JPS6262078A - Abrasion-resistant lining double pipe and manufacture thereof - Google Patents

Abrasion-resistant lining double pipe and manufacture thereof

Info

Publication number
JPS6262078A
JPS6262078A JP19863685A JP19863685A JPS6262078A JP S6262078 A JPS6262078 A JP S6262078A JP 19863685 A JP19863685 A JP 19863685A JP 19863685 A JP19863685 A JP 19863685A JP S6262078 A JPS6262078 A JP S6262078A
Authority
JP
Japan
Prior art keywords
pipe
tube
wear
diameter
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19863685A
Other languages
Japanese (ja)
Other versions
JPH0337073B2 (en
Inventor
繁朋 松井
稔雄 熱田
猛 山田
森 英介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP19863685A priority Critical patent/JPS6262078A/en
Priority to AU58423/86A priority patent/AU573093B2/en
Priority to DE8686107709T priority patent/DE3674951D1/en
Priority to US06/871,917 priority patent/US4727641A/en
Priority to EP86107709A priority patent/EP0206048B1/en
Priority to CA000510978A priority patent/CA1260551A/en
Priority to CN86103742.1A priority patent/CN1003532B/en
Publication of JPS6262078A publication Critical patent/JPS6262078A/en
Publication of JPH0337073B2 publication Critical patent/JPH0337073B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示練術は、外管とセラミックス性等の耐摩耗内管を緊
結させた耐摩耗性の二重管の製造技術の分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technique belongs to the field of manufacturing technology for a wear-resistant double pipe in which an outer pipe and a wear-resistant inner pipe made of ceramic or the like are tightly connected.

〈要旨の概要〉 而して、この出願の発明はスラリー輸送、空気輸送等に
用いられる配管の耐摩耗性等を向上させるべく、外管と
耐摩耗性の内管とを相対重層ざぜた二重管等の素管を高
周波誘導加熱等の周方向環状加熱手段とその前後段の水
等の冷却手段とを相対的に軸方向移動させて前段の冷却
に続いて周方向環状加熱、及び、後段の冷却を行って外
管により内管をだが締めして嵌合緊結させた耐摩耗性の
二重管とその製造方法に関する発明であり、特に、素管
の外管に対し多数の短円筒状等のセラミックス等の耐摩
耗材のセグメント状等のピースを相互に隣接させて内張
すし、外管に対する環状加熱とその前後段冷却を行うに
際して加熱付与部分の熱膨脹による膨径を周辺の低温部
分が拘束するようにした環状加熱と冷却とにより冷却後
加熱付与部分の径を初期径より小さくする操作を軸方向
連続的に付与して外管が内管をだが締めするようにして
強い緊結の嵌合代が得られている耐摩耗内張二重管とそ
の製造方法に係る発明でおる。
<Summary of the gist> The invention of this application is to improve the abrasion resistance of piping used for slurry transportation, pneumatic transportation, etc., in which an outer pipe and an abrasion-resistant inner pipe are relatively layered. A raw pipe such as a heavy pipe is subjected to circumferential annular heating after cooling the former stage by relatively moving a circumferential annular heating means such as high-frequency induction heating and cooling means such as water in the front and rear stages in the axial direction, and This invention relates to a wear-resistant double tube in which the inner tube is tightened by the outer tube after cooling in a subsequent stage, and the method for manufacturing the same. The inner tube is lined with segment-shaped pieces of wear-resistant material such as ceramics, etc., adjacent to each other, and when performing annular heating of the outer tube and cooling before and after it, the expansion diameter due to thermal expansion of the heated portion is adjusted to the surrounding low-temperature portion. After cooling, the diameter of the heated portion is made smaller than the initial diameter by annular heating and cooling so that the outer tube tightens the inner tube, thereby creating a strong bond. This invention relates to a wear-resistant inner-lined double pipe with sufficient fitting allowance and a method for manufacturing the same.

〈従来技術〉 周知の如く、配管は各種産業分野で流体の輸送に広く用
いられているが、これらの配管のうち、例えば、石炭各
種鉱石、セメント等の固形物を水に混合して運7玉スラ
リー輸送管、或は、$9J塵、珪砂等粉粒体の空気輸送
管等では、管内面が著しく摩耗され易いという問題がお
る。
<Prior Art> As is well known, piping is widely used for transporting fluids in various industrial fields. In ball slurry transport pipes, or air transport pipes containing powder particles such as $9J dust and silica sand, there is a problem in that the inner surface of the pipe is easily worn out.

この種の配管には通常ガス管のような安価な鋼管が用い
られ、摩耗すると新管と交換したり摩耗部分に当て板を
溶接したりすることによってこれに対処している。
This kind of piping usually uses inexpensive steel pipes such as gas pipes, and when they wear out, they are replaced with new pipes or welded backing plates to the worn parts.

〈発明が解決しようとする問題点〉 しかしながら、特に耐摩耗性を要求されるような用途の
配管では、高クロム鋳鉄等耐摩耗性の優れた材料より成
る管が使用されることもある。
<Problems to be Solved by the Invention> However, in piping for applications where wear resistance is particularly required, pipes made of materials with excellent wear resistance such as high chromium cast iron are sometimes used.

ところで、一般に、鉄鋼材料の耐+S耗性は硬さと良い
相関があり、耐摩耗性の優れた材料は一様に著しく硬い
By the way, in general, the +S wear resistance of steel materials has a good correlation with hardness, and materials with excellent wear resistance are uniformly extremely hard.

例えば、耐摩耗材料として良く使用される27Qr鋳鉄
は、ショア硬ざで81以上の硬さを有する。
For example, 27Qr cast iron, which is often used as a wear-resistant material, has a hardness of 81 or higher on the Shore hardness scale.

さりながら、一方、硬さが硬くなる程、鉄鋼材料の靭性
は低下する傾向があり、上述した高クロム鋳鉄等の耐摩
耗材料から成る管は衝撃力が加わると破損し易いという
欠点がある。
However, on the other hand, as the hardness increases, the toughness of the steel material tends to decrease, and pipes made of wear-resistant materials such as the above-mentioned high chromium cast iron have the disadvantage of being susceptible to breakage when subjected to impact force.

又、高硬度の耐摩耗材料は溶接性、及び、加工性が共に
著しく悪いため、第一に溶接による本体への7ランジの
取付が不可能である欠点があり、第二に7ランジを一体
形成させた場合にも仕上げ加工や孔開は加工が困難であ
り、第三に補修溶接が困難である等の難点がある。
In addition, since high-hardness wear-resistant materials have extremely poor weldability and workability, the first disadvantage is that it is impossible to attach the 7 langes to the main body by welding, and the second disadvantage is that it is impossible to attach the 7 langes to the main body by welding. Even when it is formed, it is difficult to finish and drill holes, and thirdly, repair welding is difficult.

加えて、製造コストも高い不利点もめる。In addition, it also has the disadvantage of high manufacturing costs.

このようなことから、鋼管に耐摩耗材料を内張した所謂
クラツド鋼管も使用されるようになってきた。
For this reason, so-called clad steel pipes, which are steel pipes lined with a wear-resistant material, have come into use.

この種のクラツド鋼管は、通常遠心鋳造法、或は、肉盛
溶接法等により作られており、内張は管本体に対し冶金
的に接合している。
This type of clad steel pipe is usually made by centrifugal casting or overlay welding, and the lining is metallurgically joined to the pipe body.

而して、クラツド鋼管は、管の内面が耐摩耗材料によっ
て覆われているため、特に、耐摩耗性を考慮していない
材質の通常の単層鋼管より格段に耐摩耗性が優れている
Since the inner surface of the clad steel pipe is covered with a wear-resistant material, the wear resistance of the clad steel pipe is far superior to that of a normal single-layer steel pipe made of a material that does not take wear resistance into consideration.

又、管内体は耐摩耗材料を具備する必要がないので、充
分な靭性をもち、溶接性良好な材質のものを採用出来る
Further, since the inner tube body does not need to be provided with a wear-resistant material, a material having sufficient toughness and good weldability can be used.

したがって、耐摩耗材料のみからなる管と異なり、充分
な耐衝撃性能を有し、又、フランジを別体形成して溶接
で取付けることも可能である。
Therefore, unlike a pipe made only of wear-resistant material, it has sufficient impact resistance, and it is also possible to form the flange separately and attach it by welding.

しかしながら、クラツド鋼管では製造手段の如何によら
ず内張に引張応力が残存するため、割れを生じやすい不
都合さがある。
However, clad steel pipes have the disadvantage that they tend to crack because tensile stress remains in the lining regardless of the manufacturing method.

又、一旦割れを生ずると、内張内管を外管が冶金的に接
合しているため、割れが管本体に容易に伝播し貫通割れ
となり易いマイナス点もある。
Another drawback is that once a crack occurs, the crack can easily propagate to the tube body, resulting in a through crack, since the inner tube is metallurgically joined to the outer tube.

そこで、実用上充分な靭性を有する外管と耐摩耗性の優
れた内管とを重層した二重管で、両管が冶金的に接合し
ておらず、しかも、おる血圧をもって接触しており、内
管が圧縮応力状態となるようにした自緊二重管の開発が
望まれている。
Therefore, we developed a double-layered tube consisting of an outer tube with sufficient toughness for practical use and an inner tube with excellent abrasion resistance.The two tubes are not metallurgically connected, but are in contact with each other at a certain pressure. It is desired to develop a self-containing double pipe in which the inner pipe is placed in a compressive stress state.

このような自緊二重管は、クラツド鋼管と同様の利点を
もち、しかも、上述したクラツド鋼管の欠点が解消され
るからである。
This is because such a self-consolidated double pipe has the same advantages as a clad steel pipe, and also eliminates the above-mentioned drawbacks of the clad steel pipe.

ところで、従来の自緊二重管製造技術としては、第一に
焼きばめ法、第二に拡管法、第三に熱拡管法等がおる きりながら、内面耐摩耗自緊二重管の製造方法としては
、これらの方法にはそれぞれ好ましくない点がある。
By the way, the conventional self-tightening double-pipe manufacturing techniques include firstly the shrink fitting method, secondly the pipe expansion method, and thirdly the heat-expanding method. Each of these methods has disadvantages.

まず、第一の方法は、外管内径、及び、内管外径に厳し
い加工精度が要求されるが、内面耐摩耗二重管の場合、
内管は加工性の悪い耐摩耗材料であるので、所要の加工
を行うことが非常に難しい。
First, the first method requires strict machining accuracy on the inner diameter of the outer tube and the outer diameter of the inner tube, but in the case of a double-walled tube with internal wear resistance,
Since the inner tube is made of a wear-resistant material with poor machinability, it is very difficult to perform the required machining.

加えて、この方法では一般に長尺管の嵌合が極めて困難
である。
In addition, this method generally makes it extremely difficult to fit long tubes.

又、第二、第三の方法ではいずれも内管の塑性拡管が行
われるが、この場合、内管の強度(降伏点)が非常に高
いうえに耐蝕二重管等に比べて内管がやや厚くなるので
、極めて高い拡管圧力が必要となり実際的ではない。
In addition, in both the second and third methods, the inner tube is expanded plastically, but in this case, the strength (yield point) of the inner tube is extremely high, and the inner tube has a higher strength than a corrosion-resistant double tube. Since it becomes somewhat thick, extremely high pressure for expansion is required, which is not practical.

特に、第二の方法では、内管の強度(降伏点)に比べて
外管の強度(降伏点)が高い二重管の場合、内管を塑性
拡管しても弾性戻り差により内外管の間に隙間が生じる
In particular, with the second method, in the case of double-walled pipes where the strength (yield point) of the outer pipe is higher than that of the inner pipe, even if the inner pipe is expanded plastically, the difference in elastic return causes the difference between the inner and outer pipes. A gap is created in between.

かかる点に対処するために、出願人の先願発明である特
願昭60−122663号発明においては外管と内管を
相対重層して素管とし、外管の外側に環状TJr+熱手
段を設け、更に、その前後に水シヤワー等の冷却手段を
設けてこれらの手段と素管とを相対的に軸方向に移動さ
せることにより、環状加熱手段で外管を膨径させ、その
前後における冷却手段により膨径を拘束して外管を降伏
させ、冷却収縮により大きな縮径を付与し、外管の内管
に対するだが締めを行って、自緊した二重管を巧みに得
るようにした新規な二重管製造技術を開発した。
In order to deal with this problem, in the invention of Japanese Patent Application No. 122663/1986, which is the applicant's earlier invention, the outer tube and the inner tube are layered relatively to each other to form a blank tube, and an annular TJr+heating means is provided on the outside of the outer tube. Furthermore, by providing a cooling means such as a water shower before and after the cooling means and moving these means and the mother pipe relative to each other in the axial direction, the diameter of the outer pipe is expanded by the annular heating means, and the cooling before and after that is carried out. A new method that skillfully obtains a self-tensioning double tube by constraining the expansion diameter by a means to yield the outer tube, giving a large diameter reduction by cooling contraction, and tightening the outer tube against the inner tube. We have developed a new double tube manufacturing technology.

一方、近時の材料開発研究により強度が大で耐摩耗性に
も優れた新規な素材゛、例えば、セラミックス等が現出
、量産可能になってきており、管の内面にタイル状のセ
ラミックスを接着剤により張付けたりする技術が開発さ
れている。
On the other hand, recent material development research has led to the emergence of new materials such as ceramics, which have high strength and excellent wear resistance, and are now available for mass production. Techniques have been developed to attach them using adhesives.

さりながら、該種技術では使用配管内部でのセラミック
スピースの剥離が生ずる不具合があり、又、セラミック
ス製の内管を外管に相対重装するにしても技術的にもコ
スト的にも極めて難かしいという不都合さがある。
However, this type of technology has the problem of peeling of the ceramic pieces inside the piping used, and even if the inner pipe made of ceramics is relatively heavily mounted on the outer pipe, it is extremely difficult both technically and cost-wise. There is the inconvenience of being strange.

以上のように、耐摩耗二重管に対する強いニーズがある
にもかかわらず、従来技術では実際問題・ とじて満足
すべき条件を具備した耐摩耗二重管を提供出来なかった
As described above, although there is a strong need for wear-resistant double pipes, the conventional technology has not been able to provide wear-resistant double pipes that meet the practical requirements.

この出願の発明の目的は上述従来技術に基づく二重管製
造9問題点を解決すべき技術的課題とし、外管に対する
セラミックス製等の耐摩耗材をセグメント状、或は、ア
ーチ状の多数のピースとして隣接させ内管となし、これ
を外管に相対遊挿した重層素管の外管に対し周方向環状
加熱、及び、その前後周辺冷却作用を同時併行的に軸方
向に連続的に、例えば、軸方向に相対移動しながら加熱
冷却を付与することにより外管を縮径させて内管を外管
によりたが締めするようにして、各種産業における配管
利用分野に益する優れた耐摩耗内張二重管及びその製造
方法を提供せんとするものである。
The purpose of the invention of this application is to solve the nine problems of double tube manufacturing based on the above-mentioned prior art as a technical problem, and to solve the above-mentioned technical problem of manufacturing double tubes by using a wear-resistant material such as ceramics for the outer tube in a large number of segment-shaped or arch-shaped pieces. The inner tube is placed adjacent to the inner tube, and this is inserted relatively loosely into the outer tube.The outer tube of the layered blank tube is heated in the circumferential direction and the front and rear peripheral areas are cooled simultaneously and continuously in the axial direction, for example. By applying heating and cooling while moving relative to each other in the axial direction, the diameter of the outer tube is reduced and the inner tube is tightened by the outer tube. It is an object of the present invention to provide a stretched double pipe and a method for manufacturing the same.

く問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの出願の発明の構成
は、前述問題点を解決するために外管と耐摩耗材の多数
のセグメント状、アーチ状等のピースより成る内管を相
対重層して素管となし、該素管の外管を縮径させるに際
し、外管に対する環状の加熱を付与し、周方向環状加熱
手段と冷却手段と素管とを相対的に経時的に軸方向移動
させるようにし、この際、環状加熱手段の前方、及び、
後方に冷却手段を付与することにより、軸方向長さから
みて、加熱部分の前方、及び、後方にて中心方向への径
方向の押え曲げモーメントが長さ方向で連続して作用す
るようにし、外管の加熱部の膨径を周辺冷却部分により
拘束して降伏させ、その後の冷却収縮により初期径より
も縮径するようにして内管をだが締めし、耐摩耗材の各
ピース相互を力学的に強固に相互当接して固定するよう
にした技術的手段を講じたものである。
In order to solve the above-mentioned problems, the structure of the invention of this application, which is based on the above-mentioned claims, is to solve the above-mentioned problems by providing a large number of segments of the outer tube and the wear-resistant material. Inner tubes consisting of shaped, arched, etc. pieces are layered relative to each other to form a blank tube, and when reducing the diameter of the outer tube of the blank tube, annular heating is applied to the outer tube, and circumferential annular heating means and cooling are applied. The means and the raw pipe are moved relative to each other in the axial direction over time, and at this time, the front of the annular heating means and
By providing a cooling means at the rear, the presser bending moment in the radial direction toward the center acts continuously in the longitudinal direction at the front and rear of the heated portion when viewed from the axial length, The expanding diameter of the heated part of the outer tube is constrained by the peripheral cooling part to yield, and then the inner tube is tightened so that the diameter is reduced from the initial diameter by cooling contraction, and each piece of wear-resistant material is mechanically bonded to each other. A technical measure has been taken to firmly abut and fix the two parts to each other.

〈実施例−構成〉 次に、この出願の発明の実施例を図面に基づいて説明す
れば以下の通りでおる。
<Embodiments - Configuration> Next, embodiments of the invention of this application will be described as follows based on the drawings.

図示実施例は、セラミックス製の内管を有するスラリー
輸送管等の耐摩耗内張二重管とその製造態様であり、外
管1には、例えば、炭素i 0.25%程度の低炭素鋼
等の高靭性のものを用い、又、内管2としては高耐摩耗
性、高硬度を有する、例えば、アルミナ°セラミックス
製の短円筒のセグメント状のピース2’、2’=・・を
用いて、軸方向相互に隣接して設定長さにし全体冷却し
た状態で外管1と内管2とを適宜に相対遊挿して二重管
素管3としておく。
The illustrated embodiment is a wear-resistant lined double pipe such as a slurry transport pipe having an inner pipe made of ceramics, and its manufacturing mode. In addition, as the inner tube 2, short cylindrical segment-shaped pieces 2', 2', made of alumina ceramics, which have high wear resistance and high hardness, are used. Then, the outer tube 1 and the inner tube 2 are appropriately loosely inserted relative to each other in a state in which they are axially adjacent to each other to a set length and are completely cooled to form a double-pipe blank tube 3.

そこで、まずこの出願の発明の耐摩耗性内張二重管の製
造方法の実施例を第3〜6図で説明すると、上述の如く
して製造した二重管素管3を第2図の矢印に示す様に軸
方向に所定速度で移動させるようにセットし、更に、第
4図に示す様に外管1の外周に環状に加熱手段として、
例えば、高周波誘導加熱装@4(以下、加熱装置と略称
)をセットすると共に加熱装置4に所定距離離隔して近
接した軸方向前後に、例えば、水通水等の環状のシャワ
ー装置の冷却装置5.5をセットして1ユニットと()
、二重管素管3を矢印方向に移動させることにより加熱
装置4、及び、冷却装置51.5の1ユニツトは二重管
素管3に対し相対移動するようにする。
First, an embodiment of the method for manufacturing a wear-resistant lined double pipe according to the invention of this application will be explained with reference to FIGS. It is set to move at a predetermined speed in the axial direction as shown by the arrow, and furthermore, as shown in FIG.
For example, a high-frequency induction heating device @ 4 (hereinafter referred to as heating device) is set, and a cooling device for an annular shower device, such as a water passage, is placed near the heating device 4 at a predetermined distance in the front and back of the axis. Set 5.5 and make 1 unit ()
By moving the double tube blank tube 3 in the direction of the arrow, one unit of the heating device 4 and the cooling device 51.5 is moved relative to the double tube blank tube 3.

そこで、所定速度で二重管素管3を相対移動させると、
加熱装置4はその前後の冷却装置5.5による外管1の
冷却に対し、加熱による膨径作用を付与するが、このプ
ロセスにおいて、模式的に第3図に示す様に、加熱部分
の両端が冷却部分に。
Therefore, when the double tube material tube 3 is relatively moved at a predetermined speed,
The heating device 4 applies an expansion effect due to heating to the cooling of the outer tube 1 by the cooling devices 5.5 before and after it, but in this process, as schematically shown in FIG. is in the cooling part.

対して自由端であれば、当該第3図に示す様に、自由に
膨径して周方向に突出するが、実際は加熱部分に対し当
該加熱部分はその両端が冷却部分によって膨径が拘束さ
れて結果的にリング状の湾曲した塑性変形部分が成形さ
れる。このプロセスは内管2の構成要素である各セグメ
ントのリング状ピース2′には無関係に行われる。
On the other hand, if it is a free end, it will freely expand in diameter and protrude in the circumferential direction, as shown in Fig. 3, but in reality, the heating part has its expansion diameter restricted by the cooling part at both ends. As a result, a ring-shaped curved plastically deformed portion is formed. This process is carried out independently of the ring-shaped pieces 2' of each segment that constitute the inner tube 2.

そして、二重管素管3が矢印方向に相対移動することに
より、加熱装置4により加熱されて塑性変形した外管1
の部分は加熱部分を通過して冷却手段によって冷却され
ると、第6図に示す様に収縮し逆に初期径より大きく縮
径され、そこで大きな嵌合代が得られて外管1は内管2
(各セグメントのリング状ピース2′)に対し、だが締
め作用を行い緊結されることになる。
Then, as the double tube blank tube 3 moves relatively in the direction of the arrow, the outer tube 1 is heated by the heating device 4 and plastically deformed.
When the part passes through the heating part and is cooled by the cooling means, it contracts as shown in Fig. 6 and conversely becomes smaller in diameter to a greater extent than the initial diameter, so that a large fitting allowance is obtained and the outer tube 1 is tube 2
(The ring-shaped piece 2' of each segment) is tightened by a tightening action.

そして、この1ユニツトによる作用は外管1の全ての周
方向部分に作用するために、素管3を軸方向連続的に相
対移動することにより外管1の全ての部分が縮径し、素
管3の全長に於いて内管2の全長に亘り縛つばめ状態が
現出され、結果的に第1図に示す様な自緊二重管の耐摩
耗性内張二重管6が形成される。
Since the action of this one unit acts on all circumferential portions of the outer tube 1, by continuously moving the base tube 3 relative to each other in the axial direction, all portions of the outer tube 1 are reduced in diameter, A binding state is created over the entire length of the inner tube 2 over the entire length of the tube 3, and as a result, a wear-resistant inner-lined double tube 6 of a self-stressing double tube as shown in FIG. 1 is formed. Ru.

そして、上述緊結プロセスは内管2の即ち、各セラミッ
クス製のセメントのリング状ピース2′肉厚に係わりな
く行われ、又、軸方向長さに係わらず、金工重管素管3
に於いて形成されるために、更に外管1と内管2の接合
面の精度にもほとんど無関係に行われることになり、内
管2の(各々セグメントのピース2′)肉厚が大で、し
かも、長尺管であるところの耐摩耗性内張二重管6の製
造には極めて効果的である。
The above-mentioned tightening process is performed regardless of the wall thickness of the inner tube 2, that is, the ring-shaped piece 2' of each ceramic cement, and regardless of the axial length of the metal heavy pipe material tube 3.
Furthermore, since the process is performed in a manner that has almost no relation to the accuracy of the joint surfaces between the outer tube 1 and the inner tube 2, the wall thickness of the inner tube 2 (piece 2' of each segment) is large. Moreover, it is extremely effective in manufacturing the wear-resistant lined double pipe 6 which is a long pipe.

上述実施例はセラミックス製の内管2が軸方向多数配列
のセグメントのリング状ピース2′、2′・・・を多数
隣接状態にした態様であるが、第2図に示す様に、周方
向にアーチ状のいわゆる八ツ橋状のピース2’ 、2 
’・・・を多数周方向、及び、軸方向に隣接する実施例
も可能であり、いづれにしても外管1による内管2のだ
が締め作用による機械的な相互拘束の断面円形の内管2
を構成することが出来る。
In the embodiment described above, the inner tube 2 made of ceramic has a large number of ring-shaped pieces 2', 2', etc. of segments arranged in the axial direction, but as shown in FIG. The arch-shaped so-called Yatsuhashi-shaped piece 2', 2
An embodiment in which a large number of ``...'' are adjacent to each other in the circumferential direction and the axial direction is also possible, and in any case, the inner tube 2 is mechanically restrained by the tightening action of the outer tube 1 and the inner tube has a circular cross section. 2
can be configured.

したがって、内管2の周方向、軸方向の圧縮応力が強く
作用し、各ピース2’、2’・・・の相互のシールが強
く働き、作用流体のリークは生じない。
Therefore, the compressive stress in the circumferential direction and the axial direction of the inner tube 2 acts strongly, and the mutual sealing between the pieces 2', 2', . . . works strongly, and no leakage of the working fluid occurs.

而して、上述実施例において1ユニツトを素管3に対し
て相対移動させた場合、先述した如く、素管3が長尺管
の場合、1ユニツトによる1パスでは実験によると、外
管1の直径が100φ肉厚4tである場合には、1パス
による縮径処理で約0.5Mもの縮径が行われる。
According to experiments, when one unit is moved relative to the blank tube 3 in the above embodiment, when the blank tube 3 is a long tube, as described above, in one pass by one unit, the outer tube 1 When the diameter is 100φ and the wall thickness is 4t, the diameter is reduced by about 0.5M in one pass.

尚、この出願の発明の実施態様は上述各実施例に限るも
のでないことは勿論であり、内管はセラミックス以外に
も特殊テフロン加工性耐摩耗材による内張内管を有する
二重管やその製造や内管に耐蝕性材料を用いた二重管と
その製造方法等種々の態様が採用可能である。
It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments, and the inner tube may be made of a double-walled tube lined with a special Teflon-processable wear-resistant material other than ceramics, or the manufacture thereof. Various embodiments can be adopted, such as a double pipe using a corrosion-resistant material for the inner pipe and a method for manufacturing the same.

又、対象は直管のみならず、ベント管等の曲管等に対し
ても適応出来るものである。
Moreover, it is applicable not only to straight pipes but also to curved pipes such as bent pipes.

尚、この出願の発明は従来態様の線状加熱や冷却手段を
移動方向に付与する手段によるところの周方向増径縮径
手段と異なり、あくまで、加熱された外管の環状部分の
膨径が隣接冷却部分により拘束され、加熱部分が冷却後
縮径することにより、縮径されて、例えば、二重管の製
造時に外管が内管に対し緊結するようにしたものであり
、その自緊メカニズムは全く異なるものである。
Note that the invention of this application differs from the conventional circumferential diameter increasing/reducing means by means of applying linear heating or cooling means in the direction of movement. The diameter is reduced by being restrained by the adjacent cooling part, and the diameter of the heating part is reduced after cooling. For example, when manufacturing a double pipe, the outer pipe is tightly connected to the inner pipe. The mechanism is completely different.

〈発明の効果〉 以上、この出願の発明によれば、基本的にスラリー輸送
管等の耐[♀純性内張二重管において、外管の内面に溶
接緊結される耐摩耗性内張管が短管状のセグメントやア
ーチ状の多数のピースによって力学的に相互に緊結され
て当接されるために長尺管の製造が困難なセラミックス
等の内張管が相当長尺に形成することが出来るという優
れた効果が秦され、しかも、相対重層の内外管の初期重
装が容易に行えるという優れた効果が秦される。
<Effects of the Invention> As described above, the invention of this application basically provides a wear-resistant lined pipe that is welded and tightly connected to the inner surface of the outer pipe in a pure lined double pipe such as a slurry transport pipe. Because the pipes are mechanically connected and abutted to each other by short tubular segments or many arch-shaped pieces, it is difficult to manufacture long pipes, so it is possible to form a pipe lined with ceramics or other material into a considerably long length. Moreover, it has the excellent effect of being able to easily carry out the initial loading of relatively overlapping inner and outer tubes.

又、各ピースが外管のだが締めによって緊結されるため
に力学的に安定し、稼動中の剥離等が生じないという優
れた効果もある。
In addition, since each piece is fastened together by tightening the outer tube, it is mechanically stable and has the excellent effect that peeling does not occur during operation.

更に、各ピースが外管によるだが締めにより圧縮応力を
受は耐蝕性が向上すると共に各ピース間のシール性が良
くなり作動流体のリークが生ぜず、耐久性が向上すると
いう優れた効果が秦される。
In addition, since each piece receives compressive stress due to tightening due to the outer tube, corrosion resistance is improved, and the sealing performance between each piece is improved, preventing leakage of working fluid and improving durability. be done.

而して、耐摩耗性内張二重管等の製造に際し外管を縮径
させることが出来、水圧拡管法等による場合のように外
管と内管との降伏点差に基づく弾性戻り差により隙間が
生ずる虞がなく、自緊二重管としては極めて精度が高い
配管が得られる優れた効果が秦され、又、拡管圧に必要
な強大な圧力等も要らず、製造に際する動力費が安くて
すみ低コストで製造出来る効果がある。
Therefore, when manufacturing wear-resistant inner-lined double pipes, etc., the diameter of the outer pipe can be reduced, and the elastic return difference based on the difference in yield point between the outer pipe and the inner pipe can be used, as in the case of hydraulic pipe expansion. There is no risk of gaps occurring, and the excellent effect of obtaining piping with extremely high accuracy as a self-contained double pipe is also achieved.In addition, there is no need for the enormous pressure required for pipe expansion, and the power cost during production is reduced. It has the effect of being cheap and can be manufactured at low cost.

又、従来の焼きばめ等とは異なり、外管と内管の接合面
の精度もそれほど大きく要求されず、したがって、上述
の如く長尺管等も自由に製造出来るという優れた効果が
秦される。
In addition, unlike conventional shrink fitting, etc., the accuracy of the joint surface between the outer tube and the inner tube is not required to be so high, and therefore, as mentioned above, it has the excellent effect of being able to freely manufacture long tubes, etc. Ru.

又、内管がセラミックスの如き高度の耐摩耗性であり、
外管が高靭性であるような場合にも何等設計の自由度が
拘束されずに縮径出来、したがって、外管と内管の材料
選択も自由であるという効果が奏される。
In addition, the inner tube is highly wear resistant like ceramics,
Even if the outer tube has high toughness, the diameter can be reduced without any restrictions on the degree of freedom in design, and therefore the material selection for the outer tube and the inner tube can be freely selected.

更に、周方向は勿論、長さ方向においても均一な嵌合代
が得られて精度の高い二重管が得られるという優れた効
果が奏される。
Furthermore, an excellent effect is achieved in that a uniform fitting margin can be obtained not only in the circumferential direction but also in the longitudinal direction, and a highly accurate double pipe can be obtained.

したがって、二重管の長さに拘束されず、設計の自由度
が高まり、自在な二重管の製造が出来るという効果が奏
される。
Therefore, the degree of freedom in design is increased without being restricted by the length of the double pipe, and it is possible to manufacture the double pipe as desired.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの出願の発明の実施例の概略説明図であり、第
1図は1実施例の1部切截概略説明図、第2図は他の実
施例の第1図相当斜視図、第3図は外管と内管の相対重
層時の部分断面側面図、第4図は加熱による押え曲げモ
ーメント付与メカニズムの部分断面図、第5図は冷却に
よる押え曲げモーメントを介しての縮径メカニズムの斜
視図、第6図は縮径して自緊した二重管の断面図である
。 1・・・外管、  2・・・内管、 2’ 、2’ピース、  3・・・素管、4・・・加熱
装置、  5・・・冷却装置6.6′・・・耐摩耗内張
二重管 第1 図
The drawings are schematic explanatory diagrams of embodiments of the invention of this application, and FIG. 1 is a partially cutaway schematic explanatory diagram of one embodiment, FIG. 2 is a perspective view corresponding to FIG. 1 of another embodiment, and FIG. The figure is a partial cross-sectional side view of the outer tube and the inner tube when they are stacked relative to each other, Figure 4 is a partial cross-sectional view of the mechanism for applying presser bending moment due to heating, and Figure 5 is a partial cross-sectional view of the mechanism for applying presser bending moment due to cooling. The perspective view and FIG. 6 are cross-sectional views of a double-walled pipe that has been reduced in diameter and self-tightened. 1... Outer tube, 2... Inner tube, 2', 2' piece, 3... Base tube, 4... Heating device, 5... Cooling device 6.6'... Wear resistance Diagram 1 of double lining pipe

Claims (2)

【特許請求の範囲】[Claims] (1)外管内面に耐摩耗材を内張した二重管において、
外管内面に多数の耐摩耗材のピースが相隣って当接した
状態でたが締めされて内張管を形成して緊結されている
ことを特徴とする耐摩耗内張二重管。
(1) In a double pipe with wear-resistant material lined on the inner surface of the outer pipe,
A wear-resistant inner-lined double pipe characterized in that a large number of pieces of wear-resistant material are in contact with each other on the inner surface of the outer pipe and are tightened to form a lined pipe.
(2)外管に多数の耐摩耗機材のピースで内張内管を成
して相対的に重層により素管とし該外管に対し周方向の
環状加熱とその周辺の冷却を同時併行的に付与し、加熱
部の熱膨脹をその前後両側の低温部により拘束して膨径
を抑え、その後該加熱部を冷却により収縮させ、その部
分の直径が初期径より小さくなるようにし、而して素管
と加熱冷却手段とを軸方向に相対移動させて加熱部の全
長に亙り冷却後の外管の直径が初期径より小さくなるよ
うにしたことを特徴とする耐摩耗内張二重管の製造方法
(2) The outer tube is lined with a large number of pieces of wear-resistant materials to form an inner tube, and the outer tube is made into a blank tube by relatively layering, and the outer tube is heated annularly in the circumferential direction and cooled around it at the same time. The thermal expansion of the heated part is restrained by the low temperature parts on both the front and back sides of the heated part to suppress the expansion diameter, and then the heated part is contracted by cooling so that the diameter of that part becomes smaller than the initial diameter. Manufacture of a wear-resistant inner-lined double pipe characterized in that the pipe and the heating/cooling means are moved relative to each other in the axial direction so that the diameter of the outer pipe after cooling is smaller than the initial diameter over the entire length of the heating section. Method.
JP19863685A 1985-06-07 1985-09-10 Abrasion-resistant lining double pipe and manufacture thereof Granted JPS6262078A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP19863685A JPS6262078A (en) 1985-09-10 1985-09-10 Abrasion-resistant lining double pipe and manufacture thereof
AU58423/86A AU573093B2 (en) 1985-06-07 1986-06-04 Localised diameter reduction of tubing
DE8686107709T DE3674951D1 (en) 1985-06-07 1986-06-06 THERMOPLASTIC METHOD FOR REDUCING THE DIAMETER OF A METAL TUBE.
US06/871,917 US4727641A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
EP86107709A EP0206048B1 (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
CA000510978A CA1260551A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
CN86103742.1A CN1003532B (en) 1985-06-07 1986-06-07 Method for reducing diametre of metal pipe by hot plasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19863685A JPS6262078A (en) 1985-09-10 1985-09-10 Abrasion-resistant lining double pipe and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6262078A true JPS6262078A (en) 1987-03-18
JPH0337073B2 JPH0337073B2 (en) 1991-06-04

Family

ID=16394499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19863685A Granted JPS6262078A (en) 1985-06-07 1985-09-10 Abrasion-resistant lining double pipe and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6262078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017158635A1 (en) * 2016-03-14 2019-02-14 川崎重工業株式会社 Diameter expansion method and forming apparatus for pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283416A (en) * 1985-06-07 1986-12-13 Kawasaki Heavy Ind Ltd Diameter reducing method for pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283416A (en) * 1985-06-07 1986-12-13 Kawasaki Heavy Ind Ltd Diameter reducing method for pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017158635A1 (en) * 2016-03-14 2019-02-14 川崎重工業株式会社 Diameter expansion method and forming apparatus for pipe

Also Published As

Publication number Publication date
JPH0337073B2 (en) 1991-06-04

Similar Documents

Publication Publication Date Title
JP7223102B2 (en) Manufacturing method by fluid system and friction welding
US4556240A (en) Corrosion-resistant, double-wall pipe structures
US6176525B1 (en) Thermoplastic liner and a flange on a tubular member lined with a thermoplastic liner and a flange lined tubular member
JPS6262078A (en) Abrasion-resistant lining double pipe and manufacture thereof
CA2431459A1 (en) Welded joint for metal pipes
US4683014A (en) Mechanical stress improvement process
JPS61283416A (en) Diameter reducing method for pipe
JPS62117726A (en) Manufacture of multi-layer tube
JP6743005B2 (en) Fluid conduit element and method for manufacturing a fluid conduit element
JPS6261733A (en) Production of double-ply bend pipe
US20090121475A1 (en) Delivery pipe for the transport of solid material, and method of making a delivery pipe
JPS6234726A (en) Manufacture for long sized-structure
JP2575043B2 (en) Double pipe manufacturing method
US4612071A (en) Mechanical stress improvement process
JPH0576383B2 (en)
JPS62167990A (en) Manufacture of double layer pipe
JPS6261721A (en) Method and device for production of double pipe
JPH0576380B2 (en)
JPH02195097A (en) Telescoping pipe fitting and production thereof
JPH01118309A (en) Corrosion resistant, abrasion resistant multi-layer pipes of segments and its manufacture
JPS61283415A (en) Manufacture of wear resistant double pipe
JPH03208524A (en) Multifold pipe separating method
RU2777673C1 (en) Mounting unit for measuring tubes in the body of the vibration measuring device
JPH03117793A (en) Wear resistant composite tube
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe