JPS5941425A - Improvement in residual stress of hollow body - Google Patents

Improvement in residual stress of hollow body

Info

Publication number
JPS5941425A
JPS5941425A JP15327682A JP15327682A JPS5941425A JP S5941425 A JPS5941425 A JP S5941425A JP 15327682 A JP15327682 A JP 15327682A JP 15327682 A JP15327682 A JP 15327682A JP S5941425 A JPS5941425 A JP S5941425A
Authority
JP
Japan
Prior art keywords
heating
residual stress
temp
weld line
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15327682A
Other languages
Japanese (ja)
Other versions
JPH0246654B2 (en
Inventor
Risuke Nayama
理介 名山
Genta Takano
高野 元太
Toyotaka Onda
音田 豊孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15327682A priority Critical patent/JPH0246654B2/en
Publication of JPS5941425A publication Critical patent/JPS5941425A/en
Publication of JPH0246654B2 publication Critical patent/JPH0246654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Abstract

PURPOSE:To obtain the method which certainly exhibits the effect to improve residual stress with a heating means having small heat capacity, by forming a temp. distribution along an axial direction in the proper domains of the butt- welded circumferential joint of a hollow body at both sides of a weld line, and then spontaneously cooling them. CONSTITUTION:Specified positions in response to the size of pipes at both sides of a butt-welded circumferential joint 2 between pipes 1 and 1, e.g. domains in a distance of 10-30mm. or about 20-40mm. apart from a weld line in case of pipes made of steel SUS 304 having an outer diameter of about 100mm. and thickness of about 6mm., are selected. Said domains are annularly simultaneously heated by a heating means 3 such as a high-frequency induction heater to form high-temp. parts and a temp. distribution along its axial direction, and then spontaneously cooled while stopping the heating. Said heating may be performed to an extent enough to form the temp. distribution without the need to perform forcible cooling such as water cooling after or during the heating. Thus, the heating means is managed with small capacity.

Description

【発明の詳細な説明】 合せ周溶接継手における残留応力を改善する方法に係る
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving residual stress in lap welded joints.

配管又は管状容器など中空体の突合せ周溶接部には、内
面では周方向、軸方向とも引張残留応力が存在しており
、この内面の引張残留応力の存在は疲労強度や耐応力腐
食割れ性能の低・下を招くため、引張残留応力の程度を
軽減ないしは圧縮状態とすることが望まれている。
Tensile residual stress exists in both the circumferential and axial directions on the inner surface of butt circumferential welds of hollow bodies such as piping or tubular containers, and the presence of this inner surface tensile residual stress affects fatigue strength and stress corrosion cracking resistance. Therefore, it is desired to reduce the degree of tensile residual stress or bring it into a compressed state.

この目的を達するため種々の残留応力改善法が提案され
ており、外面加熱・内面冷却法は、外面を加熱すると同
時に内面を水などで冷却することにより内外面の温度差
を生せしめ、その時の熱応力によって内面の残留応力状
態を圧縮状態としようとするものであるが、この方法は
、内面を冷却する必要があるので冷却が難しい場所では
適用不可能であること、冷却するだめ加熱装置の容量に
大きなものが必要であることなどの欠点がある。
Various residual stress improvement methods have been proposed to achieve this purpose.The outer surface heating/inner surface cooling method heats the outer surface and simultaneously cools the inner surface with water to create a temperature difference between the inner and outer surfaces. This method attempts to make the residual stress state of the inner surface into a compressive state by thermal stress, but this method requires cooling the inner surface, so it cannot be applied in places where cooling is difficult. There are disadvantages such as the need for large capacity.

またリンデ法は、溶接線の両側を加熱しそのすぐあとを
冷却しながら、順次溶接線に沿って処理していくもので
あるが、この方法も、やはり冷却の必要がちるという欠
点がある上に、溶゛接線方向に順に加熱冷却してゆくた
め効果が不確実である。
In addition, the Linde method heats both sides of the weld line and cools the weld line immediately afterwards, processing the weld line sequentially, but this method also has the disadvantage of requiring more cooling. In addition, the effect is uncertain because heating and cooling are performed sequentially in the weld tangent direction.

これらの方法はすべて加熱と同時に冷却が必要であるが
、従来提案されている方法のうち冷却が不要の方法とし
て、溶接線の両側に溶接ビ−ドを置き、それによる残留
応力分布を利用して所期の部分の残留応力分布を改善し
ようとする方法がある1、シかしこの方法は、溶接によ
る材質変化が生じるし、又リンデ法と同じく一度に加熱
しないため信頼性に欠けるという欠点があり、更に軸方
向の残留応力が改善し7にぐいという原理的欠陥がある
All of these methods require heating and cooling at the same time, but among the previously proposed methods, one method that does not require cooling is to place weld beads on both sides of the weld line and utilize the resulting residual stress distribution. There is a method that attempts to improve the residual stress distribution in the desired part 1, but this method has the disadvantage that material changes occur due to welding and, like the Linde method, it lacks reliability because it does not heat at once. Furthermore, there is a fundamental flaw in that the residual stress in the axial direction is improved by 7 points.

本発明は、上記の如き従来の諸方法の欠点を持たない、
即ち処理後又は処理中の冷却が不要でそのため加熱装置
の容量が少さくて済み、かつ残留応力改善効果が確実で
信頼性に富む方法を提供し5ようとするものであり、中
空体の突合せ周溶接継手の溶接線両側における中空体寸
法に応じた適切な領域に、環状に均一な加熱を施し、軸
方向に温度分布を生ぜしめたのち加熱を停止し放冷する
ことを特徴とする中空体の残留応力改善方法を提案する
The present invention does not have the drawbacks of conventional methods as mentioned above.
In other words, the purpose is to provide a highly reliable method that does not require cooling after or during processing, requires a small capacity heating device, and has a reliable and highly reliable effect on improving residual stress. A hollow body characterized by applying uniform annular heating to an appropriate area according to the dimensions of the hollow body on both sides of the weld line of a circumferentially welded joint, creating a temperature distribution in the axial direction, and then stopping the heating and allowing it to cool. We propose a method to improve residual stress in the body.

本発明方法の実施例を図面について説明する。An embodiment of the method of the present invention will be described with reference to the drawings.

まず第1図において、管1.1の突合せ周溶接継手2の
両側の管寸法に応じた特定位置、例えばS U S 3
04 銅製の外径約100m、板厚6mmの管の場合は
溶接線からの距離が10〜30 mm 。
First, in FIG. 1, a specific position depending on the pipe dimensions on both sides of the butt circumferential weld joint 2 of the pipe 1.1, for example S U S 3
04 In the case of a copper pipe with an outer diameter of approximately 100 m and a plate thickness of 6 mm, the distance from the weld line is 10 to 30 mm.

又は20〜40mmの領域を、ガス炎又は高周波誘導加
熱などの加熱装置3により環状に同時に加熱して高温部
を作り、軸方向の温度分布を生ぜしめたのち、加熱を停
止し放冷する。加熱は温度分布が生じる程度でよく、ま
た加熱後、加熱中に水冷等の強制冷却の必要はない。
Alternatively, a region of 20 to 40 mm is simultaneously heated in an annular manner using a heating device 3 such as a gas flame or high-frequency induction heating to create a high temperature section, and after creating an axial temperature distribution, the heating is stopped and allowed to cool. Heating is sufficient to produce temperature distribution, and after heating, there is no need for forced cooling such as water cooling during heating.

このように加熱を施すことにより、管1.1の溶接構造
体は、軸方向に第2図に示すような温度分布を呈し、そ
の結果第3図に示すような形状に変形する。
By heating in this manner, the welded structure of the tube 1.1 exhibits a temperature distribution in the axial direction as shown in FIG. 2, and as a result deforms into the shape shown in FIG.

この変形により、周方向応力は、溶接線近傍では第4図
のように引張応力となり、加熱部では第5図のように圧
縮応力となる。一方軸方向は、周上を同時に加熱するた
め、熱膨張によって軸方向の径の大きさに喰違いが生じ
るので曲げモーメントが生じ、このため軸方向応力は、
溶接線近傍では、第6図に示すように管外面では圧縮応
力、管内面では引張応力状態となり、加熱部では、第7
図に示すように管外面では圧縮応力、管内面では引張応
力状態となる。
Due to this deformation, the circumferential stress becomes tensile stress near the weld line as shown in FIG. 4, and becomes compressive stress in the heated area as shown in FIG. 5. On the other hand, in the axial direction, since the circumferential surface is heated at the same time, thermal expansion causes a difference in the size of the diameter in the axial direction, resulting in a bending moment, and as a result, the axial stress is
Near the weld line, as shown in Figure 6, the outer surface of the tube is in a compressive stress state, the inner surface of the tube is in a tensile stress state, and in the heating area, a seventh
As shown in the figure, the outer surface of the tube is under compressive stress, and the inner surface of the tube is under tensile stress.

しかしてこのような加熱時の応力分布を呈したのち、加
熱後の放冷によって熱応力が除荷されると、これら応力
は減少または反転するため、溶接部近傍では引張残留応
力が減少または圧縮応力となる。
However, after such a stress distribution occurs during heating, when the thermal stress is unloaded by cooling after heating, these stresses decrease or reverse, and the tensile residual stress decreases or compresses near the weld. It becomes stress.

以下に本発明方法の効果を確認するために実施した熱弾
塑性有限要素法を用いた数値実験(シミュレーション)
の結果を、第8図〜第18図について説明する。
The following is a numerical experiment (simulation) using the thermoelastic-plastic finite element method conducted to confirm the effects of the method of the present invention.
The results will be explained with reference to FIGS. 8 to 18.

被試体はS U S 304鋼製の外径114.3 m
m 、肉厚6 mmの管の突合せ周溶接継手を用いた。
The specimen is made of SUS 304 steel and has an outer diameter of 114.3 m.
A butt-circumferential welded joint of a tube with a wall thickness of 6 mm was used.

第8図は溶接後そのままの状態の外面残留応力分布、第
9図は内面残留応力分布を示す。
FIG. 8 shows the outer surface residual stress distribution as it is after welding, and FIG. 9 shows the inner surface residual stress distribution.

第10図は、ガス炎で0.1cal / mm3X 6
0 secの加熱を溶接線から10〜30mmの領域に
施した場合の加熱処理中の内面温度分布を示す。第11
図は上記加熱処理後の外面残留応力分布を、第12図は
同じく内面残留応力分布をそれぞれ示す。
Figure 10 shows a gas flame of 0.1 cal/mm3X6
The inner surface temperature distribution during heat treatment when heating for 0 sec is applied to a region 10 to 30 mm from the weld line is shown. 11th
The figure shows the outer surface residual stress distribution after the heat treatment, and FIG. 12 similarly shows the inner surface residual stress distribution.

次に、第13図、第14図及び第15図は、ガス炎で0
.1 cal / mm3x 5Q eθCの加熱を溶
接線から20〜40 mmの領域に施した場合の加熱処
理中の内面温度分布、加熱処理後の外面残留応力分布、
及び同じく内面残留応力分布をそれぞれ示す。
Next, Fig. 13, Fig. 14, and Fig. 15 show the gas flame
.. Inner surface temperature distribution during heat treatment when heating at 1 cal/mm3x 5Q eθC is applied to an area 20 to 40 mm from the weld line, outer surface residual stress distribution after heat treatment,
and the inner surface residual stress distribution are also shown.

更に、第16図、第17図及び第18図は、ガス炎で0
.1 cal / mm3x 6Q secの加熱を溶
接線から40〜60mmの領域に施した場合の加熱処理
中の内面温度分布、加熱処理後の外面残留応力分布、及
び同じく内面残留応力分布をそれぞれ示す。
Furthermore, Fig. 16, Fig. 17, and Fig. 18 show that the gas flame is 0.
.. The inner surface temperature distribution during the heat treatment, the outer surface residual stress distribution after the heat treatment, and the inner surface residual stress distribution when heating at 1 cal/mm3x6Q sec is applied to a region 40 to 60 mm from the weld line are shown.

以上に示しだ図から、第8図において溶接後゛内面残留
応力が周方向、軸方向ともに20 kgf 7mm2以
上の引張状態であったものが、適当な加熱領域を加熱す
ることにより、周方向のみならず軸方向の残留応力も大
幅に除去されていることがわかる。すなわち、第18図
に示すように、溶接線から40〜60mmの領域を加熱
した場合図のように10〜30mmを加熱した場合には
、残留応力除去効果がある。特にその中でもこの管径に
対しては20〜40mmが最も適切である。
From the diagrams shown above, it can be seen that after welding in Figure 8, the internal residual stress was in a tensile state of 20 kgf 7 mm2 or more in both the circumferential and axial directions, but by heating the appropriate heating area, it can be reduced only in the circumferential direction. It can be seen that the residual stress in the axial direction is also largely removed. That is, as shown in FIG. 18, if a region of 40 to 60 mm from the weld line is heated, and if a region of 10 to 30 mm is heated as shown in the figure, there is a residual stress removal effect. Among them, 20 to 40 mm is most appropriate for this pipe diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様の要領図、第2図及び第
3図は同上における温度分布の説明図及び変形状態の説
明図、第4図〜第7図は同第9図は溶接時の残留応力分
布図、第10図〜第12図は溶接線から10〜30mm
の領域加熱の場合の温度分布図及び残留応力分布図、第
13図〜第15図は溶接線から20〜40mmの領域加
熱の場合の温度分布図及び残留応力分布図、第16図〜
第1B図は溶接線から40〜60mmの領域加熱の温度
分布図及び残留応力分布図である。 1:管、2:突合せ周溶接継手、3:加熱装置 第1図 第2 図 j閘 、■ 集3図 第4−          M5図 第乙図        第7図
Figure 1 is a schematic diagram of an embodiment of the method of the present invention, Figures 2 and 3 are explanatory diagrams of temperature distribution and deformation states in the same as above, Figures 4 to 7 are diagrams, and Figure 9 is welding. Residual stress distribution diagrams, Figures 10 to 12 are 10 to 30 mm from the weld line.
Temperature distribution diagrams and residual stress distribution diagrams in the case of heating in the area of
FIG. 1B is a temperature distribution diagram and a residual stress distribution diagram of heating in a region of 40 to 60 mm from the weld line. 1: Pipe, 2: Butt circumferential weld joint, 3: Heating device Fig. 1 Fig. 2 Fig. J lock, ■ Collection 3 Fig. 4- M5 Fig. O Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 中空体の突合せ周溶接継手の溶接線両側における中空体
寸法に応じた適切な領域に、環状に均一な加熱を施し、
軸方向に温度分布を生ぜしめたのち加熱を停止し放冷す
ることを特徴とする中空体の残留応力改善方法
Uniform heating is applied in an annular manner to an appropriate area according to the dimensions of the hollow body on both sides of the weld line of the butt circumferential weld joint of the hollow body,
A method for improving residual stress in a hollow body, which is characterized by generating a temperature distribution in the axial direction, then stopping heating and allowing it to cool.
JP15327682A 1982-09-02 1982-09-02 CHUKUTAINOZANRYUORYOKUKAIZENHOHO Expired - Lifetime JPH0246654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15327682A JPH0246654B2 (en) 1982-09-02 1982-09-02 CHUKUTAINOZANRYUORYOKUKAIZENHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15327682A JPH0246654B2 (en) 1982-09-02 1982-09-02 CHUKUTAINOZANRYUORYOKUKAIZENHOHO

Publications (2)

Publication Number Publication Date
JPS5941425A true JPS5941425A (en) 1984-03-07
JPH0246654B2 JPH0246654B2 (en) 1990-10-16

Family

ID=15558920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15327682A Expired - Lifetime JPH0246654B2 (en) 1982-09-02 1982-09-02 CHUKUTAINOZANRYUORYOKUKAIZENHOHO

Country Status (1)

Country Link
JP (1) JPH0246654B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253325A (en) * 1985-05-02 1986-11-11 Hokkaido Electric Power Co Inc:The Improvement of residual stress of hollow body
JPH0230716A (en) * 1988-07-21 1990-02-01 Hokkaido Electric Power Co Inc:The Method for improving residual stress in circumferential weld zone
WO2014077140A1 (en) * 2012-11-16 2014-05-22 新日鐵住金株式会社 Post-heating treatment device
JP2014101533A (en) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal Post-heat-treatment device
JP2014101534A (en) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal Post-heat-treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253325A (en) * 1985-05-02 1986-11-11 Hokkaido Electric Power Co Inc:The Improvement of residual stress of hollow body
JPH0230716A (en) * 1988-07-21 1990-02-01 Hokkaido Electric Power Co Inc:The Method for improving residual stress in circumferential weld zone
WO2014077140A1 (en) * 2012-11-16 2014-05-22 新日鐵住金株式会社 Post-heating treatment device
JP2014101533A (en) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal Post-heat-treatment device
JP2014101534A (en) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal Post-heat-treatment device
US10526674B2 (en) 2012-11-16 2020-01-07 Nippon Steel Corporation Stress-relief heat treatment apparatus

Also Published As

Publication number Publication date
JPH0246654B2 (en) 1990-10-16

Similar Documents

Publication Publication Date Title
US3025596A (en) Braze bonding of concentric tubes and shells and the like
US3520049A (en) Method of pressure welding
JPS5821093A (en) Corrosion-resistant double pipe
JPS5941425A (en) Improvement in residual stress of hollow body
US4612071A (en) Mechanical stress improvement process
JPS60141825A (en) Heat treatment of pipe body having double-pipe part
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
JPH048488B2 (en)
JPS58218391A (en) Circumferential welding method of joint of steel pipes
JPH11320120A (en) Steel pipe local joining method
JPS58167089A (en) Manufacture of clad pipe
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPH0547317B2 (en)
GB2154492A (en) Mechanical stress improvement process
JPS59150674A (en) Joining method of steel pipe
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
RU1822387C (en) Method for manufacturing plated long-measured pipes
JPS5943822A (en) Heat treatment of pipes
RU2643098C2 (en) Method of arc welding of weldolet from austenite steels to pipeline from low-carbon and low-alloy steels
JPS61227133A (en) Heat treatment
JPH07317984A (en) Jointing method for pipe and joint, and pipe for piping
JPH11309587A (en) Butt joining method of metal tube and its device
Nayama et al. Effects of a double sided heating method and its controlling parameters: Development of a residual stress control method for butt-welded pipe joints (1st Report)
JPS61264132A (en) Improvement of residual stress of stainless steel pipe or the like