JPS5819416B2 - Triple pipe manufacturing method - Google Patents

Triple pipe manufacturing method

Info

Publication number
JPS5819416B2
JPS5819416B2 JP4965579A JP4965579A JPS5819416B2 JP S5819416 B2 JPS5819416 B2 JP S5819416B2 JP 4965579 A JP4965579 A JP 4965579A JP 4965579 A JP4965579 A JP 4965579A JP S5819416 B2 JPS5819416 B2 JP S5819416B2
Authority
JP
Japan
Prior art keywords
tube
pipe
inner tube
diameter
triple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4965579A
Other languages
Japanese (ja)
Other versions
JPS55144936A (en
Inventor
吉田俊夫
松井繁朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4965579A priority Critical patent/JPS5819416B2/en
Publication of JPS55144936A publication Critical patent/JPS55144936A/en
Publication of JPS5819416B2 publication Critical patent/JPS5819416B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は例えば化学プラント配管、油井管、油送配管
、熱交換器等に用いられる三重管を製造するに際し中管
に対し内管、外管を相対重層させた状態で該内管内部に
圧力を印加して管を拡張させ膣中、内外管相互を添着接
合させる様にした三重管の製造方法に関するものであり
、特に、上記内管内部に圧力を印加して管を拡張する前
、或は、後に外管全長に対する加熱膨張プロセスと内管
に対する冷却収縮プロセスとを相互に独立事象裡のプロ
セスとして与えておき、而して内管内部に拡管圧力を印
加して内管な拡張させ該内管をして中管、又は該中管を
介して外管に添着させた後膣印加圧力を解放し、その後
外管冷却収縮及び内管加熱膨張工程を介し外管、中管、
内管を緊結一体化する様にした三重管の製造方法に係る
ものである。
Detailed Description of the Invention This invention relates to a state in which an inner pipe and an outer pipe are layered relative to a middle pipe when manufacturing triple pipes used for, for example, chemical plant piping, oil country tubular goods, oil conveyance piping, heat exchangers, etc. The present invention relates to a method for manufacturing a triple tube in which pressure is applied to the inside of the inner tube to expand the tube and bond the inner and outer tubes together in the vagina. Before or after expanding the tube, a heating expansion process for the entire length of the outer tube and a cooling contraction process for the inner tube are given as mutually independent processes, and expansion pressure is applied inside the inner tube. After expanding the inner tube and attaching the inner tube to the middle tube or the outer tube via the middle tube, the pressure applied to the vagina is released, and then the outer tube is cooled and contracted and the inner tube is heated and expanded. tube, middle tube,
This invention relates to a method for manufacturing a triple-layered pipe in which the inner pipe is tightly integrated.

従来より、化学プラント配管、油井管、或は油送管、熱
交換器装着管等に於ては耐圧は勿論のこと防錆、耐蝕等
の性能向上を画るべく二重管、三重管等の複重管が採用
されるに至っており、近時に於ては大量流体輸送等のニ
ーズ増大等に伴ってその重要性も益々大きくなって来て
いる。
Traditionally, double pipes, triple pipes, etc. have been used to improve performance such as not only pressure resistance but also rust prevention and corrosion resistance in chemical plant piping, oil country pipes, oil pipes, heat exchanger installed pipes, etc. Duplex pipes have come to be adopted, and their importance has recently increased as the needs for large-volume fluid transportation have increased.

ところで腐蝕性、不純物等を含有する如き流体に対する
輸送配管が腐蝕性環境下に設置される様な態様に於ては
内管及び外管を、例えば、ステンレス鋼管等の耐蝕材に
より構成させて腐蝕に対処する機能をもたせ中管を、例
えば、炭素鋼管にして耐圧機能をもたせる様な三重管が
考えられる。
By the way, in cases where the transportation piping for fluids that are corrosive or contain impurities, etc. is installed in a corrosive environment, the inner and outer tubes may be made of a corrosion-resistant material such as stainless steel pipes to prevent corrosion. A triple-walled pipe can be considered, which has a pressure-resistant function by making the middle pipe a carbon steel pipe, for example.

而して、該三重管の重要な設計条件としては充分な締め
代を介して外管、中管、内管が緊結一体化されることが
必要不可欠である。
Therefore, as an important design condition for the triple tube, it is essential that the outer tube, middle tube, and inner tube be tightly integrated with each other through a sufficient interference.

蓋し、第1には設置配管内部輸送流体温度と管外部環境
温度とは稼動状態に於て一般に異なっていることが多く
、従って、三重管構成容管の間に充分な熱伝導を生ぜし
めて各管間の温度差を可及的に少くすることが必要であ
り、その場合容管相互は可能な限り強固な圧力で添接固
着されている方が望ましいからである。
Firstly, the temperature of the transport fluid inside the installed piping and the environmental temperature outside the pipe are often different under operating conditions, so sufficient heat conduction between the tubes in the triple-pipe structure must be achieved. This is because it is necessary to reduce the temperature difference between the tubes as much as possible, and in this case, it is desirable that the tubes be bonded and fixed together with as strong a pressure as possible.

又、第2に内管、中管及び外管は前記の如(相互に異材
質であるのが通常であり、従って、熱膨張係数が相違し
、か\る構造では温度変化が生じた場合該容管の熱膨張
、或は、熱収縮の差によって生ずる該容管相互間のずれ
、局部挫屈、応力集中、疲労破壊等のトラブルが発生す
るおそれがあり、これに対処するには所定設計に基づく
充分大きな締め代をもたせることにより出来るだけ3管
を一体的に随伴挙動させる様にする方が良い等の理由が
あるからである。
Secondly, as mentioned above, the inner tube, middle tube, and outer tube are usually made of different materials, so they have different coefficients of thermal expansion, and if a temperature change occurs in such a structure, Differences in thermal expansion or contraction of the tubes may cause problems such as misalignment between the tubes, local buckling, stress concentration, and fatigue failure. This is because it is better to allow the three pipes to behave as one as possible by providing a sufficiently large interference based on the design.

そして、これまで該設計条件に沿う三重管製造技術が種
々案出され、近時3管相互を充分な締め代を介して緊結
させる様なタイプの三重管が開発される様になって来て
おり、その製造方法としては一般に焼きばめ法、液圧拡
管法がある。
Various triple pipe manufacturing techniques have been devised to meet these design conditions, and recently a type of triple pipe that connects three pipes together with a sufficient interference margin has been developed. Generally, the manufacturing methods include shrink fitting method and hydraulic pipe expansion method.

さりながら、該種三重管の在来製造方法は次の様な問題
点があり製造のネックとなっていた。
However, the conventional manufacturing method of the triple layer pipe has the following problems, which have been a bottleneck in manufacturing.

即ち、前者による製造方法に於ける問題点については基
本的に合同管等の各管素材に板厚公差、偏平部等がある
ことが製造上不可避である前提があり、従って、該前提
条件の基で素材焼きばめすることは現実の処理可能温度
差400°〜500℃では不可能である欠点を有すると
いうことである。
In other words, the problem with the former manufacturing method is basically based on the premise that it is unavoidable for manufacturing that each pipe material such as a joint pipe has plate thickness tolerances, flattened parts, etc. This means that shrink-fitting the materials at the base has the disadvantage that it is impossible with the actual processable temperature difference of 400° to 500°C.

これに対処するに各素材管の添接側面に対して予め機械
研削等の手段により鏡面仕上げ等を施して後焼ばめする
ことも原理的には考えられるが、工数が多くか−り、特
に長尺間、それも長尺薄肉管の場合では管全長に亘って
高精度でしかも均一にする必要があり、その様な加工は
技術的にも著るしく困難であるばかりでな(結果的にも
極めてコスト高になる不利点がある。
To deal with this, it is theoretically conceivable to apply a mirror finish to the joint side surface of each material pipe by mechanical grinding or other means before shrink-fitting, but this would require a large number of man-hours. Particularly in the case of long, thin-walled pipes, it is necessary to achieve high precision and uniformity over the entire length of the pipe, and such processing is not only technically extremely difficult (as a result) It also has the disadvantage of being extremely costly.

又、内管、中管、外管相互に所定温度差を与えて挿入嵌
合する際の該温度差を管全長に沿って一定に保持するこ
とが必要になるが、該手段はこれまでの短尺管では可能
であっても長尺管に於てはその条件を満足させる極めて
難しい難点がある。
Furthermore, it is necessary to provide a predetermined temperature difference between the inner tube, middle tube, and outer tube and to maintain the temperature difference constant along the entire length of the tubes when they are inserted and fitted together. Although this is possible with short tubes, it is extremely difficult to satisfy the conditions with long tubes.

他方、後者に於ては第1図に示す様に相互に相対重層可
能な充分な間隙を介して外管1、中管2、内管3を相対
挿入重層する。
On the other hand, in the latter case, as shown in FIG. 1, the outer tube 1, the middle tube 2, and the inner tube 3 are inserted and stacked one on top of the other with a sufficient gap between them so that they can be stacked relative to each other.

この場合該外管1、中管2、内管3の(外径、内径)を
それぞれり、、D’、、D2.D′2、D3.D′3と
する。
In this case, the (outer diameter, inner diameter) of the outer tube 1, middle tube 2, and inner tube 3 are respectively D', D2. D'2, D3. Let it be D'3.

而して、重層後内管3内に所定流体圧を印加して拡管し
ていくと第2図に示す様にA点で内管3は中管2に内接
し更に増圧プロセスを介し内管3、中管2は一体増径拡
管され、B点で外管1に内接し、続いて増圧して0点で
圧力解放することにより内管外径D3はD3からD’Q
に、中管内径D′2外径D2はDl2. Iy2になり
、又外管内径D′、はα1 に変化し内申管3,2間に
締め代−ΔDi、中外管2゜1間に締め代−ΔDo即ち
締め代としては正の量を受る。
After layering, a predetermined fluid pressure is applied inside the inner tube 3 to expand the tube, and as shown in FIG. The tube 3 and the middle tube 2 are integrally expanded in diameter and inscribed in the outer tube 1 at point B, and then the pressure is increased and the pressure is released at point 0, so that the outer diameter D3 of the inner tube changes from D3 to D'Q.
In addition, the inner diameter D'2 of the middle tube and the outer diameter D2 are Dl2. Iy2, and the inner diameter D' of the outer tube changes to α1, and the interference between the inner tubes 3 and 2 is -ΔDi, and the interference between the inner and outer tubes 2゜1 is -ΔDo, that is, the interference is a positive amount. .

しかるに、外管1、中管2内管3との間の素材の応カー
歪の関係が第3図に示す如く、外管1、中管2、内管3
の応力について順次低い場合は上記締め代ΔDi、ΔD
oはプラスになり、即ち、締め代としては負の量となり
、従って、容管、3゜2.1を拡管しても外管1と中管
2との間及び中管2と内管3との間に正の間隙が形成さ
れて締結力が生ぜず、結果的に三重管が製造不能となる
不具合がある。
However, as shown in FIG.
If the stress of
o is positive, that is, the interference is a negative amount, so even if the capacity pipe is expanded by 3°2.1, there will be a gap between the outer pipe 1 and the middle pipe 2, and between the middle pipe 2 and the inner pipe 3. There is a problem in that a positive gap is formed between the two and no fastening force is generated, and as a result, it becomes impossible to manufacture a triple pipe.

換言すれば、該種液圧拡管法によれば外管1の降伏点が
中管2のそれより高く、又、内管3の降伏点が中管のそ
れより高いという材料力学的条件の揃う組合せ、選択の
制約があるというデメリットがある。
In other words, according to the seed hydraulic pipe expansion method, the material mechanical conditions such that the yield point of the outer pipe 1 is higher than that of the middle pipe 2 and the yield point of the inner pipe 3 is higher than that of the middle pipe are met. The disadvantage is that there are restrictions on combinations and selections.

この発明の目的は上記従来技術に基づく三重管の製造方
法に於ける問題点に鑑み、加熱膨張された外管内に相対
挿入されている中管に対して冷却熱収縮されている内管
内に圧力を印加し管を拡管させた後肢外管の熱収縮と内
管の熱膨張によって三重管を製造する様にしたことを要
旨とする優れた三重管の製造方法を提供せんとするもの
である。
The purpose of the present invention is to solve the problems in the method for manufacturing triple-pipe tubes based on the above-mentioned prior art, and to reduce the pressure in the inner tube, which is being cooled and heat-shrinked, with respect to the middle tube, which is inserted relatively into the heat-expanded outer tube. It is an object of the present invention to provide an excellent method for manufacturing a triple-layered tube, the gist of which is to manufacture the triple-layered tube by thermal contraction of the outer tube of the hindlimb and thermal expansion of the inner tube, which is applied to expand the tube.

次に上記目的に沿うこの発明の実施例を第4゜5図を参
照して説明すれば以下の通りである。
Next, an embodiment of the present invention in accordance with the above object will be described below with reference to FIGS. 4-5.

尚、1.2,3図と同一部分については同一符号を付し
て説明するものとする。
Note that the same parts as in Figures 1, 2 and 3 will be described with the same reference numerals.

当該図示実施例に於て2は炭素鋼製の通常の鋼管を素材
とする中管であり平均的板厚公差、偏平部を有し、特別
に機械研削、研磨等の2次加工を行っていないものであ
り、その初期外径及び内径はD2.D′2とされている
ものである。
In the illustrated embodiment, 2 is a medium pipe made of a normal steel pipe made of carbon steel, has an average plate thickness tolerance, a flat part, and is specially subjected to secondary processing such as mechanical grinding and polishing. The initial outer diameter and inner diameter are D2. This is considered to be D'2.

又、1はステンレス製の管を素材とする外管であり、そ
の外径及び内径は初期り、、D’、とされている。
Further, 1 is an outer tube made of a stainless steel tube, and its outer diameter and inner diameter are initially set to D'.

そして、3は同じくステンレス製の管を素材とする内管
であり、その初期外径内径はD3゜D′3 とされてい
る。
The inner tube 3 is also made of stainless steel, and its initial outer and inner diameters are D3°D'3.

而して、当該実施態様に於ては外管1、中管2、内管3
の降伏点がその順に高い様にされてあり、径はDl〉D
′1〉D2〉D′2〉D3〉D′3とされている。
Therefore, in this embodiment, the outer tube 1, the middle tube 2, and the inner tube 3
The yield points of the diameters are set to be higher in that order, and the diameters are Dl〉D
'1>D2>D'2>D3>D'3.

そこで、上記径の大小関係から外管1内に中管2を挿入
すると共に内管3を該中管2内に挿入し第4図の様にセ
ットし、該外管1の周囲にその全長に亘ってコイルヒー
タ4を巻装セットし、所定温度まで加熱すると該外管1
の内径はp′1からD′7.まで増径される。
Therefore, due to the size relationship of the diameters mentioned above, the middle tube 2 is inserted into the outer tube 1, and the inner tube 3 is inserted into the middle tube 2 and set as shown in Fig. 4. When the coil heater 4 is wound and set to a predetermined temperature, the outer tube 1
The inner diameter of p'1 to D'7. The diameter is increased to .

又、内管3の1端に栓体5及び液体供給孔6を有する栓
体7をセットし、圧力媒体兼冷却媒体としての氷水8を
該内管3内に供給すると該内管3の外径D3はD33
まで減径される。
Further, a plug body 7 having a plug body 5 and a liquid supply hole 6 is set at one end of the inner tube 3, and when ice water 8 as a pressure medium and a cooling medium is supplied into the inner tube 3, the outside of the inner tube 3 is Diameter D3 is D33
The diameter is reduced to

そこで、内管3に対する冷却が停止された状態で外管1
に対する加熱も停止し、供給水7を加圧していくと内管
3は第5図イ2口、ハ、二に示す様な増径カーブを描い
て拡管され、まず、口まで増径されると中管2の内側面
に当接し更に加圧されると読口からハに拡管されると共
に中管2も随伴拡管されその外径D2は口′からハ′へ
と増径される。
Therefore, while the cooling of the inner tube 3 is stopped, the outer tube 1
When heating is also stopped and the supply water 7 is pressurized, the inner pipe 3 is expanded drawing a diameter increasing curve as shown in Fig. When it comes into contact with the inner surface of the middle tube 2 and is further pressurized, it is expanded from the opening to C, and the middle tube 2 is also expanded accordingly, and its outer diameter D2 is increased from the opening to C'.

而して、中管2が拡管されてその外径D2がパまで増径
されると外管1の加熱内径D′11に等しくなり、そこ
で更に加圧力を印加し続けると内管3は八から二に増径
され、中管2はノ窃・ら二′に、外管1は口“から二“
に拡管される。
When the inner tube 2 is expanded and its outer diameter D2 is increased to Pa, it becomes equal to the heating inner diameter D'11 of the outer tube 1, and if pressure is continued to be applied there, the inner tube 3 becomes eight. The diameter of the inner tube 2 is increased from 1 to 2, and the outer tube 1 is increased from 2 to 2.
The pipe was expanded to

この様にして3管1,2,3が相互添接されて一体増径
され二、二′、二“に達し接合直径DSになると拡管圧
力を解放し増径を停止する。
In this way, the three pipes 1, 2, and 3 are joined together and integrally increased in diameter to 2, 2', and 2'', and when the joined diameter DS is reached, the expansion pressure is released and the diameter increase is stopped.

そのため、内管3は二からホに縮径しその外径はD′3
3となり、一方、外管1の内径D′、はD′、1から二
“よりボ′に縮径しD′11になる。
Therefore, the inner tube 3 is reduced in diameter from 2 to E, and its outer diameter is D'3.
3, and on the other hand, the inner diameter D' of the outer tube 1 is reduced from D'1 to D'11 to D'11.

そこで、内管3内より排水して大気温状態にすると昇温
状態にされ、その外径は木からへまで拡径され中管2の
加圧解放による本来の縮径内径D//4との間に逆の、
つまり−ΔDiの締め代が形成される。
Therefore, when water is drained from inside the inner pipe 3 and the temperature is brought to ambient temperature, the temperature is raised, and the outer diameter is expanded from the wood to the inner diameter, which is equal to the original reduced inner diameter D//4 due to the release of pressure in the middle pipe 2. Reverse between,
In other words, an interference of -ΔDi is formed.

一方、放置による外管1の自然冷却により該外管1の内
径は前記ホ“からへ“に更に縮径され、Dl、になり前
記加圧力解放による中管2の外径の本来的縮径外径D″
2との間に逆のつまり−ΔDoの締代が形成される。
On the other hand, due to the natural cooling of the outer tube 1 due to the natural cooling of the outer tube 1, the inner diameter of the outer tube 1 is further reduced from the hole to Dl, which is the original reduction in the outer diameter of the inner tube 2 due to the release of the pressurizing force. Outer diameter D''
2, an opposite interference of -ΔDo is formed.

従って3管は該締め代ΔDo、ΔDiを介して緊結添着
1体化される。
Therefore, the three pipes are tightly connected and integrated into one body through the interference margins ΔDo and ΔDi.

尚、この発明の実施例は上記態様に限るものでなく、外
管、中管、内管の降伏点の順が上記実施例とは逆の場合
も実施例とされ、第3図から明らかな様に拡管圧印加解
放後の外管熱収縮、内管熱膨張により−ΔDi、−ΔD
oを得ることが出来る。
The embodiments of the present invention are not limited to the above-mentioned embodiments, and a case where the order of yield points of the outer tube, middle tube, and inner tube is reversed from the above embodiment is also considered as an embodiment, and it is clear from FIG. Similarly, -ΔDi, -ΔD due to thermal contraction of the outer tube and thermal expansion of the inner tube after the application of pressure for expansion is released.
o can be obtained.

又、外管に対する加熱膨張プロセスと内管に対する冷却
収縮プロセスは上記実施例の態様を1つの事象としてい
るに過ぎず、相対重層に先立っても良く、両プロセスの
前後の選択も独立事象として種々の組合せがある。
Further, the heating expansion process for the outer tube and the cooling contraction process for the inner tube are only one event in the embodiment described above, and may be performed prior to relative overlaying, and the selection before and after the two processes can be made in various ways as independent events. There are combinations of

更に、加熱冷却手段も適宜種々のものが採用可能であり
、拡管圧力も種々の手段が可能である。
Furthermore, various heating and cooling means can be employed as appropriate, and various means can also be used for the tube expansion pressure.

上記の様にこの発明によれば、中管に対して内外管を相
対重層させ、その重層プロセスの前後のいずれかに於て
外管に対する加熱膨張プロセスと内管に対する冷却収縮
プロセスを相互に独立プロセスとして与える様にしたこ
とにより、まず、外中内3管の相対重層嵌合の自由度が
高まる効果があり、機械的研削等の2次加工をしない素
管のままの重層が自在に行える様になり、所望長尺管の
嵌合も所定に行える効果がある。
As described above, according to the present invention, the inner and outer tubes are layered relative to the middle tube, and either before or after the layering process, the heating expansion process for the outer tube and the cooling contraction process for the inner tube are performed independently of each other. By applying this as a process, firstly, there is an effect of increasing the degree of freedom in the relative overlapping fitting of the three inner and outer pipes, and it is possible to freely perform overlapping of the raw pipes without secondary processing such as mechanical grinding. This has the effect that a desired long tube can be fitted in a predetermined manner.

そして、締め代を得る拡管応力も拡管圧力印加前に予め
コントロールすることが出来る効果もある。
There is also the effect that the tube expansion stress for obtaining the interference can be controlled in advance before the tube expansion pressure is applied.

而して、内管に拡管圧力を印加して管を拡張せしめた後
外管を熱収縮させ内管を熱膨張させることにより確実に
締め代を各管間に亘って生じさせることが可能になり、
それも、上記研削等の2次加工処理をせず、板厚公差、
偏平部を有したま5の一般市販鋼管等を使用出来、素材
管使用上の経済的メリットも極めて太きい優れた効果が
ある。
Thus, by applying expansion pressure to the inner tube to expand the tube, and then thermally shrinking the outer tube and thermally expanding the inner tube, it is possible to reliably create a tightness between each tube. Become,
Also, without secondary processing such as the above-mentioned grinding, the plate thickness tolerance,
General commercially available steel pipes with flat parts can be used, and the economical benefits of using the material pipes are extremely large and excellent.

更に、外管、中管、内管の降伏点の順を問わない組み合
せが可能であるため材料強度の選択制限が無く確実に締
め代が得られるという従来方法には全くない顕著な効果
を奏する。
Furthermore, since it is possible to combine the outer, middle, and inner tubes in any order of their yield points, there are no restrictions on material strength selection, and the tightness can be reliably obtained, a remarkable effect not found in conventional methods. .

更に又、外管に対する加熱温度、内管に対する冷却温度
を調整自在に変化させることが可能であるため締め代の
自由設計を介して緊結締着力が自由にコントロール出来
るという効果もある。
Furthermore, since it is possible to adjustably change the heating temperature for the outer tube and the cooling temperature for the inner tube, there is an effect that the tightening force can be freely controlled through free design of the interference.

加えて内外管に対する加熱冷却は全長に亘り均一に与え
ることが出来るため、短管のみならず、長尺間に対して
も内外の熱膨張収縮は均一に行われ、中管に対して均一
な締付けが形成され、結果的に製品精度にバラツキが出
す、歩留りも向上するというメリットもある。
In addition, heating and cooling can be applied uniformly to the inner and outer tubes over the entire length, so the thermal expansion and contraction of the inner and outer tubes is uniform not only for short tubes but also for long tubes, and uniform for medium tubes. There is also the advantage that tightness is formed, which results in variations in product accuracy and improves yield.

そして、この発明の方法を用いることにより四重管、五
重管等の多重管の製造をも発展的にすることが出来る応
用的利点もある。
Further, by using the method of the present invention, there is an advantage in application that manufacturing of multiple tubes such as quadruple tubes and quintuple tubes can be developed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術に基づく三重管製造方法に於げる管重
層断面説明図、第2図は該従来技術に基づく3管の直径
に対する応力、拡管圧力関係説明図、第3図は従来技術
では製造不可能である三重管の直径応力説明図、第4,
5図はこの発明の1実施例の説明図であり、第4図は製
造工程概略断面説明図、第5図は直径と応力関係説明図
である。 1・・・・・・外管、2・・・・・・中管、3・・・・
・・内管。
Fig. 1 is an explanatory diagram of a pipe layered cross section in a triple pipe manufacturing method based on the prior art, Fig. 2 is an explanatory diagram of the relationship between stress and expansion pressure for the three pipe diameters based on the prior art, and Fig. 3 is a diagram of the prior art. Diameter stress explanatory diagram of triple pipe, which cannot be manufactured with
FIG. 5 is an explanatory view of one embodiment of the present invention, FIG. 4 is a schematic cross-sectional view of the manufacturing process, and FIG. 5 is an explanatory view of the relationship between diameter and stress. 1...outer pipe, 2...middle pipe, 3...
...Inner tube.

Claims (1)

【特許請求の範囲】[Claims] 1 外管、中管及び内管を相対重層して該内管を拡管し
て嵌合度を有する様にした三重管の製造方法において、
上記中管に対して内管及び外管を相対重層させ、該相対
重層プロセスの前後のいずれかにて該外管に対する加熱
膨張プロセスと上記内管に対する冷却収縮プロセスとを
相互に独立プロセスとして与え、而して該内管の内部に
圧力を印加して該内管を拡管させた後上記外管を熱収縮
し内管を熱膨張させることによって外管、中管、内管を
緊着締結する様にしたことを特徴とする三重管の製造方
法。
1. A method for manufacturing a triple-layered pipe in which an outer pipe, a middle pipe, and an inner pipe are layered relatively, and the inner pipe is expanded to have a degree of fitting,
An inner tube and an outer tube are layered relative to the middle tube, and a heating expansion process for the outer tube and a cooling contraction process for the inner tube are performed as mutually independent processes either before or after the relative layering process. Then, after applying pressure to the inside of the inner tube to expand the inner tube, the outer tube is thermally shrunk and the inner tube is thermally expanded to tightly fasten the outer tube, middle tube, and inner tube. A method for manufacturing a triple pipe, characterized by:
JP4965579A 1979-04-24 1979-04-24 Triple pipe manufacturing method Expired JPS5819416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4965579A JPS5819416B2 (en) 1979-04-24 1979-04-24 Triple pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4965579A JPS5819416B2 (en) 1979-04-24 1979-04-24 Triple pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPS55144936A JPS55144936A (en) 1980-11-12
JPS5819416B2 true JPS5819416B2 (en) 1983-04-18

Family

ID=12837196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4965579A Expired JPS5819416B2 (en) 1979-04-24 1979-04-24 Triple pipe manufacturing method

Country Status (1)

Country Link
JP (1) JPS5819416B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861917A (en) * 1981-10-08 1983-04-13 Kawasaki Heavy Ind Ltd Manufacture of double-ply pipe
JPS5861919A (en) * 1981-10-08 1983-04-13 Kawasaki Heavy Ind Ltd Manufacture of double-ply tube
JPS6250015A (en) * 1985-08-30 1987-03-04 Kobe Steel Ltd Manufacture of multilayer cylinder
BR102013021663B1 (en) * 2013-08-23 2020-08-25 Vallourec Soluções Tubulares Do Brasil S.A. process for the production of expansion coated tube and coated tube produced by this process

Also Published As

Publication number Publication date
JPS55144936A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
EP0015712A1 (en) Method of producing multiple-wall composite pipes
US4018634A (en) Method of producing high strength steel pipe
JPH01195026A (en) Method and device for manufacturing composite tube
US3831246A (en) Method of fabricating a metal tubular heat exchanger having internal passages therein
JPS5819416B2 (en) Triple pipe manufacturing method
JPS62117726A (en) Manufacture of multi-layer tube
US3112558A (en) Finned tubing manufacture
JPS5855847B2 (en) Double tube manufacturing method
JPS62101328A (en) Double pipe producing method
JPH01154818A (en) Manufacture of duplex tube
JPS5813249B2 (en) Manufacturing method of cross-fin type heat exchanger
US2574920A (en) Apparatus for making plywood tubing
JPS644855B2 (en)
JPS6154489B2 (en)
JPS5857253B2 (en) How to line odd-shaped materials
JPH0576385B2 (en)
JPS62104634A (en) Double pipe production
JPS58184073A (en) Manufacture of welded tube
JPS631176B2 (en)
JPS6049818A (en) Apparatus for producing tight double-layered pipe
JPS6076290A (en) Production of clad steel pipe
JPH01118309A (en) Corrosion resistant, abrasion resistant multi-layer pipes of segments and its manufacture
JPH0545330B2 (en)
JPS6234630A (en) Lining pipe and its manufacture
JPS6137015B2 (en)