JPH0576379B2 - - Google Patents

Info

Publication number
JPH0576379B2
JPH0576379B2 JP60122663A JP12266385A JPH0576379B2 JP H0576379 B2 JPH0576379 B2 JP H0576379B2 JP 60122663 A JP60122663 A JP 60122663A JP 12266385 A JP12266385 A JP 12266385A JP H0576379 B2 JPH0576379 B2 JP H0576379B2
Authority
JP
Japan
Prior art keywords
tube
diameter
cooling
pipe
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60122663A
Other languages
Japanese (ja)
Other versions
JPS61283416A (en
Inventor
Fumyoshi Kanetani
Shigetomo Matsui
Toshio Atsuta
Eisuke Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60122663A priority Critical patent/JPS61283416A/en
Priority to AU58423/86A priority patent/AU573093B2/en
Priority to EP86107709A priority patent/EP0206048B1/en
Priority to DE8686107709T priority patent/DE3674951D1/en
Priority to CA000510978A priority patent/CA1260551A/en
Priority to US06/871,917 priority patent/US4727641A/en
Priority to CN86103742.1A priority patent/CN1003532B/en
Priority to KR1019860004518A priority patent/KR900004101B1/en
Publication of JPS61283416A publication Critical patent/JPS61283416A/en
Publication of JPH0576379B2 publication Critical patent/JPH0576379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 開示技術は、外管と内管を緊結させる耐摩耗性
の二重管等の配管の製造の技術分野に属する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The disclosed technology belongs to the technical field of manufacturing piping such as wear-resistant double pipes that tightly connect an outer pipe and an inner pipe.

<要旨の概要> 而して、この出願の発明はスラリー輸送、空気
輸送等に用いられる配管の耐摩耗性等を向上させ
るべく、例えば、普通鋼管の内側に耐摩耗鋳鋼管
を相対重層させた二重管等の素管を、外管の周方
向環状加熱手段とその加熱部周辺の冷却手段とに
対し相対的に軸方向移動させ、外管の軸方向にて
連続的に周方向環状加熱、及び、加熱部の周辺の
冷却を時間的にずらして行つて外管と内管とを緊
結させるようにした管の縮径方法に関する発明で
あり、特に、外管に対し軸方向の局所的なリング
状加熱とその周辺の冷却を行うに際し、加熱部周
辺の冷却により加熱部の膨径を拘束するように
し、該加熱部を降伏せしめ、冷却後加熱部の径が
初期径より小さくなるようにして強い緊結状態の
嵌合代をもつて嵌合した二重管が得られるように
した管の縮径方向に係る発明である。
<Summary of the gist> The invention of this application is, for example, in order to improve the wear resistance of piping used for slurry transportation, pneumatic transportation, etc. Continuous circumferential annular heating in the axial direction of the outer tube by moving the blank tube such as a double tube in the axial direction relative to the circumferential annular heating means of the outer tube and the cooling means around the heating part. This invention relates to a method for reducing the diameter of a tube in which the outer tube and the inner tube are tightly connected by cooling the periphery of the heating part in a temporally staggered manner. When performing ring-shaped heating and cooling of the surrounding area, the expansion diameter of the heating area is restricted by cooling the area around the heating area, and the heating area is made to yield so that the diameter of the heating area becomes smaller than the initial diameter after cooling. This invention relates to a direction in which the diameter of the tube is reduced, so that it is possible to obtain a double tube that is fitted with a fitting margin in a strongly tightened state.

<従来の技術> 周知の如く、配管は各種の産業分野で流体の輸
送等に広く用いられているが、これらの配管のう
ち、例えば、石炭、各種鉱石、セメント等の固形
物を水等の液体に混在させて運ぶスラリー輸送
管、或は、粉塵、硅砂等の粉粒体の空気輸送管等
においては管内面が稼動に伴い経時的に著しく摩
耗し易いという問題がある。
<Prior art> As is well known, piping is widely used in various industrial fields to transport fluids. In pipes for transporting slurry mixed with liquid, or pipes for transporting powder particles such as dust and silica sand, there is a problem in that the inner surface of the pipe is easily worn out over time due to operation.

したがつて、この種の配管には通常ガス管のよ
うな安価な鋼管が用いられ、摩耗すると、新しい
管と交換したり、摩耗部分に当て板を溶接したり
することによつて対処している。
Therefore, cheap steel pipes such as gas pipes are usually used for this type of piping, and when they wear out, they can be replaced with new pipes or welded backing plates to the worn parts. There is.

勿論、特に、耐摩耗性を要求されるような用途
の配管では高クロム鋳鉄等、耐摩耗性に優れた材
料より成る管が使用されることもある。
Of course, especially for piping applications where wear resistance is required, pipes made of materials with excellent wear resistance, such as high chromium cast iron, may be used.

而して、一般に、鉄鋼材料の耐摩耗性は硬さと
良い相関があり、耐摩耗性に優れた材料は一様に
著しく硬い。
Generally, the wear resistance of steel materials has a good correlation with hardness, and materials with excellent wear resistance are uniformly extremely hard.

例えば、耐摩耗材料としてよく使用される
27Cr鋳鉄は、シヨア硬さで81以上の硬さを有す
る。
For example, it is often used as a wear-resistant material.
27Cr cast iron has a Shore hardness of 81 or higher.

<発明が解決しようとする課題> さりながら、一方、硬さが硬くなる程、鉄鋼材
料の靱性は低下する傾向があり、上述した高クロ
ム鋳鉄等の耐摩耗材料から成る管は衝撃力が加わ
ると破損し易いという欠点がある。
<Problems to be Solved by the Invention> However, as the hardness increases, the toughness of steel materials tends to decrease, and pipes made of wear-resistant materials such as the above-mentioned high chromium cast iron are subject to impact forces. It has the disadvantage of being easily damaged.

又、高硬度の耐摩耗材料は溶接性、及び、加工
性が共に著しく悪いため、例えば、継手用のため
に溶接による管本体へのフランジの取り付けが不
可能に近い欠点があり、そして、該フランジを管
本体に一体形成させた場合にもその後の仕上げ加
工や孔開け加工が困難であり、そのうえ、補修溶
接が困難である等の難点がある。
In addition, since high-hardness wear-resistant materials have extremely poor weldability and workability, they have the drawback that, for example, it is almost impossible to attach flanges to pipe bodies by welding for joints. Even when the flange is integrally formed with the pipe body, it is difficult to perform finishing and drilling afterwards, and repair welding is also difficult.

加えて、製造コストが高い不利点もある。 In addition, it also has the disadvantage of high manufacturing costs.

このようなことから鋼管の管本体に耐摩耗材料
を内張した所謂クラツド鋼管も使用されるように
なつてきた。
For this reason, so-called clad steel pipes, in which the main body of the steel pipe is lined with a wear-resistant material, have come into use.

該種クラツド鋼管は、通常遠心鋳造法、或は、
内盛溶接法等により作られて、内張管は管本体に
対し冶金的に接合されている。
The type clad steel pipe is usually manufactured by centrifugal casting method or
The lined pipe is made by a welding method or the like, and is metallurgically joined to the pipe body.

而して、クラツド鋼管は、管の内面が内張管の
耐摩耗材料によつて覆われているため、特に、耐
摩耗性を考慮していない材質の通常の単層鋼管よ
り格段に耐摩耗性が優れてはいる。
Since the inner surface of the clad steel pipe is covered with the wear-resistant material of the lining pipe, it has a much higher wear resistance than ordinary single-layer steel pipes made of materials that do not take wear resistance into account. It has excellent characteristics.

又、管本体は耐摩耗材料を具備する必要がない
ので、充分な靱性をもち、溶接性や加工性の良好
な材質のものを採用出来る。
Further, since the tube body does not need to be made of wear-resistant material, it is possible to use a material that has sufficient toughness and has good weldability and workability.

したがつて、耐摩耗材料のみから成る管と異な
り、充分な耐衝撃性能を有し、又、フランジを別
体形成して溶接で取り付けたり、孔開け加工した
りすることも可能である。
Therefore, unlike a pipe made only of wear-resistant material, it has sufficient impact resistance, and it is also possible to form a separate flange and attach it by welding or drilling holes.

しかしながら、クラツド鋼管では製造方法の如
何によらず内張管に引張り応力が残存するため、
稼動中等で割れを生じ易い不都合さがある。
However, with clad steel pipes, tensile stress remains in the lined pipe regardless of the manufacturing method, so
It has the disadvantage that it tends to crack during operation.

そして、一旦割れを生ずると、内張管と管本体
とが冶金的に接合しているため、当該割れが管本
体に容易に伝播して貫通割れとなり易いマイナス
点もある。
Moreover, once a crack occurs, since the lining pipe and the pipe main body are metallurgically joined, the crack easily propagates to the pipe main body, and there is also a disadvantage that it is easy to cause a through crack.

そこで、実用上充分な靱性を有する外管と耐摩
耗性に優れた内管とを重層した二重管で、両管が
冶金的に接合しておらず、しかも、ある面圧をも
つて緊結しており、内管が圧縮応力状態となるよ
うにした自緊二重管の開発が望まれている。
Therefore, we developed a double-layered tube consisting of an outer tube with sufficient toughness for practical use and an inner tube with excellent wear resistance. Therefore, it is desired to develop a self-stressing double pipe in which the inner pipe is placed in a compressive stress state.

蓋し、かかる自緊二重管はクラツド鋼管と同様
の利点をもち、しかも、上述したクラツド鋼管の
欠点が解消されるからである。
This is because such self-consolidated double pipes have the same advantages as clad steel pipes, and moreover, the above-mentioned disadvantages of clad steel pipes are eliminated.

ところで、従来の自緊二重管の製造技術として
は、第一に焼きばめ法、第二に拡管法、第三に出
願人の先に開発した所謂熱拡管法等がある ところが、内面耐摩耗性の自緊二重管の製造方
法としては、これらの方法による場合はそれぞれ
好ましくない点がある。
By the way, the conventional manufacturing techniques for self-tightening double pipes include firstly the shrink fitting method, secondly the pipe expanding method, and thirdly the so-called heat expanding method developed earlier by the applicant. Each of these methods has disadvantages as methods for manufacturing abrasive self-containing double pipes.

まず、第一の方法では、外管の内径、及び、内
管の外径に厳しい加工精度が要求されるが、内面
耐摩耗性の二重管の場合、内管は加工性の悪い耐
摩耗材料であるので、所要の加工を行うが非常に
難しい。
First, the first method requires strict machining accuracy for the inner diameter of the outer tube and the outer diameter of the inner tube, but in the case of a double tube with a wear-resistant inner surface, the inner tube has poor machinability and wear resistance. Since it is a material, it is extremely difficult to perform the required processing.

加えて、この方法では一般に長尺管の嵌合が極
めて困難である。
In addition, this method generally makes it extremely difficult to fit long tubes.

又、第二、第三の方法ではいずれも内管の塑性
拡管が行われるが、この場合、該内管の強度(降
伏点)が非常に高いうえに耐蝕二重管等に比べて
内管がやや厚くなるので、極めて高い拡管圧力が
必要となり、実用的ではない不都合さがある。
In addition, in both the second and third methods, the inner tube is expanded plastically, but in this case, the strength (yield point) of the inner tube is very high, and the inner tube has a higher strength than a corrosion-resistant double tube. Since the pipe becomes somewhat thick, an extremely high pressure for expansion is required, which is not practical.

特に、第二の方法では、外管の強度(降伏点)
に比べて内管の強度(降伏点)が高い二重管の場
合、内管を塑性拡管しても、弾性戻りにより内外
管の間に隙間が生じる。
In particular, in the second method, the strength (yield point) of the outer tube
In the case of double-walled pipes, where the strength (yield point) of the inner pipe is higher than that of the inner pipe, even if the inner pipe is expanded plastically, a gap will be created between the inner and outer pipes due to elastic return.

以上のように、潜在的に耐摩耗性の二重管に対
する強いニーズがあるにもかかわらず、従来技術
では満足すべき条件を具備した耐摩耗性の二重管
を提供出来なかつた。
As described above, although there is a potentially strong need for a wear-resistant double pipe, the prior art has not been able to provide a wear-resistant double pipe that satisfies the requirements.

〈発明の目的〉 この出願の発明の目的は上述従来技術に基づく
二重管製造の問題点を解決すべき技術的課題と
し、内外管を相対遊挿した素管の外管に対し週方
向リング状加熱、及び、その周辺の冷却作用を同
時併行的に、例えば、軸方向に相対移動しながら
連続的に付与することで外管を縮径させ、内管を
外管がたが締めするようにして、各種産業におけ
る配管技術利用分野に益する優れた二重管の製造
に適用し得る管の縮径方法を提供せんとするもの
である。
<Object of the Invention> The object of the invention of this application is to solve the problems of double-pipe manufacturing based on the above-mentioned prior art, and to solve the problem of double-pipe manufacturing based on the above-mentioned prior art. By simultaneously applying heating and cooling to the surrounding area, for example, continuously while moving relative to each other in the axial direction, the diameter of the outer tube is reduced and the inner tube is tightened so that the outer tube rattles. Therefore, it is an object of the present invention to provide a method for reducing the diameter of a pipe that can be applied to the production of excellent double-walled pipes that are useful in the fields of piping technology used in various industries.

〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明の構成は前述課題を解決するた
めに、内管と外管を相対遊挿(内管に外管を、或
いは、外管に内管を或いは、その両管による遊
挿)した素管の内管に高い耐摩耗性を有する材料
を用い素管の外管を縮径させるに際し、該外管に
対しリング状の加熱を付与し、周方向の環状加熱
手段と素管とを相対的に軸方向移動させるように
し、この際、環状加熱手段の管軸方向に沿う後
方、若しくは、前方、及び、後方にて冷却手段を
設けることにより、加熱部周辺の低温部により該
加熱部の熱膨脹を拘束して膨径を抑え込んで該加
熱部を降伏せしめ、該加熱部が冷却収縮後初期径
よりも縮径するようにした技術的手段を講じたも
のである。
<Means/effects for solving the problem> In order to solve the above-mentioned problem, the structure of the invention of this application, which is based on the scope of the above-mentioned patent claims, is to solve the above-mentioned problem by relatively loosely inserting the inner tube and the outer tube. When reducing the diameter of the outer tube of the blank tube by using a material with high wear resistance for the inner tube of the blank tube (loose insertion of the outer tube into the tube, the inner tube into the outer tube, or both tubes), Ring-shaped heating is applied to the outer tube, and the annular heating means in the circumferential direction and the base tube are moved relative to each other in the axial direction. By providing cooling means at the front and rear, the thermal expansion of the heating section is restrained by the low-temperature area around the heating section, suppressing the expansion diameter and yielding the heating section, so that the heating section can be cooled and shrunk at an early stage. A technical measure was taken to make the diameter smaller than the diameter.

〈発明の基礎的背景〉 一般に、管に対して環状に局部加熱し、その周
辺を冷却する熱処理を施すことにより管径が変化
する。
<Basic Background of the Invention> Generally, the pipe diameter is changed by subjecting the pipe to a heat treatment in which the pipe is heated locally in an annular shape and the surrounding area is cooled.

この現象は熱弾塑性挙動に起因する。 This phenomenon is due to thermo-elasto-plastic behavior.

即ち、管の局部を加熱すると、加熱部は、熱膨
脹により膨径しようとするが、このとき、加熱部
の周辺を強制冷却すると、冷却部分によつて膨径
が拘束され、高温で降伏応力が低くなつているこ
とと相伴つて加熱部は容易に塑性変形し、自由膨
脹時に比べ、その膨脹量は著しく小さくなる。
In other words, when a local part of the tube is heated, the heated part tends to expand in diameter due to thermal expansion, but at this time, if the area around the heated part is forcibly cooled, the expanded diameter is restrained by the cooled part, and the yield stress is reduced at high temperatures. Coupled with the fact that the temperature is lower, the heated portion easily undergoes plastic deformation, and the amount of expansion becomes significantly smaller than that during free expansion.

そして、その後の冷却時には、比較的自由に熱
収縮するため、この熱履歴を受けた部分の管径
は、初期径より小さくなる。
Then, during subsequent cooling, the tube undergoes thermal contraction relatively freely, so the tube diameter of the portion that has undergone this thermal history becomes smaller than the initial diameter.

この熱処理を、管の周方向にて行い、併せて長
手方向に連続して施すことで、管径を長さ方向に
て一様に減少させることが出来、又、管の長手方
向に部分的に施すことにより、管径を局部的に減
少させることも出来る。
By performing this heat treatment in the circumferential direction of the tube and also continuously in the longitudinal direction, the tube diameter can be uniformly reduced in the length direction, and it is also possible to reduce the tube diameter partially in the longitudinal direction. It is also possible to locally reduce the tube diameter by applying

第5図は、環熱縮径法(上述の管に対し環状の
加熱冷却を付与して縮径する方法)により管径が
縮径する基礎的現象を、熱弾塑性数値解析により
シミユレートして知得した態様を示したものであ
り、この場合、解析モデルは軟鋼管(外径165.2
mmφ×肉厚5.5mm)で、解析条件としては、管の
長手方向に局部的に、環状に800℃まで急速加熱
し、冷却する熱履歴を管の長手方向に連続的に与
えたものである。
Figure 5 shows a simulation of the basic phenomenon in which the diameter of a pipe is reduced by the annular thermal reduction method (a method of reducing the diameter of the pipe by applying annular heating and cooling to the pipe described above) using thermoelastic-plastic numerical analysis. This figure shows the learned state, and in this case, the analysis model is a mild steel pipe (outer diameter 165.2
mmφ x wall thickness 5.5 mm), and the analysis conditions were to provide a continuous thermal history in the longitudinal direction of the tube, in which the tube was locally and annularly heated up to 800°C rapidly and then cooled. .

当該第5図に於いて図中では、与えられた熱履
歴に応じ発生する塑性歪量(左側縦軸)と、これ
に対応する管径の過度的変化量(共に、板厚中央
の値)を右側縦軸に、管の長手方向の座標を横軸
に示した。
In Figure 5, the amount of plastic strain that occurs in response to a given thermal history (left vertical axis) and the corresponding amount of transient change in pipe diameter (both values at the center of the plate thickness) are shown. is shown on the right vertical axis, and the longitudinal coordinate of the tube is shown on the horizontal axis.

而して、加熱時は、膨径量は少なく、周方向に
大きな圧縮の塑性歪が発生し、冷却時には、引張
りの塑性歪が発生するものの、その量は加熱時に
比べて小さく、このため、冷却後、管の圧縮の塑
性歪が残存して管径が減少することが分る。
When heated, the expansion diameter is small and a large compressive plastic strain occurs in the circumferential direction, and when cooled, tensile plastic strain occurs, but the amount is smaller than when heated, and therefore, It can be seen that after cooling, the compressive plastic strain of the tube remains and the tube diameter decreases.

熱源の形状(加熱勾配、冷却勾配や最高加熱温
度等)を変えることにより発生する塑性歪量が変
化し、管径の変化量が変わるころから、管の材質
や断面形状に応じて、所定の熱履歴を与えること
で管径の変化量が制御出来ることも分る。
The amount of plastic strain generated by changing the shape of the heat source (heating gradient, cooling gradient, maximum heating temperature, etc.) changes, and the amount of change in pipe diameter changes. It can also be seen that the amount of change in pipe diameter can be controlled by providing thermal history.

<実施例> 次に、この出願の発明の1実施例を図面に従つ
て説明すれば以下の通りである。
<Example> Next, an example of the invention of this application will be described below with reference to the drawings.

図示実施例はスラリー輸送管等の耐摩耗性二重
管の製造の態様であり、外管1には、例えば、炭
素量0.25%程度の低炭素鋼等の高靱性のものを用
い、又、内管2としては耐摩耗性を有する、例え
ば、炭素量0.55%程度の高炭素鋼等を用いて、焼
入硬化させた内管2を第1図に示す様に、相対遊
挿して二重管素管3としておく。
The illustrated embodiment is a mode of manufacturing a wear-resistant double pipe such as a slurry transport pipe, and the outer pipe 1 is made of a high toughness material such as low carbon steel with a carbon content of about 0.25%, and The inner tube 2 is made of wear-resistant material such as high carbon steel with a carbon content of approximately 0.55%, and the inner tube 2 is hardened by quenching and is inserted loosely and double-sided as shown in Fig. 1. Set the tube as tube 3.

而して、該二重管素管3を矢印に示す様に、軸
方向に所定速度で移動させるようにセツトし、更
に第2図に示す様に、外管1の外周に環状加熱手
段として、例えば、高周波誘導加熱装置4をセツ
トすると共に該高周波誘導加熱装置4に所定距離
離隔して近接した軸方向前後に、例えば、水道水
等のリング状のシヤワー装置の冷却装置5,5を
セツトし、二重管素管3を矢印方向に移動させる
ことにより加熱装置4、及び、冷却装置5,5は
該二重管素管3に対し相対移動するようにされ
る。
Then, the double tube blank tube 3 is set to move at a predetermined speed in the axial direction as shown by the arrow, and furthermore, as shown in FIG. For example, a high-frequency induction heating device 4 is set, and cooling devices 5, 5 of a ring-shaped shower device, such as tap water, are set in front and back in the axial direction close to the high-frequency induction heating device 4 at a predetermined distance apart. However, by moving the double tube blank tube 3 in the direction of the arrow, the heating device 4 and the cooling devices 5, 5 are moved relative to the double tube blank tube 3.

そこで、所定速度で該二重管素管3を矢印方向
に移動させると、加熱装置4はその前後の冷却装
置5,5による外管冷却に対し加熱による膨径作
用を付与するが、このプロセスにおいて、模式的
に第2図に示す様に、加熱部分の両端が冷却部分
に対して自由端であれば、当該第2図に示す様
に、自由に膨径して径方向に突出するが、実際は
加熱部分に対し当該加熱部分はその両端が冷却部
分によつて拘束されるために、当該部分は第4図
に示す様に、長手方向に対し中心方向に向かつて
径方向の押え曲げモーメントFが作用し、高温と
なつて降伏点が低下していることと相俟って降伏
し、結果的に、リング状の軸方向断面が湾曲した
塑性変形部分が成形される。
Therefore, when the double tube blank tube 3 is moved at a predetermined speed in the direction of the arrow, the heating device 4 applies an expansion effect due to heating to the outer tube cooling by the cooling devices 5, 5 before and after the heating device 4, but this process In this case, as schematically shown in Fig. 2, if both ends of the heating part are free ends with respect to the cooling part, the diameter will freely expand and protrude in the radial direction, as shown in Fig. 2. In reality, since both ends of the heating part are restrained by the cooling part, the heating part has a bending moment in the radial direction toward the center with respect to the longitudinal direction, as shown in Fig. 4. The F acts on the material, the temperature increases, and the yield point decreases, resulting in yielding, and as a result, a ring-shaped plastically deformed portion with a curved axial cross section is formed.

そして、二重管素管3が矢印方向に相対移動す
ることにより、加熱装置4により加熱されて塑性
変形した部分は加熱部分を通過して冷却装置5,
5によつて冷却されると、第3図に示す様に、逆
に大きく縮径され、そこで大きな嵌合代が得られ
て外管1は内管2に対し緊結されることになる。
Then, as the double tube blank tube 3 moves relatively in the direction of the arrow, the portion heated and plastically deformed by the heating device 4 passes through the heated portion and passes through the cooling device 5,
When the outer tube 1 is cooled by the inner tube 5, the diameter of the outer tube 1 is reduced to a large extent as shown in FIG.

そして、この作用は外管1の全ての周方向部分
に作用するために、二重管素管3を軸方向連続的
に相対移動することにより、該外管1の全ての部
分が縮径し、全二重管素管3に於いて縛りばね状
態が現出され、結果的に、大きな自緊二重管が形
成される。
Since this action acts on all circumferential portions of the outer tube 1, by continuously moving the double tube element tube 3 relative to each other in the axial direction, all portions of the outer tube 1 are reduced in diameter. , a binding spring state appears in the full-duplex pipe blank 3, and as a result, a large self-tightening double-pipe is formed.

そして、上述緊結プロセスは内管2の肉厚に係
りなく行われ、又、軸方向長さに係らず、全二重
管素管3に於いて形成されるために、更に、外管
1と内管2の接合面の精度にもほとんど無関係に
行われることになり、内管2の肉厚が大で、しか
も、長尺管であるところの耐摩耗性二重管製造に
は極めて効果的である。
The above-mentioned tightening process is performed regardless of the wall thickness of the inner tube 2, and since it is formed in the full double tube blank tube 3 regardless of the axial length, it is further This process has almost no relation to the accuracy of the joint surface of the inner tube 2, and is extremely effective for manufacturing wear-resistant double tubes where the inner tube 2 has a large wall thickness and is a long tube. It is.

尚、この出願の発明の実施態様は上述実施例に
限るものでないことは勿論であり、上述内管をセ
ラミツクスとした耐蝕性二重管の製造、即ち、内
管に耐蝕性材料を用いたりすることが出来る等
種々の態様が採用可能である。
It should be noted that the embodiments of the invention of this application are of course not limited to the above-mentioned embodiments, and may include manufacturing a corrosion-resistant double-walled pipe in which the inner pipe is made of ceramics, that is, using a corrosion-resistant material for the inner pipe. Various aspects can be adopted, such as the following.

又、対象は直管のみならず、ベント管等の曲管
等に対しても適応出来るものである。
Moreover, it is applicable not only to straight pipes but also to curved pipes such as bent pipes.

尚、この出願の発明は線状加熱手段や冷却手段
を移動方向に付与する手段によるところの周方向
増径縮径手段と異なり、あくまで加熱された管の
環状部分の膨径が隣接冷却部分により拘束され、
該加熱部分が冷却後縮径することにより縮径され
て、例えば、二重管の製造時に外管が内管に対し
緊結するようにしたものであり、その自緊メカニ
ズムは全く異なるものである。
Note that the invention of this application differs from the circumferential diameter increasing/reducing means which uses a linear heating means or a cooling means in the moving direction, and the expansion diameter of the heated annular portion is caused by the adjacent cooling portion. restrained,
The diameter of the heating part is reduced by reducing the diameter after cooling, so that, for example, the outer tube is tightened to the inner tube when manufacturing a double tube, and the self-tightening mechanism is completely different. .

そして、縮径処理は1回ではなく、繰り返し処
理を適用することが出来るものである。
Further, the diameter reduction process can be applied not only once but repeatedly.

そして、本処理は1回でも良いが、1回だけで
なく、2回以上繰り返すことで、その縮径量を増
大させることが出来る。
This process may be performed only once, but by repeating it not only once but twice or more, the amount of diameter reduction can be increased.

次に、上述実施例に則す実施例を示せば以下の
通りである。
Next, an example based on the above-mentioned example will be shown below.

第6図は、環熱縮径法による二重管製造におけ
る、環熱縮径処理ごとの外管1の外径変化量(累
積)と二重管素管3の内外管1,2の嵌合面圧の
発生状況を示す実施例(横軸:環熱縮径処理
(RHS)回数、縦軸:嵌合面圧、縮径量)であつ
て、これらの内外管1,2が鋼管(材質:STPG
−38、形状:外管90A/Sch40、内管80A/
Sch40)の場合を示している。
Figure 6 shows the amount of outside diameter change (cumulative) of the outer tube 1 for each ring thermal diameter reduction process and the fitting of the inner and outer tubes 1 and 2 of the double tube base tube 3 in double tube manufacturing by the ring thermal diameter reduction method. This is an example showing the generation status of mating surface pressure (horizontal axis: number of ring heat reduction treatments (RHS); vertical axis: mating surface pressure, amount of diameter reduction). Material: STPG
−38, shape: outer tube 90A/Sch40, inner tube 80A/
Sch40) is shown.

この場合、内外管1,2のクリアランス(直径
差)は1.5mmあり、これを4回の処理で両者は接
触され、5回以後は両者は嵌合していくことが分
る。
In this case, the clearance (diameter difference) between the inner and outer tubes 1 and 2 is 1.5 mm, and it can be seen that the two are brought into contact after four treatments, and after the fifth treatment, they are fitted.

ここで、初期クリアランスは両者を重層するに
足りる程度で良く、実用上は、例えば、1〜5mm
程度である。
Here, the initial clearance is sufficient to overlap the two, and in practical terms, for example, 1 to 5 mm.
That's about it.

又、1回の処理当りの縮径量は実施条件により
任意に決めることが出来るが、実際には、例え
ば、外管の直径の0.5%程度である。
Further, the amount of diameter reduction per one treatment can be arbitrarily determined depending on the implementation conditions, but in reality, it is, for example, about 0.5% of the diameter of the outer tube.

当該実験例のデータから分るように、内外両管
1,2が接触するまでは処理回数が増すにつれ外
管1の縮径量が増え、両者が接触後、嵌合面圧が
発生している。
As can be seen from the data of the experimental example, the amount of diameter reduction of the outer tube 1 increases as the number of treatments increases until both the inner and outer tubes 1 and 2 come into contact, and after they come into contact, a fitting surface pressure is generated. There is.

そして、更に、処理回数を増すと、嵌合面圧が
増大することから、処理回数を制御することによ
つて、嵌合面圧を変え得ることが分る。
Furthermore, since the fitting surface pressure increases as the number of treatments increases, it can be seen that the fitting surface pressure can be changed by controlling the number of treatments.

<発明の効果> 以上、この出願の発明は、基本的に耐摩耗二重
管の製造に際し、外管を縮径させることにより内
外管を嵌合させて一体化を図つたものである。
<Effects of the Invention> As described above, the invention of this application basically aims at integrating the inner and outer tubes by fitting the inner and outer tubes together by reducing the diameter of the outer tube when manufacturing a wear-resistant double tube.

このため、内管を拡径させて耐摩耗二重管を製
造する方法の場合、弾性戻り差により拡管力を除
荷した後内外管の嵌合力が低下し、場合によつて
は内外管が分離してしまうが、これに対して処理
後に内外管が分離することなく縮径させることが
出来、それによつて外管に比し内管の強度が高
く、自緊二重管としては極めて精度が高いものが
得られる優れた効果が奏され、又、拡管圧に必要
な強大な圧力等も要らず、製造に際する動力費が
安くて済み、低コストで製造出来る効果がある。
For this reason, in the case of manufacturing a wear-resistant double tube by expanding the diameter of the inner tube, the fitting force between the inner and outer tubes decreases after the tube expansion force is removed due to the difference in elastic return, and in some cases, the inner and outer tubes may However, after treatment, the diameter of the inner and outer tubes can be reduced without separating, which makes the inner tube stronger than the outer tube, making it extremely accurate for a self-contained double tube. It has the advantage of being able to obtain a product with a high pressure, and also does not require the enormous pressure required for pipe expansion, resulting in low power costs during production and can be produced at low cost.

又、従来の焼きばめ法等とは異なり、外管と内
管の接合面の精度もそれほど大きく要求されず、
したがつて、長尺管等も比較的自由に製造出来る
という優れた効果が奏される。
Also, unlike conventional shrink fitting methods, the accuracy of the joint surface between the outer tube and inner tube is not required to be as great.
Therefore, an excellent effect is achieved in that long tubes and the like can be manufactured relatively freely.

又、内管が耐摩耗性であり、外管が高靱性であ
るような態様においても、何ら設計の自由度が拘
束されずに縮径出来、したがつて、外管と内管の
材料選択も自由であるという効果が奏される。
In addition, even in cases where the inner tube is wear-resistant and the outer tube is highly tough, the diameter can be reduced without any restrictions on design freedom, and therefore the selection of materials for the outer and inner tubes is easy. It has the effect of being free.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の1実施例の概略説明図
であり、第1図は外管と内管の相対重層時の部分
断面側面図、第2図は加熱による押え曲げモーメ
ント付与メカニズムの部分断面図、第3図は冷却
による押え曲げモーメントを介しての縮径メカニ
ズムの断面図、第4図は押え曲げモーメント付与
の模式斜視図、第5図は環熱縮径法の基礎現象の
シユミレーシヨングラフ図、第6図は環熱縮径の
実験例のグラフ図である。 3……管、1……外管、4……加熱(手段)、
5……冷却(手段)、F……押え曲げモーメント。
The drawings are schematic explanatory diagrams of one embodiment of the invention of this application, and FIG. 1 is a partial cross-sectional side view when the outer tube and inner tube are stacked relative to each other, and FIG. 2 is a partial cross-sectional view of the presser bending moment imparting mechanism by heating. Figure 3 is a cross-sectional view of the diameter reduction mechanism through the presser bending moment due to cooling, Figure 4 is a schematic perspective view of applying presser bending moment, and Figure 5 is a simulation of the basic phenomenon of the ring thermal diameter reduction method. FIG. 6 is a graph of an experimental example of ring thermal diameter reduction. 3... tube, 1... outer tube, 4... heating (means),
5... Cooling (means), F... Presser bending moment.

Claims (1)

【特許請求の範囲】 1 管1に対し周方向の環状加熱4とその周辺の
冷却5を同時併行的に付与し、加熱部の熱膨脹を
その両側の冷却により拘束して膨径を抑え、該加
熱部が冷却により収縮し、その部分の径が初期径
より小さくなるようにすることを特徴とする管1
の縮径方法。 2 管1に対し周方向の環状加熱4とその周辺の
冷却5を同時併行的に付与し、加熱部の熱膨脹を
その両側の冷却により拘束して膨径を抑え、該加
熱部が冷却により収縮してその部分の径が初期径
より小さくなるようにし、而して管1と加熱手段
4とを軸方向に相対移動させ、管の移動長全長に
亙り冷却後の管1の径が初期径より小さくなるよ
うにすることを特徴とする管1の縮径方法。
[Scope of Claims] 1. Annular heating 4 in the circumferential direction and cooling 5 in the surrounding area are simultaneously applied to the tube 1, and the thermal expansion of the heated part is restrained by cooling on both sides to suppress the expansion diameter. A tube 1 characterized in that the heated part contracts upon cooling so that the diameter of that part becomes smaller than the initial diameter.
Diameter reduction method. 2 Annular heating 4 in the circumferential direction and cooling 5 around the circumference are simultaneously applied to the tube 1, the thermal expansion of the heated part is restrained by cooling on both sides to suppress the expansion diameter, and the heated part contracts by cooling. Then, the tube 1 and the heating means 4 are moved relative to each other in the axial direction so that the diameter of the tube 1 after cooling becomes the initial diameter over the entire moving length of the tube. A method for reducing the diameter of a tube 1, characterized by making the tube smaller.
JP60122663A 1985-06-07 1985-06-07 Diameter reducing method for pipe Granted JPS61283416A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60122663A JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe
AU58423/86A AU573093B2 (en) 1985-06-07 1986-06-04 Localised diameter reduction of tubing
EP86107709A EP0206048B1 (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
DE8686107709T DE3674951D1 (en) 1985-06-07 1986-06-06 THERMOPLASTIC METHOD FOR REDUCING THE DIAMETER OF A METAL TUBE.
CA000510978A CA1260551A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
US06/871,917 US4727641A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
CN86103742.1A CN1003532B (en) 1985-06-07 1986-06-07 Method for reducing diametre of metal pipe by hot plasticity
KR1019860004518A KR900004101B1 (en) 1985-06-07 1986-06-07 Thermoplastic method of reducing the diameter of a metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122663A JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe

Publications (2)

Publication Number Publication Date
JPS61283416A JPS61283416A (en) 1986-12-13
JPH0576379B2 true JPH0576379B2 (en) 1993-10-22

Family

ID=14841553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122663A Granted JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe

Country Status (1)

Country Link
JP (1) JPS61283416A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262078A (en) * 1985-09-10 1987-03-18 川崎重工業株式会社 Abrasion-resistant lining double pipe and manufacture thereof
JPS63273514A (en) * 1987-04-28 1988-11-10 Kuroki Kogyosho:Kk Manufacture of composite member
JPH01133624A (en) * 1987-11-20 1989-05-25 Nippon Steel Corp Manufacture of tightly attached bimetallic curved tube
JP2706689B2 (en) * 1988-02-15 1998-01-28 川崎重工業株式会社 Manufacturing method of partition tube
JP6720125B2 (en) * 2017-09-22 2020-07-08 三菱日立パワーシステムズ株式会社 Metal wall cooling method

Also Published As

Publication number Publication date
JPS61283416A (en) 1986-12-13

Similar Documents

Publication Publication Date Title
JPH0576379B2 (en)
US4683014A (en) Mechanical stress improvement process
JPH0450128B2 (en)
JPS5844127B2 (en) Manufacturing method of cast stainless steel elbows with fine straight pipe structure at the end
JPH0576383B2 (en)
JPH0576384B2 (en)
JP2554470B2 (en) Tube manufacturing method
US4612071A (en) Mechanical stress improvement process
JPH0450127B2 (en)
RU93053314A (en) METHOD OF BENDING METAL PIPES
JPS6262078A (en) Abrasion-resistant lining double pipe and manufacture thereof
JPH0576380B2 (en)
JPH0576382B2 (en)
RU2106233C1 (en) Shaft-sleeve type joint disassembly method
JPH0450129B2 (en)
JPS61283415A (en) Manufacture of wear resistant double pipe
JPS61282698A (en) Structure of abrasion-resistant bent double pipe
JPH0218171B2 (en)
JPS61283414A (en) Manufacture of wear resistant double pipe
JPH0576387B2 (en)
JPH01119572A (en) Production of double pipe having ceramics inside pipe
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe
JPH01118307A (en) Manufacture of thick-wall double pipe
JPH0576385B2 (en)
SU1013696A1 (en) Method of non-detachable connection of parts