JPH0576384B2 - - Google Patents

Info

Publication number
JPH0576384B2
JPH0576384B2 JP19863585A JP19863585A JPH0576384B2 JP H0576384 B2 JPH0576384 B2 JP H0576384B2 JP 19863585 A JP19863585 A JP 19863585A JP 19863585 A JP19863585 A JP 19863585A JP H0576384 B2 JPH0576384 B2 JP H0576384B2
Authority
JP
Japan
Prior art keywords
bent
tube
diameter
pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19863585A
Other languages
Japanese (ja)
Other versions
JPS6261733A (en
Inventor
Shigetomo Matsui
Toshio Atsuta
Takeshi Yamada
Eisuke Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP19863585A priority Critical patent/JPS6261733A/en
Priority to AU58423/86A priority patent/AU573093B2/en
Priority to CA000510978A priority patent/CA1260551A/en
Priority to EP86107709A priority patent/EP0206048B1/en
Priority to US06/871,917 priority patent/US4727641A/en
Priority to DE8686107709T priority patent/DE3674951D1/en
Priority to CN86103742.1A priority patent/CN1003532B/en
Publication of JPS6261733A publication Critical patent/JPS6261733A/en
Publication of JPH0576384B2 publication Critical patent/JPH0576384B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、低炭素鋼製等の外管とセラミツク
ス製等の耐摩耗性の内管を緊結させる等の耐摩耗
性の曲り二重管の製造技術の分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is a wear-resistant curved double pipe in which an outer pipe made of low carbon steel or the like and a wear-resistant inner pipe made of ceramic or the like are tightly connected. belongs to the field of manufacturing technology.

〈要旨の概要〉 而して、この出願の発明はスラリー輸送等に用
いられる配管の耐摩耗性等を向上させるべく、曲
り外管と耐摩耗性の曲り内管とを相対重層させて
二重管の曲り素管とし、該曲り素管を高周波誘導
加熱装置等の周方向環状加熱手段とその前後段の
水シヤワー装置等の冷却手段とに対し相対的に軸
方向に移動させて前段の冷却作用に続いて周方向
に一様な環状の加熱作用、及び、後段の冷却作用
を行つて曲り外管により曲り内管をたが締めして
嵌合緊結させるようにした耐摩耗性等を有する曲
り二重管の製造方法に関する発明であり、特に、
低炭素鋼製等の曲り外管に対し耐摩耗鋳鋼製等の
曲り内管を相対重層したり、多数の短円筒状等の
セラミツクス製等の耐摩耗材のセグメント状等の
ピースを相互に隣接させて内張りしたりして非緊
結状態の曲り素管を形成し、曲り外管に対する環
状の加熱作用とその前後段の冷却作用を行うに際
して前後段の環状冷却作用部分が中段の加熱作用
付与部分に対し軸方向にて管中心方向に向かつて
加熱による膨径を押さえるように作用して該膨径
を拘束するようにした環状加熱作用と冷却作用と
により冷却後加熱付与部分に対し内向塑性変形を
経時的に軸方向に連続的に付与してこれらの環状
の加熱作用と冷却作用の曲り素管に対する通過で
曲り外管が曲り内管をたが締めするようにして強
い緊結の嵌合代が得られるようにした曲り二重管
の製造方法に係る発明である。
<Summary of the gist> The invention of this application, in order to improve the abrasion resistance of piping used for slurry transportation, etc., has a double-layer structure in which a curved outer pipe and a wear-resistant curved inner pipe are relatively layered. The pipe is made into a bent blank pipe, and the bent blank pipe is moved in the axial direction relative to a circumferential annular heating means such as a high-frequency induction heating device and cooling means such as a water shower device in the front and rear stages thereof to cool the former stage. This action is followed by a uniform annular heating action in the circumferential direction, followed by a cooling action at a later stage, and the bent outer pipe tightens the bent inner pipe to form a tight fit.It has wear resistance, etc. This invention relates to a method for manufacturing bent double pipes, and in particular,
A curved inner tube made of wear-resistant cast steel or the like is layered relative to a curved outer tube made of low-carbon steel, or a large number of short cylindrical pieces made of wear-resistant materials such as ceramics are placed adjacent to each other. When an annular heating action is performed on the bent outer pipe and a cooling action is performed on the front and rear stages, the annular cooling action portion of the front and rear stages becomes the heating action imparting portion of the middle stage. On the other hand, an annular heating action and a cooling action, which act toward the center of the tube in the axial direction and act to suppress the expansion diameter due to heating, and a cooling action cause inward plastic deformation to the heated portion after cooling. Continuously applying these annular heating and cooling effects in the axial direction over time, the passage of these annular heating and cooling effects to the bent tube causes the bent outer tube to tighten the bent inner tube, creating a strong fit. The present invention relates to a method for manufacturing a bent double pipe.

〈従来の技術〉 周知の如く、配管は各種の産業分野で流体の輸
送等に広く用いられているが、これらの配管のう
ち、例えば、石炭や各種鉱石、セメント等の粉粒
状の固形物を水に混合分散して運ぶスラリー輸送
管、或は、粉塵、硅砂等粉粒体の空気輸送管等で
は、稼動中経時的に管の内面が摩耗し易いもので
ある。
<Prior art> As is well known, piping is widely used for transporting fluids in various industrial fields. In pipes for transporting slurry mixed and dispersed in water, or pneumatic transport pipes for transporting particulate matter such as dust and silica sand, the inner surface of the pipe is likely to wear out over time during operation.

特に、配管中の曲り管部分の摩耗が著しく、耐
久性の点でしばしば問題となる。
In particular, the bent pipe portions of the piping are subject to significant wear, which often poses a problem in terms of durability.

この種の配管にはこれまで多くの場合、ガス管
のような安価な鋼管が用いられ、摩耗すると、新
管と交換したり、摩耗した部分に当て板を溶接し
たりすること等によつてこれに対処している。
Up until now, this type of piping has often used inexpensive steel pipes such as gas pipes, and when they wear out, they can be replaced with new pipes or welded backing plates to the worn parts. This is being addressed.

〈発明が解決しようとする課題〉 而して、特に耐摩耗性を要求されるような用途
の配管では、高クロム鋳鉄等の耐摩耗性に優れた
材料より成る管が使用されることもある。
<Problem to be solved by the invention> Therefore, in piping for applications where wear resistance is particularly required, pipes made of materials with excellent wear resistance such as high chromium cast iron are sometimes used. .

ところで、一般に、鉄鋼材料の耐摩耗性はその
硬さと深い相関があり、耐摩耗性に優れた材料は
一様に著しく硬く、例えば、耐摩耗材料としてよ
く使用される27Cr鋳鉄は、シヨア硬さで81以上
の硬さを有する。
By the way, in general, the wear resistance of steel materials has a deep correlation with their hardness, and materials with excellent wear resistance are uniformly extremely hard. For example, 27Cr cast iron, which is often used as a wear resistant material, has a Schore hardness It has a hardness of 81 or higher.

さりながら、当業者に周知の如く、鉄鋼材料の
硬さが高くなる程、その靱性は低下する傾向があ
り、上述した高クロム鋳鉄等の耐摩耗材料から成
る管は衝撃力が加わると破損し易いという欠点が
ある。
However, as is well known to those skilled in the art, as the hardness of a steel material increases, its toughness tends to decrease, and pipes made of wear-resistant materials such as the high-chromium cast iron mentioned above may break when subjected to impact forces. It has the disadvantage of being easy.

ところで、取外し等の点から直管と曲り管との
連結には一般にフランジ継手が多く用いられる
が、高硬度鋳鋼製の曲り管ではその高硬度のため
にフランジ部分の平面切削加工やボルトの孔開け
加工がし難いという不都合さがある。
By the way, flange joints are generally used to connect straight pipes and bent pipes for ease of removal, but bent pipes made of high-hardness cast steel require flat cutting of the flange portion or holes for bolts due to their high hardness. The disadvantage is that it is difficult to open and process.

即ち、高硬度の耐摩耗材料は溶接性、及び、加
工性が共に著しく悪いことから、第一に配管相互
の連結のため溶接による連結用のフランジの取付
等が不可能である欠点があり、第二に該フランジ
を一体形成させた場合にも、フランジ面の仕上げ
加工やボルト用の孔開け加工が困難であり、第三
に補修溶接が困難である等の難点がある。
That is, since high-hardness wear-resistant materials have extremely poor weldability and workability, the first drawback is that it is impossible to attach connecting flanges by welding to connect pipes. Second, even when the flange is integrally formed, it is difficult to finish the flange surface and drill holes for bolts, and third, repair welding is difficult.

加えて、製造コストも高くなるという不利点も
ある。
In addition, there is also the disadvantage that manufacturing costs are high.

このようなことから、耐摩耗用配管に用いる鋼
管に耐摩耗材料を内張した所謂クラツド鋼管も使
用されるようになつてきた。
For this reason, so-called clad steel pipes, which are steel pipes used for wear-resistant piping lined with a wear-resistant material, have come into use.

この種のクラツド鋼管は、通常遠心鋳造法、或
は、肉盛溶接法等により作られており、内張は外
側の管本体に対し冶金的に接合している。
This type of clad steel pipe is usually made by centrifugal casting or overlay welding, and the inner lining is metallurgically joined to the outer pipe body.

而して、クラツド鋼製の曲り管は、外側の管本
体の内面が耐摩耗材料の内張によつて覆われてい
るため、特に耐摩耗性を考慮していない材質の通
常の単層鋼管の曲り管よりも格段に耐摩耗性が優
れてはいる。
In curved pipes made of clad steel, the inner surface of the outer pipe body is covered with a lining made of wear-resistant material, so it is different from ordinary single-layer steel pipes made of materials that do not have wear resistance in mind. It has much better wear resistance than bent pipe.

又、内張の外側の管本体は耐摩耗材料を具備す
る必要がないので、充分な靱性をもち、溶接性の
良好な材質のものを採用出来る。
Further, since the tube body outside the lining does not need to be provided with a wear-resistant material, a material having sufficient toughness and good weldability can be used.

したがつて、該管本体は耐摩耗材料のみから成
る内張と異なり、充分な耐衝撃性能を有し、又、
連結用のフランジを別体形成して溶接で取付ける
ことも可能である。
Therefore, unlike a lining made only of wear-resistant material, the tube body has sufficient impact resistance, and
It is also possible to form a connecting flange separately and attach it by welding.

しかしながら、クラツド鋼製の曲り管では一旦
割れが生ずると、上述の如く、内張と外側の管本
体とが冶金的に接合しているため、該割れが外側
の管本体に容易に伝播して貫通割れとなり易いマ
イナス点もある。
However, once a crack occurs in a curved pipe made of clad steel, the crack can easily propagate to the outer pipe body because the lining and the outer pipe body are metallurgically bonded as described above. There is also a negative point that it is prone to cracking through.

そこで、実用上充分な靱性を有する曲り管の外
側の管本体と耐摩耗性の優れた内張とを重層した
曲り二重管で、内張と外側の管本体とが冶金的に
は接合しておらず、しかも、ある面圧をもつて接
触しており、内張が圧縮応力状態となるようにし
た自緊曲り二重管の開発が望まれている。
Therefore, we developed a curved double pipe in which the outer pipe body of a bent pipe with sufficient toughness for practical use and a lining with excellent wear resistance are layered, and the lining and outer pipe body are metallurgically bonded. It is desired to develop a self-tensioning double-pipe pipe in which the inner lining is in a state of compressive stress due to the contact with each other under a certain surface pressure.

蓋し、このような自緊曲り二重管は、クラツド
鋼製の曲り管と同様の利点をもち、しかも、上述
したクラツド鋼製の曲り管の欠点が解消されるか
らである。
This is because such a self-tightening bent double pipe has the same advantages as a bent steel pipe made of clad steel, and also eliminates the disadvantages of the bent pipe made of clad steel mentioned above.

〈発明の目的〉 この出願の発明の目的は上述従来技術に基づく
曲り二重管製造の問題点を解決すべき技術的課題
とし、曲り外管に対しては高靱性を具備させ、曲
り内管を高硬度として両管を相対挿入して非緊結
状態の曲り素管の曲り外管に対し周方向環状の加
熱作用、及び、その前後周辺の環状冷却作用を同
時併行的に軸方向に連続的に、例えば、軸方向に
相対移動しながら加熱作用と冷却作用を付与する
ことにより曲り外管を縮径させて曲り内管を該曲
り外管によりたが締めして緊結するようにして各
種産業における配管技術利用分野に益する優れた
耐摩耗曲り二重管の製造方法を提供せんとするも
のである。
<Object of the invention> The object of the invention of this application is to solve the problems of manufacturing bent double pipes based on the above-mentioned prior art, to provide high toughness to the bent outer pipe, and to provide the bent inner pipe with high toughness. With high hardness, both tubes are inserted relative to each other to generate a circumferential annular heating effect on the bent outer tube of the unbound bent tube, and an annular cooling effect around the front and rear of the bent outer tube simultaneously and continuously in the axial direction. For example, by applying a heating effect and a cooling effect while moving relative to each other in the axial direction, the diameter of the bent outer tube is reduced, and the bent inner tube is tightened by the bent outer tube to tighten it, and is used in various industries. It is an object of the present invention to provide a method for manufacturing an excellent wear-resistant bent double pipe that is useful in the piping technology application field.

〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明の構成は、前述課題を解決する
ために、低炭素鋼製の曲り外管と耐摩耗性鋳鋼製
の曲り内管や耐摩耗材の多数のセラミツクス製等
のセグメント状、アーチ状等のピースより成る内
張用曲り内管を相対重層(曲り外管内に曲り内管
を挿入、或いは、逆の、又、両方を同時に行う)
して非緊結状態の曲り素管となし、該曲り素管の
曲り外管を縮径させるに際し、該曲り外管に対す
る周方向の環状の加熱作用とその前後の環状冷却
作用を同時併行的に付与し、周方向環状加熱手段
と周方向環状冷却手段、及び、それらの内側の曲
り素管とを相対的に経時的に軸方向に移動させる
ようにし、このようにすることによつて環状加熱
手段の前方、及び、後方の双方に環状冷却手段を
配設することにより、加熱部の膨径をその前後の
冷却部により拘束して降伏させ、加熱直後の冷却
収縮により初期径よりも縮径するようにして曲り
内管や該曲り内管の耐摩耗材の各ピース相互を強
固に相互密接させて曲り外管により曲り内管をた
が締めするようにした技術的手段を講じたもので
ある。
<Means/effects for solving the problem> In order to solve the above-mentioned problem, the structure of the invention of this application, which is summarized in the above-mentioned claims, is based on a bent outer tube made of low carbon steel and a durable A curved inner tube for lining consisting of a curved inner tube made of abrasion-resistant cast steel and a large number of pieces made of wear-resistant ceramics in the form of segments, arches, etc. is relatively layered (inserting a curved inner tube into a curved outer tube, or Do the opposite, or do both at the same time)
When reducing the diameter of the bent outer tube of the bent outer tube, an annular heating action in the circumferential direction of the bent outer tube and an annular cooling action before and after the bent outer tube are simultaneously performed. The circumferential annular heating means, the circumferential annular cooling means, and the curved tube inside them are moved relative to each other in the axial direction over time, and by doing so, the annular heating is performed. By arranging the annular cooling means both in front and behind the means, the expansion diameter of the heating part is restrained by the cooling parts before and after it and yielded, and the diameter is reduced from the initial diameter by cooling contraction immediately after heating. In this way, the bent inner tube and each piece of the wear-resistant material of the bent inner tube are firmly brought into close contact with each other, and the bent outer tube is tightened with the bent inner tube. .

〈発明の基礎的背景〉 一般に、管に対して環状に局部加熱、局部冷却
の処理を施すことにより管径は変化する。
<Basic Background of the Invention> Generally, the diameter of a pipe is changed by subjecting the pipe to local heating or cooling in an annular manner.

この現象は熱弾塑性挙動に起因する。 This phenomenon is due to thermo-elasto-plastic behavior.

即ち、管の周方向局部を加熱すると、加熱部
は、熱膨脹により膨径しようとするが、このと
き、加熱部の(前後)周辺を強制冷却すると、冷
却部分によつて膨径が拘束され、高温で降伏応力
が低くなつていることと相伴つて加熱部は容易に
塑性変形し、自由膨脹時に比べ、その膨脹量は著
しく小さくなる。
That is, when a local part of the tube in the circumferential direction is heated, the heated part tends to expand in diameter due to thermal expansion, but at this time, if the surroundings (front and rear) of the heated part are forcibly cooled, the expanded diameter is restrained by the cooling part. Since the yield stress is low at high temperatures, the heated part easily undergoes plastic deformation, and the amount of expansion becomes significantly smaller than that during free expansion.

その後、加熱部に対する冷却を行うと、加熱付
与部は比較的自由に熱収縮するため、この熱履歴
を受けた部分の管径は、初期径より小さくなる。
Thereafter, when the heating section is cooled, the heating section thermally contracts relatively freely, so that the pipe diameter of the portion that has undergone this thermal history becomes smaller than the initial diameter.

この熱処理を、管の長手方向に移動させて連続
して施すことで、長手方向全領域に亘り管径を一
様に減少させることが出来、又、部分的に施すこ
とにより、管径を局部的に減少させることも出来
る。
By applying this heat treatment continuously in the longitudinal direction of the pipe, it is possible to reduce the pipe diameter uniformly over the entire lengthwise region, and by applying it partially, the pipe diameter can be reduced locally. It can also be reduced.

第7図は、環熱縮径法(管に対し環状の加熱冷
却を付与して縮径する方法)により管径が変化す
る基礎的現象を、熱弾塑性解析によりシミユレー
トしたグラフ図であり、この場合、解析モデルは
軟鋼管(外径165.2mmφ×肉厚5.5mm)で、解析条
件としては、管の長手方向に局部的に、環状に
800℃まで急速加熱し、その後冷却する熱履歴を
管の長手方向に連続的に与えたものである。
FIG. 7 is a graph simulating the basic phenomenon in which the diameter of a pipe changes by the annular thermal reduction method (a method of reducing the diameter by applying annular heating and cooling to the pipe) using thermoelastic-plastic analysis. In this case, the analysis model is a mild steel pipe (outer diameter 165.2 mmφ x wall thickness 5.5 mm), and the analysis conditions are as follows:
The tube is rapidly heated to 800°C and then cooled, giving it a continuous thermal history along its length.

当該第7図中で、与えられた熱履歴に応じ発生
する塑性歪量と、これに対応する管径の過渡的変
化量(共に、板厚中央の値)を縦軸(左右縦軸)
に、管の長手方向の座標を横軸に示した。
In Fig. 7, the amount of plastic strain that occurs according to a given thermal history and the corresponding amount of transient change in pipe diameter (both values at the center of the plate thickness) are plotted on the vertical axis (left and right vertical axes).
, the longitudinal coordinates of the tube are shown on the horizontal axis.

当該第7図により加熱時は、膨径量は少なく、
周方向に大きな圧縮の塑性歪が発生し、冷却時に
は、引張りの塑性歪が発生するものの、その量は
加熱時に比べて小さく、このため、冷却後、管に
圧縮の塑性歪が残存し管径が減少することが分
る。
According to FIG. 7, when heating, the amount of expansion is small;
A large compressive plastic strain occurs in the circumferential direction, and although tensile plastic strain occurs during cooling, the amount is smaller than during heating, and therefore, after cooling, compressive plastic strain remains in the pipe and the pipe diameter It can be seen that the amount decreases.

そこで、まずこの出願の発明の耐摩耗性の曲り
二重管の製造方法の原理態様を、第3〜6図で説
明すると、曲り外管1に曲り内管2を相対重層し
て非緊結的に挿入状態にした曲り素管3を第3図
の矢印に示す様に、軸方向に所定速度で移動させ
るようにセツトし、更に、第4図に示す様に、曲
り外管1の外周に環状に加熱手段として、例え
ば、高周波誘導加熱装置4(以下、加熱装置と略
称)をセツトすると共に該加熱装置4に所定距離
離隔して近接した軸方向前後位置に、例えば、水
道水等の環状のシヤワー式の冷却装置5,5(以
下、冷却装置と略称)を位置を固定してセツトし
て1ユニツトとし、曲り素管3を矢印方向に移動
させることにより、加熱装置4、及び、冷却装置
5,5の1ユニツトを曲り素管3に対し相対移動
するようにする。
First, the principle aspect of the manufacturing method of the wear-resistant curved double pipe according to the invention of this application will be explained with reference to FIGS. The bent tube 3 inserted into the tube is set so as to be moved at a predetermined speed in the axial direction as shown by the arrow in FIG. 3, and further, as shown in FIG. As a heating means, for example, a high frequency induction heating device 4 (hereinafter abbreviated as a heating device) is set, and a ring-shaped heating device such as tap water is placed at a front and back position in the axial direction close to the heating device 4 at a predetermined distance. Shower-type cooling devices 5, 5 (hereinafter referred to as cooling devices) are set in fixed positions to form one unit, and by moving the bent tube 3 in the direction of the arrow, the heating device 4 and the cooling device are One unit of the devices 5, 5 is moved relative to the bent pipe 3.

そこで、所定速度で矢印に示す様に、曲り素管
3を加熱装置4、冷却装置5,5に対して相対移
動させると、該加熱装置4とその前後の冷却装置
5,5により曲り外管1は局部加熱され、加熱に
よる膨径作用が付与するが、この工程(目的とす
る嵌合力を付与されるまで)において、加熱部分
の熱膨脹変形が拘束されなければ、自由に膨径し
て周方向に突出しようとするが、模式的に当該第
4図に示す様に、実際は加熱部分の変形は、周辺
の冷却部分によつて拘束されているために、当該
部分は第5図に模式的に示す様に、長手方向に対
し中心方向に向かつて加熱による膨径を抑制する
径方向の押え曲げモーメントFが作用し、結果的
に湾曲した塑性変形部分が成形される。
Therefore, when the bent tube 3 is moved relative to the heating device 4 and the cooling devices 5, 5 as shown by the arrow at a predetermined speed, the bent outer tube is 1 is locally heated to give an expansion effect due to heating, but if the thermal expansion deformation of the heated part is not restrained during this process (until the desired fitting force is applied), the diameter will expand freely and the circumference will expand. However, as schematically shown in Fig. 4, the deformation of the heated part is actually restrained by the surrounding cooling part, so the deformation of the heated part is schematically shown in Fig. 5. As shown in FIG. 2, a radial pressing bending moment F is applied in the longitudinal direction toward the center to suppress the expansion diameter due to heating, and as a result, a curved plastically deformed portion is formed.

そして、曲り素管3が加熱装置4と冷却装置
5,5に対し矢印方向に相対移動することによ
り、該加熱装置4により加熱されて塑性変形した
曲り外管1の部分は加熱部分を通過して冷却装置
5,5によつて冷却されると、第6図に示す様に
熱収縮により初期径より縮径され、そこで、大き
な嵌合代が得られて曲り外管1は曲り内管2に対
し、たが締め作用を行い緊結されることになる。
Then, as the bent tube 3 moves relative to the heating device 4 and the cooling devices 5, 5 in the direction of the arrow, the portion of the bent outer tube 1 that has been heated and plastically deformed by the heating device 4 passes through the heated portion. When the tube is cooled by the cooling devices 5, 5, the diameter is reduced from the initial diameter due to thermal contraction as shown in FIG. The hoop tightens and tightens the material.

そして、この加熱装置4と冷却装置5,5の1
ユニツトによる縮径作用は曲り外管1の全ての周
方向部分に作用するために、該曲り素管3,3′
を軸方向に連続的に相対移動することにより、該
曲り外管1の全ての部分が縮径し、曲り素管3,
3′の全長に於いて、曲り内管2の全長に亙り嵌
合状態が現出され、結果的に曲り二重管が形成さ
れることになる。
Then, one of the heating device 4 and the cooling device 5, 5
Since the diameter reduction action by the unit acts on all the circumferential portions of the bent outer tube 1, the bent outer tube 3, 3'
By continuously moving relatively in the axial direction, all parts of the bent outer tube 1 are reduced in diameter, and the bent tube 3,
3', a fitted state is created over the entire length of the bent inner tube 2, and as a result, a bent double tube is formed.

そして、上述緊結プロセスは曲り内管2,2′
の、即ち、各曲り内管2の肉厚に係わりなく行わ
れ、又、軸方向長さに係わらず、曲り素管3の全
ての領域に於いて形成されるために、更に、曲り
外管1と曲り内管2の接合面の精度にもほとんど
無関係に行われることになり、摩耗環境下で寿命
延長のために用いられる原因の耐摩耗性内張曲り
二重管の製造には極めて効果的である。
Then, the above-mentioned tightening process
In other words, the bending is performed regardless of the wall thickness of each inner tube 2, and the bending is performed in all regions of the raw tube 3 regardless of the axial length. This process has almost no relation to the accuracy of the joint surface between 1 and the bent inner tube 2, and is extremely effective in manufacturing wear-resistant lined curved double tubes, which are used to extend the service life in abrasive environments. It is true.

〈実施例〉 次に、この出願の発明の実施例を第1,2図の
図面に従つて説明すれば以下の通りである。
<Example> Next, an example of the invention of this application will be described below with reference to the drawings in FIGS. 1 and 2.

図示実施例は、スラリー輸送管等の耐摩耗内張
曲り二重管の製造の態様であり、第1図に示す実
施例で曲り外管1には、例えば、高靱性を有する
炭素量0.25%程度の低炭素鋼等の所定曲率の曲り
管を用い、曲り内管2として、例えば、耐摩耗性
を有する炭素鋼0.55%程度の高炭素鋼を用いて焼
入れ硬化させた同曲率の曲り管を適宜に曲り外管
1内に前述した如く相対重層して非緊結的な挿入
状態の曲り素管3としておく。
The illustrated embodiment is a mode of manufacturing a curved double pipe with wear-resistant inner lining such as a slurry transport pipe. In the embodiment shown in FIG. For example, as the bent inner tube 2, use a bent tube of the same curvature made of wear-resistant high carbon steel of about 0.55% and hardened by quenching. As described above, the bent tube 3 is appropriately stacked inside the bent outer tube 1 so as to be inserted in a non-tight manner.

又、第2図に示す実施例では、曲り内管2′と
しては高耐摩耗性、高硬度を有するセラミツクス
(Al2O3)製の短円筒の側面視台形に切断したセ
グメント状のピース2″,2″……(この場合はセ
ラミツクスで第1図の様な曲り内管を形成するこ
とが一般的に困難でコスト高であるため、当該第
2図に示す様なセラミツクス製の直管を側面視台
形状に分割切断したものを接着剤等により相互に
仮付けする。)を用いて適宜仮付け等により軸方
向相互に隣接して設定長さにして全体が室温の状
態で曲り外管1と該曲り内管2′とを適宜に相対
挿入して曲り素管3′としておく。
In the embodiment shown in FIG. 2, the bent inner tube 2' is a segment-shaped piece 2 made of ceramics (Al 2 O 3 ) having high wear resistance and high hardness and cut into a trapezoidal shape when viewed from the side. '', 2''... (In this case, it is generally difficult and expensive to form a curved inner tube as shown in Figure 1 using ceramics, so a straight pipe made of ceramics as shown in Figure 2) is used. Cut the pieces into trapezoidal shapes when viewed from the side and temporarily attach them to each other using adhesive, etc.). The tube 1 and the bent inner tube 2' are appropriately inserted relative to each other to form a bent blank tube 3'.

そして、これらの曲り素管3,3′に対し前述
原理態様に示した加熱装置と冷却装置5,5によ
る軸方向相対移動を介しての環熱縮径作用を付与
して曲り外管1の曲り内管2に対するたが締めを
行う。
Then, an annular thermal diameter reduction effect is applied to these bent outer tubes 3 and 3' through relative movement in the axial direction by the heating device and the cooling device 5 shown in the above-mentioned principle mode, so that the bent outer tube 1 is Tighten the hoops on the bent inner pipe 2.

尚、上述第2図の実施例はセラミツクス製の曲
り内管2′が軸方向のセグメントのリング状ピー
ス2″,2″……を多数隣接状態にした態様である
が、これに代えて周方向にアーチ状の所謂八ツ橋
状のピースをピース2″,2″……と同形状に設定
数多数周方向、及び、軸方向に仮付けして隣接す
る態様も採用可能であり、いづれにしても曲り外
管1による曲り内管2のたが締め作用による機械
的な相互拘束の断面円形の曲り二重管を構成する
ことが出来る。
In the embodiment shown in FIG. 2, the curved inner tube 2' made of ceramic has a large number of ring-shaped pieces 2'', 2'', . . . of segments in the axial direction arranged adjacent to each other. It is also possible to adopt a mode in which a large number of so-called Yatsuhashi-shaped pieces having an arch shape in the direction are set in the same shape as pieces 2'', 2'', etc., and are temporarily attached in the circumferential direction and the axial direction, and are adjacent to each other. It is also possible to construct a bent double pipe with a circular cross section in which the bent outer pipe 1 and the bent inner pipe 2 are mechanically restrained by the hoop tightening action of the bent inner pipe 2.

而して、上述処理は1回の曲り素管3,3′の
軸方向1回通過でも良いが、2回以上の通過を繰
り返すことで、その縮径量を増大させることが出
来る。
The above-mentioned process may be performed by passing the bent tube 3, 3' once in the axial direction, but by repeating the process two or more times, the amount of diameter reduction can be increased.

次に、上述実施例に則す実験例を示せば以下の
通りである。
Next, an experimental example based on the above embodiment is as follows.

第8図は、環熱縮径法RHS(登録商標)法によ
る二重管製造における、通過環熱縮径処理ごとの
外管1の外径変化量(累積)(左側縦軸上)と二
重管素管3の内外管1,2の嵌合面圧(左側縦軸
下)の発生状況を示すものであつて、内外管1,
2の曲り素管3が鋼管(材質:STPG−38,形
状:外管90A/Sch40,内管80A/Sch40)の場合
を示している。
Figure 8 shows the amount of outside diameter change (cumulative) (on the left vertical axis) of the outer tube 1 for each passing ring thermal shrinking process in the production of double-walled pipes using the ring thermal shrinking method RHS (registered trademark) method. This shows the generation of fitting surface pressure (below the left vertical axis) between the inner and outer tubes 1 and 2 of the heavy tube stock tube 3,
The case where the bent raw pipe 3 of No. 2 is a steel pipe (material: STPG-38, shape: outer pipe 90A/Sch40, inner pipe 80A/Sch40) is shown.

この場合、曲り内外管1,2の初期クリアラン
ス(直径差)は1.5mmあり、これを4回の環熱縮
径処理で曲り内外管1,2を接触させ、5回目の
環熱縮径処理以後は該曲り内外管1,2は嵌合し
ていくことが分る。
In this case, the initial clearance (diameter difference) between the curved inner and outer tubes 1 and 2 is 1.5 mm, and this is brought into contact with each other through four ring heat reduction processes, and then the fifth ring heat reduction process. It can be seen that the curved inner and outer tubes 1 and 2 will fit together from then on.

ここで、初期クリアランスは曲り内外管1,2
を相対挿入するに足りる程度で良く、実用上は、
例えば、1〜5mm程度である。
Here, the initial clearance is the curved inner and outer tubes 1 and 2.
It is enough to relatively insert the , and in practice,
For example, it is about 1 to 5 mm.

そして、環熱縮径処理について述べると、1回
の処理当りの縮径量は条件により任意に決めるこ
とが出来るものであるが、実際には、例えば、外
管の直径の0.5%程度であつた。
Regarding the ring thermal diameter reduction treatment, the amount of diameter reduction per treatment can be arbitrarily determined depending on the conditions, but in reality, for example, it is about 0.5% of the diameter of the outer tube. Ta.

当該実験例のデータから分るように、曲り内外
管1,2が接触するまでは処理回数が増すにつ
れ、曲り外管1の縮径量が増え、曲り内外管1,
2が接触後、嵌合面圧が発生している。
As can be seen from the data of the experimental example, as the number of treatments increases, the amount of diameter reduction of the bent outer tube 1 increases until the bent inner and outer tubes 1 and 2 come into contact with each other.
After 2 come into contact, a fitting surface pressure is generated.

更に、処理繰り返し回数を増すと、嵌合面圧が
増大することから、該処理繰り返し回数を制御す
ることによつて、嵌合面圧を変え得ることが分
る。
Furthermore, since the fitting surface pressure increases as the number of processing repetitions increases, it is understood that the fitting surface pressure can be changed by controlling the number of processing repetitions.

そして、設計に沿う嵌合代が得られるために、
周方向は勿論、長さ方向にても均一に嵌合した精
度の高い曲り二重管が得られる。
In order to obtain the fitting allowance that matches the design,
A highly accurate bent double pipe can be obtained that is uniformly fitted not only in the circumferential direction but also in the longitudinal direction.

而して、前述第1図に示す実施例において、加
熱装置4と冷却装置5,5の1ユニツトを曲り素
管3に対して相対移動させた場合、先述した如
く、該曲り素管3が通常曲率の曲り管の場合、該
1ユニツトでは実験によると、曲り外管1の直径
が100φ、肉厚4tである場合には、1回による縮
径処理で約0.5mm管径が減少する。
In the embodiment shown in FIG. 1, when one unit of the heating device 4 and the cooling devices 5, 5 is moved relative to the bent tube 3, as described above, the bent tube 3 In the case of a bent pipe with a normal curvature, experiments have shown that in one unit, if the diameter of the bent outer pipe 1 is 100φ and the wall thickness is 4t, the pipe diameter is reduced by about 0.5 mm in one diameter reduction treatment.

尚、この出願の発明の実施態様は前述各実施例
に限るものでないことは勿論であり、曲り内管は
鋳鋼管、セラミツクス管以外にも耐蝕性材料を用
いることが出来る等種々の態様が採用可能であ
る。
It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments, and various embodiments can be adopted, such as the possibility of using corrosion-resistant materials other than cast steel pipes and ceramic pipes for the bent inner pipe. It is possible.

尚、この出願の発明は従来態様の管の軸方向に
線状加熱後冷却手段を移動して付与する手段によ
るところの周長減少の態様と異なり、あくまで、
加熱された外管の環状部分の膨径が隣接する冷却
部分により拘束され、加熱部分が冷却後縮径する
ことにより、曲り外管が曲り内管に対し緊結する
ようにしたものであつて、その自緊メカニズムは
全く異なるものである。
Note that the invention of this application differs from the conventional mode in which the circumferential length is reduced by means of moving a linear heating and cooling means in the axial direction of the tube.
The expanded diameter of the heated annular portion of the outer tube is restrained by the adjacent cooling portion, and the heating portion contracts in diameter after cooling, so that the bent outer tube is tightly connected to the bent inner tube, The self-control mechanism is completely different.

〈発明の効果〉 以上、この出願の発明によれば、基本的にスラ
リー輸送管等の曲り二重管において、曲り外管の
内面に緊結される耐摩耗性内張の曲り内管が曲り
鋳鋼管や短管状のセグメントやアーチ状の多数の
ピースによつて形成され、(一体のものも、分割
されているものも)力学的に相互に緊結されて当
接されるように相対重層して曲り素管とすること
により曲率を問わず、曲り素管を形成することが
出来るという優れた効果が奏される。
<Effects of the Invention> As described above, according to the invention of this application, basically in a bent double pipe such as a slurry transport pipe, the bent inner pipe with the wear-resistant lining, which is tightened to the inner surface of the bent outer pipe, is made of bent cast steel. Formed by a number of tubes, short tubular segments, or arch-shaped pieces (either integral or divided) that are stacked relative to each other so that they are mechanically connected and abutted against each other. The excellent effect of forming a curved raw pipe regardless of the curvature is achieved by forming the bent raw pipe.

そして、曲り内管が曲り外管のたが締めによつ
て緊結されるために力学的に安定し、稼動中の剥
離等が生じないという優れた効果もある。
In addition, since the bent inner tube is fastened by the hoop tightening of the bent outer tube, it is mechanically stable and there is an excellent effect that peeling does not occur during operation.

更に、曲り内管が曲り外管によるたが締めによ
り、圧縮応力を受け、耐蝕性が向上すると共に曲
り内管が多数のピースで成り立つている態様では
曲面に沿い易くなり、そのため、耐久性が向上す
るという優れた効果が奏される。
Furthermore, the bent inner tube receives compressive stress due to the hoop tightening with the bent outer tube, improving corrosion resistance, and in the case where the bent inner tube is made up of many pieces, it becomes easier to follow curved surfaces, which reduces durability. It has an excellent effect of improving.

而して、曲り二重管等の製造に際し曲り外管を
縮径させることが出来、極めて高精度の自緊曲り
二重管が得られる優れた効果が奏される。
Thus, the diameter of the bent outer tube can be reduced when manufacturing a bent double tube, etc., and the excellent effect of obtaining a self-tightening double tube with extremely high precision is achieved.

又、曲り内管には耐摩耗性の優れたセラミツク
ス製管、高クロム鋳鉄製管や高炭素鋼管、耐蝕性
に優れたステンレス鋼管やインコネル製管等を用
いることが出来、耐摩耗性があり、曲り外管には
炭素鋼管のみならず、ステンレス鋼等を用いても
何等設計の自由度が拘束されずに縮径出来、した
がつて、曲り外管と曲り内管の材料選択も実用
上、自由であるという効果が奏される。
In addition, ceramic pipes with excellent wear resistance, high chromium cast iron pipes, high carbon steel pipes, stainless steel pipes and Inconel pipes with excellent corrosion resistance, etc. can be used for the bent inner pipe, and they have excellent wear resistance. For the bent outer tube, not only carbon steel tubes but also stainless steel etc. can be used to reduce the diameter without restricting the degree of design freedom. Therefore, material selection for the bent outer tube and bent inner tube is practical. , the effect of being free is produced.

而して、曲り素管の曲り外管に対し、環状加熱
手段(装置)とその前後の冷却手段(装置)とを
1ユニツト化し、曲り素管に対し環状塑性変形と
冷却収縮とを介して縮径作用を付与することにな
り、設計通りの縮径が行われて曲り外管の曲り内
管に対するたが締めによる自緊が行われ、充分な
嵌合力を有する曲り二重管が製造出来るという優
れた効果が奏される。
Therefore, for the bent outer pipe of the bent raw pipe, the annular heating means (device) and the cooling means (device) before and after the same are integrated into one unit, and the bent raw pipe is subjected to annular plastic deformation and cooling contraction. By imparting a diameter reduction effect, the diameter is reduced as designed, and the bent outer tube is self-tightened by hoop tightening against the bent inner tube, making it possible to manufacture a bent double tube with sufficient fitting force. This is an excellent effect.

したがつて、曲り二重管の径や曲率に拘束され
ず、設計の自由度が高まり、自在な曲り二重管の
製造が出来るという効果が奏される。
Therefore, the degree of freedom in design is increased without being restricted by the diameter and curvature of the bent double pipe, and the advantage is that the bent double pipe can be manufactured as desired.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の実施例の概略説明図で
あり、第1図は1実施例の断面図、第2図は他の
実施例の第1図相当断面図、第3図は曲り外管と
内管の相対重層時の部分断面側面図、第4図は加
熱冷却による押え曲げモーメント付与メカニズム
の部分断面図、第5図は冷却による押え曲げモー
メントを介しての縮径メカニズムの模式斜視図、
第6図は縮径して自緊した曲り二重管の断面図、
第7図は環熱縮径の基本的現象のシユミレーシヨ
ングラフ図、第8図は環熱縮径処理の実施例のグ
ラフ図である。 1……外管、2,2′……内管、3,3′……素
管、4……加熱装置、5……冷却装置。
The drawings are schematic explanatory diagrams of embodiments of the invention of this application, and FIG. 1 is a sectional view of one embodiment, FIG. 2 is a sectional view of another embodiment equivalent to FIG. 1, and FIG. 3 is a curved outer tube. Fig. 4 is a partial cross-sectional view of the mechanism for imparting presser bending moment by heating and cooling, and Fig. 5 is a schematic perspective view of the diameter reduction mechanism via presser bending moment due to cooling. ,
Figure 6 is a cross-sectional view of a bent double pipe that has been reduced in diameter and self-tightened.
FIG. 7 is a simulation graph of the basic phenomenon of ring thermal diameter reduction, and FIG. 8 is a graph of an example of ring thermal diameter reduction treatment. 1... Outer tube, 2, 2'... Inner tube, 3, 3'... Base tube, 4... Heating device, 5... Cooling device.

Claims (1)

【特許請求の範囲】 1 外管1に内管2を重層して曲り二重管3を製
造する方法において、曲り外管1内に耐摩耗材の
曲り内管2を相対的に重層して曲り素管3とし、
該曲り外管1に対し周方向の環状加熱作用とその
周辺の冷却作用を同時併行的に付与し、加熱部の
熱膨張をその周辺の低温部により拘束して膨径を
抑え、その後加熱部を冷却して収縮させ、その部
分の径が初期径より小さくなるようにし、而して
曲り素管3と加熱冷却手段4,5とを軸方向に相
対移動させて加熱部の全長に亙り冷却後の曲り外
管1の径が初期径より小さくなるようにして内外
管1,2の嵌合度を高めるようにしたことを特徴
とする曲り二重管3の製造方法。 2 外管1に内管2を相対重層して曲り二重管3
を製造する方法において、曲り外管1内に多数の
耐摩耗材の相互に係合された複数のピース2″で
曲り内管2′を成して相対的に重層して曲り素管
3′とし、該曲り外管1に対し周方向の環状加熱
とその周辺の冷却を同時併行的に付与し、加熱部
の熱膨脹をその周辺の低温部により拘束して膨径
を抑え、その後該加熱部を冷却して収縮させ、そ
の部分の径が初期径より小さくなるようにし、而
して曲り素管3′と加熱冷却手段4,5とを軸方
向に相対移動させて加熱部の全長に亙り冷却後の
曲り外管1の径が初期径より小さくなるようにし
て内外管1,2の嵌合度を高めるようにしたこと
を特徴とする曲り二重管3の製造方法。
[Claims] 1. A method for manufacturing a curved double pipe 3 by layering an inner tube 2 on an outer tube 1, in which a curved inner tube 2 made of wear-resistant material is relatively layered on the curved outer tube 1 and the curved As raw pipe 3,
An annular heating action in the circumferential direction and a cooling action around the circumferential direction are simultaneously applied to the bent outer tube 1, and the thermal expansion of the heating part is restrained by the surrounding low temperature part to suppress the expansion diameter, and then the heating part is cooled and contracted so that the diameter of that part becomes smaller than the initial diameter, and then the bent pipe 3 and the heating/cooling means 4, 5 are moved relative to each other in the axial direction to cool the entire length of the heated part. A method for manufacturing a bent double tube 3, characterized in that the diameter of the later bent outer tube 1 is smaller than the initial diameter to increase the degree of fitting between the inner and outer tubes 1 and 2. 2 The inner tube 2 is layered on the outer tube 1 to form a bent double tube 3.
In this method, a plurality of mutually engaged pieces 2'' of a large number of wear-resistant materials are placed in a bent outer tube 1 to form a bent inner tube 2', and are relatively layered to form a bent blank tube 3'. , annular heating in the circumferential direction and cooling of the surrounding area are simultaneously applied to the bent outer tube 1, the thermal expansion of the heating part is restrained by the surrounding low temperature part to suppress the expansion diameter, and then the heating part is The tube is cooled and contracted so that the diameter of that portion becomes smaller than the initial diameter, and the bent tube 3' and the heating and cooling means 4 and 5 are moved relative to each other in the axial direction to cool the entire length of the heating section. A method for manufacturing a bent double tube 3, characterized in that the diameter of the later bent outer tube 1 is smaller than the initial diameter to increase the degree of fitting between the inner and outer tubes 1 and 2.
JP19863585A 1985-06-07 1985-09-10 Production of double-ply bend pipe Granted JPS6261733A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP19863585A JPS6261733A (en) 1985-09-10 1985-09-10 Production of double-ply bend pipe
AU58423/86A AU573093B2 (en) 1985-06-07 1986-06-04 Localised diameter reduction of tubing
CA000510978A CA1260551A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
EP86107709A EP0206048B1 (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
US06/871,917 US4727641A (en) 1985-06-07 1986-06-06 Thermoplastic method of reducing the diameter of a metal tube
DE8686107709T DE3674951D1 (en) 1985-06-07 1986-06-06 THERMOPLASTIC METHOD FOR REDUCING THE DIAMETER OF A METAL TUBE.
CN86103742.1A CN1003532B (en) 1985-06-07 1986-06-07 Method for reducing diametre of metal pipe by hot plasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19863585A JPS6261733A (en) 1985-09-10 1985-09-10 Production of double-ply bend pipe

Publications (2)

Publication Number Publication Date
JPS6261733A JPS6261733A (en) 1987-03-18
JPH0576384B2 true JPH0576384B2 (en) 1993-10-22

Family

ID=16394480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19863585A Granted JPS6261733A (en) 1985-06-07 1985-09-10 Production of double-ply bend pipe

Country Status (1)

Country Link
JP (1) JPS6261733A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133624A (en) * 1987-11-20 1989-05-25 Nippon Steel Corp Manufacture of tightly attached bimetallic curved tube
JPH0741321B2 (en) * 1988-08-15 1995-05-10 川崎重工業株式会社 Method and device for manufacturing bent double pipe

Also Published As

Publication number Publication date
JPS6261733A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
US4727641A (en) Thermoplastic method of reducing the diameter of a metal tube
JPS5821093A (en) Corrosion-resistant double pipe
US4683014A (en) Mechanical stress improvement process
JPH0450128B2 (en)
JPH0576384B2 (en)
JPH0576379B2 (en)
JPH0576383B2 (en)
JP2554470B2 (en) Tube manufacturing method
US4612071A (en) Mechanical stress improvement process
JPH0337073B2 (en)
JPS6261721A (en) Method and device for production of double pipe
JPS6234726A (en) Manufacture for long sized-structure
JPH0576380B2 (en)
JPS61283415A (en) Manufacture of wear resistant double pipe
JPH0576387B2 (en)
JPH0450129B2 (en)
JPS5941425A (en) Improvement in residual stress of hollow body
JPH0218171B2 (en)
KR900004101B1 (en) Thermoplastic method of reducing the diameter of a metal tube
JPS61283414A (en) Manufacture of wear resistant double pipe
JPH03207522A (en) Manufacture of double pipe
JPS61282698A (en) Structure of abrasion-resistant bent double pipe
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe
JPH0576386B2 (en)
JPH01119572A (en) Production of double pipe having ceramics inside pipe