向彫版直後の冷却手段による強制冷却に
より周方向均一間隔で収縮を生じさせしめて内管と外管
を緊結させることが出来るという優れた効果が秦される
<Effects of the Invention> As described above, according to the present invention, it is possible to basically move simple heating means and cooling means back and forth in the axial direction without using complicated and costly means such as cladding or shrink fitting. By arranging them at regular intervals in the circumferential direction, they can be positioned later in the axial direction, or by forming them in a spiral shape and moving them axially in parallel at a predetermined speed, the outer tube can be heated in the radial direction by local heating. Immediately after engraving, forced cooling by the cooling means causes shrinkage at uniform intervals in the circumferential direction, thereby providing an excellent effect in that the inner tube and the outer tube can be tightly connected.

而して、周方向にこれらの相前後する加熱手段と冷却手
段を周方向に等間隔に設けたことにより、内管の外面と
外管の内面とが当接し始める時期より両者の摩擦が大き
くなって全体的に不均一な緊結状態が生ずることなく周
方向には均一な緊結が行き回り、しかも、加熱冷却が軸
方向に等速度等で移動するために経時的に多層管全体に
亘って内管と外管の緊結が生じ、結果的に、製品として
の多層管の信頼度も高まるという優れた効果が秦される
By providing these successive heating means and cooling means in the circumferential direction at equal intervals, the friction between the outer surface of the inner tube and the inner surface of the outer tube becomes greater than when they begin to come into contact with each other. As a result, uniform binding is distributed in the circumferential direction without causing an uneven binding state as a whole.Moreover, since heating and cooling move at a constant speed in the axial direction, it spreads over the entire multilayer pipe over time. The inner tube and the outer tube are bonded together, resulting in an excellent effect of increasing the reliability of the multilayer tube as a product.

しかも、製造装置が簡単であるために、コスト的にも安
くつき、それによって高価なステンレス製等の内管の自
由度も高まるという利点がある。
Moreover, since the manufacturing equipment is simple, the cost is low, and the flexibility of the inner tube made of expensive stainless steel or the like is thereby increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜8図はこの発明の詳細な説明図であり、第1図は
1実施例の部分切截斜視図、第2図は部分断面図、第3
図は部分縦断面図、第4.5.6.7図は他の各実施例
の部分切截断面図、第8図は同横断面図、第9図は従来
技術に基づく多層管の製造方法の部分縦断面図、第10
図は同横断面図でおる。
1 to 8 are detailed explanatory diagrams of the present invention, in which FIG. 1 is a partially cutaway perspective view of one embodiment, FIG. 2 is a partially sectional view, and FIG.
The figure is a partial vertical cross-sectional view, Figures 4.5.6.7 are partial cross-sectional views of other embodiments, Figure 8 is a cross-sectional view of the same, and Figure 9 is manufacturing of a multilayer pipe based on the prior art. Partial longitudinal sectional view of the method, No. 10
The figure is a cross-sectional view of the same.

Claims (1)

【特許請求の範囲】[Claims] 内管と外管をリング状のクリアランスを介して相対重層
し該外管に対し局部加熱を外管の軸方向に移動させると
共に該局部加熱の直後に冷却作用を局部加熱に追従して
軸方向に移動させて内管と外管を緊結するようにした多
層管の製造方法において、上記局部加熱と冷却とを外管
の周方向及び軸方向の少くとも前者に所定数複数セット
して相対移動させるようにしたことを特徴とする緊結多
層管の製造方法。
The inner tube and the outer tube are layered relative to each other through a ring-shaped clearance, and the local heating is transferred to the outer tube in the axial direction of the outer tube, and immediately after the local heating, the cooling action is applied in the axial direction to follow the local heating. In the method for manufacturing a multilayer tube, the inner tube and the outer tube are moved together so that the inner tube and the outer tube are tightly connected. 1. A method for manufacturing a bonded multilayer pipe, characterized in that:
JP27339187A 1987-10-30 1987-10-30 Manufacture of tightly bonded multi-layer pipe Pending JPH01118306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27339187A JPH01118306A (en) 1987-10-30 1987-10-30 Manufacture of tightly bonded multi-layer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27339187A JPH01118306A (en) 1987-10-30 1987-10-30 Manufacture of tightly bonded multi-layer pipe

Publications (1)

Publication Number Publication Date
JPH01118306A true JPH01118306A (en) 1989-05-10

Family

ID=17527245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27339187A Pending JPH01118306A (en) 1987-10-30 1987-10-30 Manufacture of tightly bonded multi-layer pipe

Country Status (1)

Country Link
JP (1) JPH01118306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207522A (en) * 1990-01-11 1991-09-10 Kawasaki Heavy Ind Ltd Manufacture of double pipe
JP2008188602A (en) * 2007-02-01 2008-08-21 Tama Tlo Kk Method and apparatus for working tubular member
JP2009269052A (en) * 2008-05-07 2009-11-19 Kobe Steel Ltd Method for manufacturing narrow-mouthed shell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207522A (en) * 1990-01-11 1991-09-10 Kawasaki Heavy Ind Ltd Manufacture of double pipe
JP2008188602A (en) * 2007-02-01 2008-08-21 Tama Tlo Kk Method and apparatus for working tubular member
JP2009269052A (en) * 2008-05-07 2009-11-19 Kobe Steel Ltd Method for manufacturing narrow-mouthed shell

Similar Documents

Publication Publication Date Title
RU2155290C2 (en) Method of connecting faced tubes and tubes connected by this method
US4694864A (en) Double-wall tube for a heat exchanger
US6286556B1 (en) High-pressure fuel injection pipe for diesel engine
JP2008249010A (en) Seamless bend pipe and welded joint between seamless bend pipe and seamless straight pipe, and their manufacturing method
US20170246670A1 (en) Multi-layer pipe manufacturing apparatus and method of manufacturing multi-layer pipes using the same
JPH01118306A (en) Manufacture of tightly bonded multi-layer pipe
CN214305687U (en) Shape memory alloy pipeline coupling assembling
US2832613A (en) Autogenous welded laminated expansion joint for conduits
US3196905A (en) Exhaust system
JPH01154818A (en) Manufacture of duplex tube
RU2128098C1 (en) Method for joining tubes with tube plate
US11629800B2 (en) Double pipe and method for manufacturing same
JPS6161915B2 (en)
JPS5858928A (en) Double-ply pipe and its manufacture
JPH06269853A (en) Manufacture of double walled steel tube
JPS6049818A (en) Apparatus for producing tight double-layered pipe
JPH0741476B2 (en) Double tube separation method
JPS62104634A (en) Double pipe production
JPH01118310A (en) Triplicate pipe of conductors and its manufacture
JPS5948695B2 (en) Double tube manufacturing method
JPH0639429A (en) Manufacture of multiplex tube
JPH01118315A (en) Manufacture of double pipe
SU562357A1 (en) A method of manufacturing large pressure vessels
JPH04147705A (en) Constant pressure type elongating roller device for producing corrosion resistant metallic pipe
JPH0741305B2 (en) Corrosion-resistant and wear-resistant double tube and method for manufacturing the same