JPS61283416A - Diameter reducing method for pipe - Google Patents

Diameter reducing method for pipe

Info

Publication number
JPS61283416A
JPS61283416A JP60122663A JP12266385A JPS61283416A JP S61283416 A JPS61283416 A JP S61283416A JP 60122663 A JP60122663 A JP 60122663A JP 12266385 A JP12266385 A JP 12266385A JP S61283416 A JPS61283416 A JP S61283416A
Authority
JP
Japan
Prior art keywords
pipe
diameter
tube
cooling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60122663A
Other languages
Japanese (ja)
Other versions
JPH0576379B2 (en
Inventor
Fumiyoshi Kanetani
金谷 文善
Shigetomo Matsui
繁朋 松井
Toshio Atsuta
稔雄 熱田
Eisuke Mori
森 英介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60122663A priority Critical patent/JPS61283416A/en
Priority to AU58423/86A priority patent/AU573093B2/en
Priority to EP86107709A priority patent/EP0206048B1/en
Priority to DE8686107709T priority patent/DE3674951D1/en
Priority to US06/871,917 priority patent/US4727641A/en
Priority to CA000510978A priority patent/CA1260551A/en
Priority to CN86103742.1A priority patent/CN1003532B/en
Priority to KR1019860004518A priority patent/KR900004101B1/en
Publication of JPS61283416A publication Critical patent/JPS61283416A/en
Publication of JPH0576379B2 publication Critical patent/JPH0576379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce a pipe diameter and to form a self-tightening double-walled pipe at a low cost by simultaneously and parallellty subjecting the pipe to annular heating from the peripheral direction and cooling around the same to suppress the diameter expansion of the heated part then cooling the pipe to shrink. CONSTITUTION:The high-toughness outside pipe 1 consisting of a low-carbon steel, etc. and the high-wear-resistant inside pipe 2 consisting of a high-carbon steel, etc. are freely inserted to form a double-walled pipe stock 3. An annular high-frequency induction heater 4 is set onto the outside pipe 1 and coolers 5 for annular shower of cooling water are set before and behind the heater in the axial direction in proximity thereto. While the pipe stock 3 is moved in an arrow direction, the pipe stock is continuously subjected to the simultaneous and parallel heating and cooling with the heating and cooling devices 4, 5. The thermal expansion of the heated part is thereby restrained by the low- temp. parts from both sides to suppress the diametral expansion thereof. The heated part is thereafter shrunk by cooling to decrease the diameter of the outside pipe 1 from the initial diameter, by which both pipes are self-tightened and the double-walled pipe is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、外管と内管を緊結さUる1li4 If耗
性の二重管等の配管製造技術分野に属する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The disclosed technology belongs to the technical field of manufacturing pipes such as a wearable double pipe that connects an outer pipe and an inner pipe.

〈要旨の概要〉 而して、この出願の発明はスラリー輸送、空気輸送等に
用いられる配管の耐摩耗性等を向上させるべく、例えば
、外管、内管を相対重層させた二重管等の素管を周方向
環状加熱手段とその後段の冷却手段とに対し、相対的に
軸方向移動させる等して前段の周方向環状加熱、及び、
後段の冷却を行って外管と内管とを緊結させるようにし
た管の縮径方法に関する発明であり、特に、素管に対し
リング状の前段加熱と後段冷却を行うに際して後段の冷
却が前段の加熱付与部分に対し軸方向にて管中心方向に
向かう押え曲げモーメントが作用しその膨径を拘束する
ようにして冷部後加熱付与部分に対し内向塑性変形を連
続的に付与し、強い緊結の嵌合代が得られるようにした
管の縮径方法に係る発明である。
<Summary> In order to improve the wear resistance of piping used for slurry transportation, pneumatic transportation, etc., the invention of this application, for example, provides a double pipe in which an outer pipe and an inner pipe are layered relative to each other. Circumferential annular heating of the preceding stage by moving the base tube in the axial direction relative to the circumferential annular heating means and the cooling means of the subsequent stage, and
This invention relates to a method for reducing the diameter of a tube in which an outer tube and an inner tube are tightly connected by performing cooling in the latter stage.In particular, when performing ring-shaped front stage heating and latter stage cooling on a raw pipe, the latter stage cooling is performed in the former stage. A presser bending moment acts on the heated part in the axial direction toward the center of the pipe, restraining its expansion diameter, and continuously applies inward plastic deformation to the heated part after the cold part, creating a strong bond. This invention relates to a method for reducing the diameter of a tube that allows a fitting allowance of .

〈従来技術〉 周知の如く、配管は各種産業分野で流体の輸送に広く用
いられているが、これらの配管のうら、例えば、石炭各
種#7A6、セメン[・等の固形物を水に混ぜて運ぶス
ラリー輸送管、或いは、粉塵、1砂等粉粒体の空気輸送
管等においては、管内面が著しく17托しやすいという
問題がある。
<Prior art> As is well known, piping is widely used for transporting fluids in various industrial fields. In slurry transport pipes or pneumatic transport pipes for transporting particulate matter such as dust and sand, there is a problem in that the inner surface of the pipe is extremely susceptible to cracking.

この種の配管には通常ガス管のような安価な鋼管が用い
られ、1♀耗すると新しい管と交換したりIf耗部分に
当て板を溶接したりすることによって1・1処している
This type of piping usually uses inexpensive steel pipes such as gas pipes, and when the pipe wears out, it is replaced with a new pipe or welded a cover plate to the worn part.

(発明が解決しようとする問題点〉 しかしながら、待に耐1?耗性を要求されるような用途
では、高クロム#R鉄等耐摩耗性の優れた材料より成る
管が使用されることもある。
(Problem to be solved by the invention) However, in applications where high wear resistance is required, pipes made of materials with excellent wear resistance such as high chromium #R iron may be used. be.

ところで、一般に、鉄鋼材料の耐摩耗性は硬さと良い相
関があり、耐摩耗性の優れた材料は一様に著しく硬い。
By the way, the wear resistance of steel materials generally has a good correlation with hardness, and materials with excellent wear resistance are uniformly extremely hard.

例えば、耐摩耗材料として良く使用される27Crvf
鉄は、ショア硬ざ′C″81以上の硬さを有する。
For example, 27Crvf, which is often used as a wear-resistant material.
Iron has a hardness of 81 or more on the Shore hardness scale.

さりながら、一方、硬さが硬くなる程、鉄鋼材料の靭性
は低下する傾向があり、上述した高クロム鋳鉄等の耐摩
耗材料から成る管は衝撃力が加わると破損しや1いとい
う欠点がある。
However, on the other hand, as the hardness increases, the toughness of steel materials tends to decrease, and pipes made of wear-resistant materials such as high chromium cast iron mentioned above have the disadvantage that they are more likely to break when subjected to impact force. be.

又、高砂1立の耐摩耗材料は溶接性、及び、加工性が共
に著しく悪いため、第一に溶接による本体へのフランジ
の取(=Jが不可能である欠点があり、第二にフランジ
を一体形成させた場合にも仕上げ加工や孔開は加工が困
難であり、第三に補修溶接が困難である等の難点がある
In addition, Takasago 1Tate's wear-resistant material has extremely poor weldability and workability, so firstly, it is impossible to attach the flange to the main body by welding, and secondly, it is impossible to attach the flange to the main body by welding. Even when integrally formed, finishing and hole drilling are difficult, and thirdly, repair welding is difficult.

加えて、製造コストも高い不利点もある。In addition, it also has the disadvantage of high manufacturing costs.

このようなことから、鋼管に耐摩耗材料を内張した所謂
クラツド鋼管も使用されるようになってぎた。
For this reason, so-called clad steel pipes, which are steel pipes lined with a wear-resistant material, have come into use.

この種のクラツド鋼管は、通常遠心鋳造法、或いは、肉
盛溶接法等により作られており、内張は管本体に対し冶
金的に接合している。
This type of clad steel pipe is usually made by centrifugal casting or overlay welding, and the lining is metallurgically joined to the pipe body.

而して、クラツド鋼管は、管の内面が耐摩耗材料によっ
て覆われているため、特に、耐摩耗性を考慮していない
材質の通常の単層鋼管より格段に耐摩耗性が優れている
Since the inner surface of the clad steel pipe is covered with a wear-resistant material, the wear resistance of the clad steel pipe is far superior to that of a normal single-layer steel pipe made of a material that does not take wear resistance into consideration.

又、管口(Aは耐摩耗材オ゛31を具備する必要がイ^
いので、充分な靭性をもち、溶接性良好な材質のものを
採用出来る。
In addition, the pipe port (A) must be equipped with a wear-resistant material (31).
Therefore, a material with sufficient toughness and good weldability can be used.

したがって、耐摩耗材料のみからなる管と異なり、充分
な1li4衝撃性能を有し、又、フランジを別体形成し
て溶接で取ト]けることも可能である。
Therefore, unlike a pipe made only of wear-resistant material, it has sufficient 1li4 impact performance, and it is also possible to form the flange separately and remove it by welding.

しかし、クラツド鋼管では製造方法の如何によらず内張
に引張応力が残存するため、割れを生じやηい不都合さ
がある。
However, regardless of the manufacturing method used in clad steel pipes, tensile stress remains in the inner lining, resulting in the inconvenience of cracking.

又、−1q割れを生ずると、内張を管本体とが冶金的に
接合しているため、割れが管本体に容易に伝播し貞通割
れとなりやずいマイナス点らある。
Moreover, if a -1q crack occurs, since the lining is metallurgically joined to the tube body, the crack will easily propagate to the tube body, resulting in a conduit crack.

そこで、実用上充分な靭性を有する外管と耐摩耗性の優
れた内管とを重層した二車管で、両管が冶金的に接合し
てJjらず、しかも、ある血圧をちって接触しており、
内管が圧縮応力状1服となるにうにした自緊二重管の開
発が望まれている。
Therefore, we developed a two-wheeled tube in which an outer tube with sufficient toughness for practical use and an inner tube with excellent abrasion resistance are layered, so that the two tubes are metallurgically joined and do not contact each other after a certain blood pressure. and
It is desired to develop a self-containing double pipe in which the inner pipe is under compressive stress.

このような自緊二重管は、クラッドn4ffと同様の利
点をしら、しから、上述したクラツド鋼管4管の欠点が
解消されるからである。
This is because such a self-consolidated double pipe has the same advantages as the clad n4ff, but also eliminates the drawbacks of the above-mentioned four-pipe clad steel pipe.

ところで、従来の自緊二重管製造技術としては、第一に
焼きばめ法、第二に拡管法、第三に熱拡管法等がある しかしながら、内面耐摩耗自緊二重管のI!j造方法と
しては、これらの方法にはそれぞれ好ましくない点があ
る。
By the way, conventional self-tightening double-pipe manufacturing techniques include firstly the shrink fitting method, secondly the tube expansion method, and thirdly the heat-expanding method, etc.However, the I! Each of these methods has disadvantages when it comes to construction methods.

まず、第一の方法は、外管内径、及び、内管外径に厳し
い加工精度が要求されるが、内面耐摩耗二平管の場合、
内管は加工性の悪い耐摩耗材料であるので、所要の加工
を行うが非常に難しい。
First, the first method requires strict machining accuracy on the inner diameter of the outer tube and the outer diameter of the inner tube, but in the case of a biflat tube with internal wear resistance,
The inner tube is made of a wear-resistant material with poor machinability, so it is extremely difficult to perform the necessary machining.

加えて、この方法では一般に長尺管の嵌合が極めて困難
である。
In addition, this method generally makes it extremely difficult to fit long tubes.

又、第二、第三の方法ではいずれも内管の塑性拡管が行
われるが、この場合、内管の強度(時伏点)が非常に高
い上に耐蝕二重管等に比べて内管がやや厚くなるので極
めて高い拡管圧力が必要となり実際的ではない。
In addition, in both the second and third methods, the inner tube is expanded plastically, but in this case, the inner tube has a very high strength (temperature breakdown point) and the strength of the inner tube is higher than that of a corrosion-resistant double tube. Since the pipe becomes somewhat thick, extremely high pressure for pipe expansion is required, which is not practical.

特に、第二の方法では、内管の強度(降伏点)に比べて
外管の強度(M伏点)が高いこの二重管の場合、内管を
塑性拡管しても弾性戻りにより内外管の間に隙間が生じ
る。
In particular, with the second method, in the case of this double-walled pipe, where the strength (M yield point) of the outer pipe is higher than the strength (yield point) of the inner pipe, even if the inner pipe is expanded plastically, the inner and outer pipes will not return due to elastic return. A gap is created between them.

以上のように、耐摩耗二用管に対づる強いニーズがある
にもかかわらず、従来技術では満足すべき条件を具備し
た耐摩耗二Φ管を提供出来なかった。
As described above, although there is a strong need for wear-resistant dual-purpose pipes, conventional techniques have not been able to provide wear-resistant dual-Φ pipes that meet the requirements.

この出願の発明の目的は上述従来技術に基づく二重管製
造の問題点を解決すべき技術的課題とし、相対遊挿した
重層管の外管に対し周方向リング状加熱、及び、その周
辺冷却作用を同時併行的に、例えば、軸方向に相対移動
しながら連続的に付与することにより外管を縮径させ、
内管を外管がたが締めするようにして、各種産業におけ
る配管利用分野に益する優れた管の縮径方法を提供せん
とするものである。
The purpose of the invention of this application is to solve the problems of manufacturing double pipes based on the above-mentioned prior art, and to provide circumferential ring-shaped heating for the outer pipe of a laminated pipe that is loosely inserted, and cooling around the outer pipe. The diameter of the outer tube is reduced by applying the action concurrently, for example, continuously while moving relatively in the axial direction,
It is an object of the present invention to provide an excellent method for reducing the diameter of a pipe, which is useful for piping applications in various industries, by tightening the inner pipe against the outer pipe.

く問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの出願の発明の構成
は、前述問題点を解決するために素管に高い耐摩耗性を
有する材料を用いて縮径させるに際し、管に対するリン
グ状の加熱を付与し、周方向環状加熱手段と素管とを相
対的に軸方向移vJさせるようにし、この際環状加熱手
段の後方、もしくは、前方、及び、後方に冷JJI手段
を設番ノることにより、軸方面長さからみで、加熱部分
の後方、又は、前方、及び、後方にて中心方向への径方
向の押え曲げモーメントが作用Jるようにしたものであ
り、素管は加熱部で膨径しよつと−4るが、片側、又は
、両側の冷却部分により拘束されて時伏し、加熱直後の
冷却により初期径より−b縮径するようにした技術的手
段を講じたちのである。
Means/effect for solving the above-mentioned problems In accordance with the above-mentioned object, the structure of the invention of this application, which is summarized in the above-mentioned claims, provides a material pipe with high wear resistance in order to solve the above-mentioned problems. When reducing the diameter using a material, ring-shaped heating is applied to the tube, and the circumferential annular heating means and the raw tube are relatively moved in the axial direction. By installing cold JJI means at the front and rear, a radial presser bending moment acts toward the center at the rear, front, and rear of the heated portion, depending on the axial length. When the raw pipe tries to expand in diameter at the heating part, it is restrained by the cooling part on one or both sides and collapses, and when it is cooled immediately after heating, it becomes -b from its initial diameter. They took technical measures to reduce the diameter.

〈実施例−構成〉 次に、この出願の発明の1実施例を図面に基づいて説明
すれば以下の通りである。
<Embodiment - Configuration> Next, one embodiment of the invention of this application will be described below based on the drawings.

図示実施例は、スラリー輸送管等の耐摩耗性二重管の製
造態様であり、外管1には、例えば、炭素量0.25%
程度の低炭素鋼等の高靭性のものを用い、又、内管2と
しては耐摩耗性を有する、例えば、炭素間0.55%程
度の高炭素鋼等を用いて、   )焼入硬化させた内管
2を全体冷却した状態で相対遊挿して二Φ管素管3とし
ておく。
The illustrated embodiment is a manufacturing method of a wear-resistant double pipe such as a slurry transport pipe, and the outer pipe 1 has a carbon content of, for example, 0.25%.
For the inner tube 2, use a material with high toughness such as low carbon steel with a carbon content of about 0.55%, and for the inner tube 2, use high carbon steel with a carbon content of about 0.55%. After the inner tube 2 is completely cooled, it is loosely inserted into the inner tube 2 to form a two-Φ tube blank 3.

而して、二重管素管3を矢印に示す様に軸方向に所定速
度で移動させるように!ツトし、更に、第2図に示ず様
に外管1の外周に環状に加熱手段として、例えば、高周
波誘導加熱装置4をセットすると共に高周波誘導加熱装
置4に所定距離離して近接した軸方向前後に、例えば、
水通水等のリング状のシャワーVilの冷却装置5をセ
ットし、二重管素管3を矢印方向に移動させることによ
り加熱装置4、及び、冷却装置5は二重管素管に対し相
対移動するようにされる。
Then, move the double tube tube 3 in the axial direction at a predetermined speed as shown by the arrow! Furthermore, as shown in FIG. 2, a high-frequency induction heating device 4, for example, is set as a heating means annularly around the outer circumference of the outer tube 1, and an axially adjacent high-frequency induction heating device 4 is set at a predetermined distance from the high-frequency induction heating device 4. Before and after, e.g.
By setting the cooling device 5 of the ring-shaped shower Vil for water flow, etc., and moving the double tube material tube 3 in the direction of the arrow, the heating device 4 and the cooling device 5 are set relative to the double tube material tube. be made to move.

そこで、所定速度で二重管素管3を移動さLると加熱装
置4はその前後の冷却装置5.5による外管冷却に対し
、加熱による膨径作用を付与するが、このプロセスにお
いて模式的に第2図に示す様に、加熱部分の両端が冷却
部分に対して自由端であれば、当該第2図に示す様に、
自由に膨径して周方向に突出するが、実際は加熱部分に
対し当該加熱部分はその両端が冷81部分によって拘束
されているために、当該部分は第4図に示す様に、長手
方向に対し中心方向に向かって径方向の押え曲げモーメ
ントFが作用し、結果的にリング状の湾曲した塑性変形
部分が成形される。
Therefore, when the double tube blank tube 3 is moved at a predetermined speed, the heating device 4 applies an expansion effect due to heating to the cooling of the outer tube by the cooling device 5.5 before and after it. As shown in Fig. 2, if both ends of the heating part are free ends with respect to the cooling part, as shown in Fig. 2,
Although it freely expands in diameter and protrudes in the circumferential direction, in reality, both ends of the heating part are restrained by the cold part 81, so the heating part expands in the longitudinal direction as shown in Figure 4. On the other hand, a radial pressing bending moment F acts toward the center, and as a result, a ring-shaped curved plastically deformed portion is formed.

そしで、二重管素管3が矢印方向に相対移動することに
より、加熱装置4により加熱されて塑性変形した部分は
加熱部分を通過して冷却手段によって冷却されると、第
3図に示す様に逆に大きく縮径され、そこで大ぎな嵌合
代が得られて外管1は内管2に対し緊結されることにな
る。
Then, as the double tube blank tube 3 moves relatively in the direction of the arrow, the part heated by the heating device 4 and plastically deformed passes through the heated part and is cooled by the cooling means, as shown in FIG. On the contrary, the diameter is greatly reduced, so that a large fitting margin is obtained, and the outer tube 1 is tightly connected to the inner tube 2.

そして、この作用は外管の全ての周方向部分に作用する
ために、二重室木管3を軸方向連続的に相対移動するこ
とにより外管1の全ての部分が縮径し、全二重管系管3
に於いて縛つばめ状態が現出され、結果的に大きな自緊
二重管が形成される。
Since this action acts on all the circumferential parts of the outer pipe, by continuously moving the double-walled wood pipe 3 in the axial direction, all parts of the outer pipe 1 are reduced in diameter, and the double-walled wood pipe 3 is reduced in diameter. pipe system pipe 3
At this point, a state of restraint is created, resulting in the formation of a large self-locking double tube.

そして、上述緊結プOt?スは内管2の肉厚に係わりな
く行われ、又、軸方向長さに係わらず、全二重管系管3
に於いて形成されるために、更に外管1と内管2の接合
面の精度にもほとlυど無関係に行われることになり、
内管肉厚が大で、しかも、長尺管であるところの耐摩耗
性二重管製造には捧めて効果的である。
And the above-mentioned tight connection? This is done regardless of the wall thickness of the inner tube 2, and regardless of the axial length of the full-double tube system tube 3.
Since it is formed at the same time, the process is performed almost independently of the accuracy of the joint surface between the outer tube 1 and the inner tube 2.
It is especially effective for manufacturing wear-resistant double-walled pipes where the inner pipe wall thickness is large and the pipe is long.

尚、この出願の発明の実施態様は上述実施例に限るもの
でないことは勿論【・あり、上述内管をセラミックスを
したり耐蝕性二重管の製造、即ち、内管に耐蝕性材料を
用いたりするなど種々の態様が採用可能である。
It should be noted that the embodiments of the invention of this application are of course not limited to the above-mentioned embodiments. Various aspects can be adopted, such as

又、対象は直管のみならず、ベント管等の曲管等に対し
ても適応出来るものである。
Moreover, it is applicable not only to straight pipes but also to curved pipes such as bent pipes.

尚、この出願の発明は線状加熱や冷却手段を移動方向に
イ]与1゛る手段によるところの周方向増径縮径手段と
異なり、あくまで加熱された管の環状部分の膨径が隣接
冷却部分により拘束され、該加熱部分が冷却後縮径する
ことにより縮径されて、例えば、二重管の製造時に外管
が内管に対し緊結するようにしたものであり、その自緊
メカニズムは全く異なるものである。
Note that the invention of this application is different from the circumferential diameter increasing/reducing means which uses a linear heating or cooling means in the moving direction. It is restrained by a cooling part, and the diameter is reduced by the diameter of the heating part being reduced after cooling, so that, for example, when manufacturing a double pipe, the outer pipe is tightened to the inner pipe, and its self-tightening mechanism are completely different.

〈発明の効果〉 以上、この出願の発明によれば、基本的に二重管等の製
造に際し外管を縮径させることが出来、それによって外
管に比し内管の強度が高く外管も高い耐摩耗性二重管等
の外管と内管の拡管による両者のクリアランス等が生ず
る虞がなく、自緊二重管としては極めて精度が高いもの
が得られる優れた効果が奏され、又、拡管圧に必要な強
大な圧力等も要らず、製造に際する動力費が安くてすみ
低コストC製造出来る効果がある。
<Effects of the Invention> As described above, according to the invention of this application, it is basically possible to reduce the diameter of the outer pipe when manufacturing a double pipe, etc., and as a result, the strength of the inner pipe is higher than that of the outer pipe, and the outer pipe has a higher strength than the outer pipe. There is no risk of clearance between the outer and inner tubes due to the expansion of the outer and inner tubes of double tubes with high wear resistance, and the excellent effect of obtaining extremely high precision self-containing double tubes is achieved. In addition, there is no need for the enormous pressure necessary for pipe expansion pressure, and the power cost for manufacturing is low, resulting in low-cost C manufacturing.

又、従来の焼きばめ法等とは異なり、外管と内管の接合
面の精度もそれほど大ぎく要求されず、したがって、長
尺管等も自由に製造できるという優れた効果が奏される
In addition, unlike conventional shrink fitting methods, the accuracy of the joint surface between the outer tube and the inner tube is not required to be very high, and therefore, it has the excellent effect of being able to freely manufacture long tubes, etc. .

又、内管が耐摩耗性であり、外管が高靭性であるような
場合においても何等設計の自由度が拘束されず縮径出来
、したがって、外管と内管の材料選択も自由であるとい
う効果が奏される。
Furthermore, even if the inner tube is wear resistant and the outer tube has high toughness, the diameter can be reduced without any restrictions on design freedom, and therefore the material selection for the outer tube and inner tube is free. This effect is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの出願の発明の1実施例の概略説明図であり、
第1図は外管と内管の相対重層時の部分断面側面図、第
2図は加熱による押え曲げモーメント付与メカニズムの
部分断面図、第3図は冷却による押え曲げモーメントを
介しての縮径メカニズムの断面図、第4図は押え曲げモ
ーメン叶付与の模式斜視図である。 3・・・管、  1・・・外管、  4・・・加熱(手
段)、5・・・冷7I](手段)、 F・・・押え曲げ
モーメント・、′+1 )。
The drawing is a schematic explanatory diagram of one embodiment of the invention of this application,
Figure 1 is a partial sectional side view of the outer tube and inner tube when they are stacked relative to each other, Figure 2 is a partial sectional view of the mechanism for applying presser bending moment due to heating, and Figure 3 is a diameter reduction through the presser bending moment due to cooling. A sectional view of the mechanism, and FIG. 4 is a schematic perspective view of the presser bending moment leaf application. 3...Pipe, 1...Outer tube, 4...Heating (means), 5...Cooling 7I] (means), F...Press bending moment...'+1).

Claims (2)

【特許請求の範囲】[Claims] (1)管に対し周方向の環状加熱とその周辺の冷却を同
時併行的に付与し、加熱部の熱膨脹をその両側の低温部
により拘束して膨径を抑え、その後該加熱部が冷却によ
り収縮し、その部分の直径が初期径より小さくなるよう
にしたことを特徴とする管の縮径方法。
(1) Annular heating in the circumferential direction and cooling of the surrounding area are simultaneously applied to the tube, the thermal expansion of the heated part is restrained by the low temperature parts on both sides to suppress the expansion diameter, and then the heated part is cooled A method for reducing the diameter of a tube, characterized by shrinking the tube so that the diameter of that portion becomes smaller than the initial diameter.
(2)管に対し周方向の環状加熱とその周辺の冷却を同
時併行的に付与し、加熱部の熱膨脹をその両側の低温部
により拘束して膨径を抑え、その後該加熱部が冷却によ
り収縮し、その部分の直径が初期径より小さくなるよう
にし、而して管と加熱冷却手段とを軸方向に相対移動さ
せ、加熱部の全長に亙り冷却後の管の直径が初期径より
小さくなるようにしたことを特徴とする管の縮径方法。
(2) Annular heating in the circumferential direction and cooling of the surrounding area are simultaneously applied to the tube, the thermal expansion of the heated part is restrained by the low temperature parts on both sides to suppress the expansion diameter, and then the heated part is cooled The tube is contracted so that the diameter of that part is smaller than the initial diameter, and the tube and the heating/cooling means are moved relative to each other in the axial direction, so that the diameter of the tube after cooling is smaller than the initial diameter over the entire length of the heating section. A method for reducing the diameter of a tube, characterized in that:
JP60122663A 1985-06-07 1985-06-07 Diameter reducing method for pipe Granted JPS61283416A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60122663A JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe
AU58423/86A AU573093B2 (en) 1985-06-07 1986-06-04 Localised diameter reduction of tubing
EP86107709A EP0206048B1 (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
DE8686107709T DE3674951D1 (en) 1985-06-07 1986-06-06 THERMOPLASTIC METHOD FOR REDUCING THE DIAMETER OF A METAL TUBE.
US06/871,917 US4727641A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
CA000510978A CA1260551A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
CN86103742.1A CN1003532B (en) 1985-06-07 1986-06-07 Method for reducing diametre of metal pipe by hot plasticity
KR1019860004518A KR900004101B1 (en) 1985-06-07 1986-06-07 Thermoplastic method of reducing the diameter of a metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122663A JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe

Publications (2)

Publication Number Publication Date
JPS61283416A true JPS61283416A (en) 1986-12-13
JPH0576379B2 JPH0576379B2 (en) 1993-10-22

Family

ID=14841553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122663A Granted JPS61283416A (en) 1985-06-07 1985-06-07 Diameter reducing method for pipe

Country Status (1)

Country Link
JP (1) JPS61283416A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262078A (en) * 1985-09-10 1987-03-18 川崎重工業株式会社 Abrasion-resistant lining double pipe and manufacture thereof
JPS63273514A (en) * 1987-04-28 1988-11-10 Kuroki Kogyosho:Kk Manufacture of composite member
JPH01133624A (en) * 1987-11-20 1989-05-25 Nippon Steel Corp Manufacture of tightly attached bimetallic curved tube
JPH01205813A (en) * 1988-02-15 1989-08-18 Kawasaki Heavy Ind Ltd Manufacture of partition pipe
CN111094826A (en) * 2017-09-22 2020-05-01 三菱日立电力系统株式会社 Method for cooling metal wall

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262078A (en) * 1985-09-10 1987-03-18 川崎重工業株式会社 Abrasion-resistant lining double pipe and manufacture thereof
JPH0337073B2 (en) * 1985-09-10 1991-06-04 Kawasaki Heavy Ind Ltd
JPS63273514A (en) * 1987-04-28 1988-11-10 Kuroki Kogyosho:Kk Manufacture of composite member
JPH01133624A (en) * 1987-11-20 1989-05-25 Nippon Steel Corp Manufacture of tightly attached bimetallic curved tube
JPH0468054B2 (en) * 1987-11-20 1992-10-30 Shinnippon Seitetsu Kk
JPH01205813A (en) * 1988-02-15 1989-08-18 Kawasaki Heavy Ind Ltd Manufacture of partition pipe
CN111094826A (en) * 2017-09-22 2020-05-01 三菱日立电力系统株式会社 Method for cooling metal wall

Also Published As

Publication number Publication date
JPH0576379B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US4556240A (en) Corrosion-resistant, double-wall pipe structures
JP4941054B2 (en) Manufacturing method of seamless bend pipe, welded joint and manufacturing method thereof
JPS61283416A (en) Diameter reducing method for pipe
JPH0450128B2 (en)
JPH0576384B2 (en)
JPS6261722A (en) Production of double pipe
US4612071A (en) Mechanical stress improvement process
JP2554470B2 (en) Tube manufacturing method
JPH0337073B2 (en)
JP2575043B2 (en) Double pipe manufacturing method
JPS6261721A (en) Method and device for production of double pipe
JPS62167990A (en) Manufacture of double layer pipe
JPS6234726A (en) Manufacture for long sized-structure
JPH01154818A (en) Manufacture of duplex tube
RU93053314A (en) METHOD OF BENDING METAL PIPES
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe
US6240966B1 (en) Pipe for conveying solids
JPH01118311A (en) Manufacture of double pipe
JPH02286992A (en) Attaching flange to metallic pipe
RU2543645C2 (en) Cladding method of pipe ends with inner coating of shells from corrosion-resistant steel
JPH03117793A (en) Wear resistant composite tube
JPH01118309A (en) Corrosion resistant, abrasion resistant multi-layer pipes of segments and its manufacture
JPH0218171B2 (en)
JPS61282698A (en) Structure of abrasion-resistant bent double pipe
US20170016561A1 (en) Method for the production of a conveying pipe for the transport of solids, and conveying pipe for the transport of solids