JPH0787736A - Series resonance converter - Google Patents

Series resonance converter

Info

Publication number
JPH0787736A
JPH0787736A JP5252519A JP25251993A JPH0787736A JP H0787736 A JPH0787736 A JP H0787736A JP 5252519 A JP5252519 A JP 5252519A JP 25251993 A JP25251993 A JP 25251993A JP H0787736 A JPH0787736 A JP H0787736A
Authority
JP
Japan
Prior art keywords
current
capacitor
series
resonance
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5252519A
Other languages
Japanese (ja)
Other versions
JP3214679B2 (en
Inventor
Yasuo Kii
康夫 木井
Yoshio Suzuki
義雄 鈴木
Katsuhiko Yamamoto
克彦 山本
Koichi Tanaka
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Origin Electric Co Ltd
Priority to JP25251993A priority Critical patent/JP3214679B2/en
Publication of JPH0787736A publication Critical patent/JPH0787736A/en
Application granted granted Critical
Publication of JP3214679B2 publication Critical patent/JP3214679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To prevent the operation frequency of a series resonance converter from changing greatly while reducing its switching loss even when its output frequency has lowered. CONSTITUTION:A series resonance converter is provided with a current transformer 41 in a resonance current route. The secondary side of the current transformer is connected to input terminals 3, 5 through a rectifier circuit 43, auxiliary switching element FET 45, and diode 47. When the output voltage is normal, the auxiliary switching element FET 45 is turned on to perform ordinary operation. When the output voltage lowers and the resonance current I has a longer trailing, the auxiliary switching element FET 45 is turned off to feed back part of the energy of the resonance current I to an input DC power supply 1, to reduce the current to zero quickly, thereby softly turning off the main switching elements IGBT 17 and 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,動作周波数を大きく変
えることなく定電圧制御できる直列共振コンバータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a series resonant converter capable of constant voltage control without largely changing the operating frequency.

【0002】[0002]

【従来技術】直列共振コンバータはインダクタとコンデ
ンサとの直列共振回路と,半導体スイッチング素子で構
成されて,スイッチング素子は共振電流がゼロを横切る
時刻を検出して,その時刻でオフさせるので,スイッチ
ング損失および不要輻射電磁波が著しく減少する特徴を
もっている。
2. Description of the Related Art A series resonance converter is composed of a series resonance circuit of an inductor and a capacitor and a semiconductor switching element. The switching element detects a time when a resonance current crosses zero and turns off at that time, so that a switching loss occurs. Also, it has a feature that the unnecessary radiation electromagnetic waves are significantly reduced.

【0003】従来のコンデンサ電圧クランプ形直列共振
コンバータとしては,例えば図4に示すようなものがあ
る。この図にしたがって説明すると,主回路は,コンデ
ンサ7と9とが直列接続され,またスイッチング素子で
あるIGBT17と19とが直列接続されて,いわゆるハーフブ
リッジ回路を形成しており,このハーフブリッジ回路の
各アームの中点にインダクタ15と変流器39の一次巻線と
変圧器25の一次巻線とが直列に接続される。変圧器25の
二次側からはダイオード27と29と平滑用のコンデンサ31
とを経て出力端子33と35との間に直流出力が発生する。
An example of a conventional capacitor voltage clamp type series resonance converter is shown in FIG. Explaining according to this figure, the main circuit has capacitors 7 and 9 connected in series, and switching elements IGBT17 and 19 are connected in series to form a so-called half bridge circuit. The inductor 15, the primary winding of the current transformer 39, and the primary winding of the transformer 25 are connected in series at the midpoint of each arm of the. From the secondary side of the transformer 25, diodes 27 and 29 and a smoothing capacitor 31
A DC output is generated between the output terminals 33 and 35 via.

【0004】各スイッチング素子のオン信号について
は,出力端子33と35の間の電圧を検出して定電圧出力と
なるように,制御回路37内でオン信号を発生する。ま
た,オフ信号については共振回路の電流は変流器39で検
出されて制御回路37に送られて,その検出値がゼロを横
切る時刻でオフ信号を発生する。つまりオフから次のオ
ンまでの時間を制御する繰り返し周波数の制御を行って
いる。
Regarding the ON signal of each switching element, the ON signal is generated in the control circuit 37 so that the voltage between the output terminals 33 and 35 is detected and a constant voltage output is obtained. Regarding the OFF signal, the current of the resonance circuit is detected by the current transformer 39 and sent to the control circuit 37, and the OFF signal is generated at the time when the detected value crosses zero. That is, the repetition frequency is controlled to control the time from off to next on.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,このよ
うな従来のコンデンサ電圧クランプ形直列共振コンバー
タにあっては,出力電圧が低下し,結果として主変圧器
25の電圧が下がると,出力に必要な電力も小さくて済む
ため,共振電流についてはその一部は余剰エネルギーと
なり,主スイッチング素子のIGBT17のオンしているとき
はIGBT17⇒変圧器25⇒インダクタ15⇒ダイオード11⇒IG
BT17のループで流れ続け,ゼロになるまでに相当に時間
がかかることになる。このため動作周波数は下がり,騒
音の発生や制御困難になることがあり,主スイッチング
素子のIGBT17の電流がゼロにならなくても強制的にター
ンオフすることが必要であった。しかし,強制ターンオ
フを行うと主スイッチング素子の損失と必要な耐圧およ
び発生する不要輻射電磁波が大きくなるという問題があ
った。
However, in such a conventional capacitor voltage clamp type series resonant converter, the output voltage is lowered, and as a result, the main transformer is used.
When the voltage of 25 drops, the power required for output is also small, so part of the resonance current becomes excess energy, and when the main switching element IGBT17 is on, IGBT17⇒transformer25⇒inductor15. ⇒Diode 11 ⇒IG
It will continue to flow in the loop of BT17, and it will take a considerable time to reach zero. As a result, the operating frequency may decrease, noise may be generated, and control may become difficult. For this reason, it was necessary to forcibly turn off the IGBT17, which is the main switching element, even if the current did not reach zero. However, when forced turn-off is performed, there is a problem that the loss of the main switching element, the required breakdown voltage, and the generated unwanted electromagnetic radiation increase.

【0006】本発明は,直列共振コンバータにおいて低
出力電圧においても,動作周波数を大きく変えることな
く主スイッチング素子をソフトにオフできる回路を得る
ことを課題とする。
It is an object of the present invention to obtain a circuit capable of softly turning off the main switching element in a series resonance converter even at a low output voltage without largely changing the operating frequency.

【0007】[0007]

【課題を解決するための手段】本発明はこの課題を解決
するために,コンデンサ電圧クランプ形直列共振コンバ
ータにおいて,共振電流の通流点に変流器を挿入し,出
力電圧が低下したときに共振電流の一部をこの変流器を
通して入力電源側に帰還することを提案するものであ
る。
In order to solve this problem, the present invention provides a capacitor voltage clamp type series resonance converter in which a current transformer is inserted at the current passing point of the resonance current and when the output voltage drops. It is proposed that a part of the resonance current is fed back to the input power source side through this current transformer.

【0008】[0008]

【実施例】図1により,本発明にかかる直列共振コンバ
ータを説明する。このコンバータは直流電源1が入力端
子3と5との間に接続され,変換出力は出力端子33と35
との間に発生するものである。一次側については,コン
デンサ7にはクランプ用のダイオード11が並列接続さ
れ,コンデンサ9にはクランプ用のダイオード13が並列
接続されてこれらのコンデンサ7と9とは直列接続され
て入力端子3,5間に接続される。また,このコンバー
タの主スイッチング素子であるIGBT17と19とが直列接続
され,その両端は入力端子3,5間に接続される。これ
らIGBT17と19との相互接続点とコンデンサ7と9との相
互接続点との間には変圧器25の一次巻線25a と,変流器
39の一次巻線と,インダクタ15と変流器41の一次巻線と
が直列に接続される。変圧器25の二次巻線25b と25c か
らはそれぞれダイオード27と29とによりセンタタップ両
波整流回路を経て,次に平滑用のコンデンサ31を経て,
出力端子33と35とに接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A series resonance converter according to the present invention will be described with reference to FIG. In this converter, the DC power supply 1 is connected between the input terminals 3 and 5, and the conversion output is the output terminals 33 and 35.
It occurs between and. On the primary side, a clamping diode 11 is connected in parallel to the capacitor 7, a clamping diode 13 is connected in parallel to the capacitor 9, and these capacitors 7 and 9 are connected in series to input terminals 3, 5 Connected in between. Further, IGBTs 17 and 19 which are main switching elements of this converter are connected in series, and both ends thereof are connected between input terminals 3 and 5. Between the interconnection point of these IGBTs 17 and 19 and the interconnection point of capacitors 7 and 9, a primary winding 25a of a transformer 25 and a current transformer
The primary winding of 39, the inductor 15, and the primary winding of the current transformer 41 are connected in series. From the secondary windings 25b and 25c of the transformer 25, through the center tap double-wave rectification circuit by the diodes 27 and 29, respectively, and then through the smoothing capacitor 31,
Connected to output terminals 33 and 35.

【0009】変流器41の二次巻線はブリッジ形整流回路
43の交流側端子に接続される。このブリッジ形整流回路
43の直流側端子についてはプラス側は補助スイッチング
素子であるFET45 のドレイン電極に接続されるとともに
ダイオード47を介して入力端子3に接続され,マイナス
側はFET45 のソース電極に接続されるとともに入力端子
5に接続される。
The secondary winding of the current transformer 41 is a bridge type rectifier circuit.
It is connected to the AC side terminal of 43. This bridge type rectifier circuit
Regarding the DC side terminal of 43, the positive side is connected to the drain electrode of FET45, which is an auxiliary switching element, and is also connected to the input terminal 3 via the diode 47, and the negative side is connected to the source electrode of FET45 and the input terminal. Connected to 5.

【0010】主スイッチング素子のIGBT17とIGBT19はそ
れぞれ駆動回路21と23で高周波でオンオフ駆動される。
そしてこれら駆動回路21と23は制御回路37の信号で制御
される。出力電圧を安定化するため,出力端子33と35と
の間の検出電圧を制御回路37に送り,主スイッチング素
子のIGBT17とIGBT19のオンのタイミングを決定する信号
を発生させる。また変流器39の二次巻線から得られる電
流検出信号を制御回路37に接続して,主スイッチング素
子のIGBT17とIGBT19のオフのタイミングを決定する信号
を発生する。また制御回路37からは,補助スイッチング
素子のFET45 へもオン・オフ信号を供給する。
The main switching elements IGBT17 and IGBT19 are driven on / off at high frequencies by drive circuits 21 and 23, respectively.
The drive circuits 21 and 23 are controlled by the signal from the control circuit 37. In order to stabilize the output voltage, the detection voltage between the output terminals 33 and 35 is sent to the control circuit 37 to generate a signal that determines the ON timing of the main switching elements IGBT17 and IGBT19. In addition, the current detection signal obtained from the secondary winding of the current transformer 39 is connected to the control circuit 37 to generate a signal that determines the OFF timing of the IGBT17 and the IGBT19 of the main switching elements. The control circuit 37 also supplies an ON / OFF signal to the FET 45 of the auxiliary switching element.

【0011】[0011]

【出力電圧正常時の動作説明】出力電圧正常時,つまり
検出電圧が設定値より上にあるときは,制御回路37から
発生する信号は,補助スイッチング素子のFET45 をオン
させる。FET45 がオンのときは変流器41の一次と二次の
巻数比を1:nとすると変流器41の2次側には主共振電
流の1/nがFET45 のドレイン・ソース間を通して流れ
る。変流器41の2次側が短絡された形となっており,こ
こで消費されるエネルギーは極めて小さいので共振回路
の動作にはほとんど影響を与えない。このときの波形は
図2に示すように共振回路の固有周期の半期間を休止期
間を挟みながら進行して行く。
[Description of Operation when Output Voltage is Normal] When the output voltage is normal, that is, when the detected voltage is higher than the set value, the signal generated from the control circuit 37 turns on the FET 45 of the auxiliary switching element. When the FET45 is on and the turns ratio of the primary and secondary of the current transformer 41 is 1: n, 1 / n of the main resonance current flows through the drain and source of the FET45 on the secondary side of the current transformer 41. . Since the secondary side of the current transformer 41 is short-circuited and the energy consumed here is extremely small, it has almost no effect on the operation of the resonant circuit. As shown in FIG. 2, the waveform at this time proceeds in a half period of the natural period of the resonant circuit with a rest period interposed.

【0012】[0012]

【出力電圧が低いときの動作説明】深い垂下領域や低出
力電圧時には,共振回路の消費エネルギーが少ないの
で,主スイッチング素子のIGBT17(または19,以下同
じ)の電流Iの裾引きが長くなる(図3a参照)。この
電流Iの裾引きが長くなって,IGBT17のオンよりある一
定時間τ1 を過ぎてもゼロにならないときは時刻t1で補
助スイッチング素子のFET 45をオフさせる。こうすると
変流器41の2次電流は変流器41⇒整流器43⇒ダイオード
47⇒直流電源1⇒整流器43⇒変流器41と流れて,エネル
ギーを入力側の直流電源1に帰還させる。またFET45 が
オフすることにより,変流器41の二次側は,整流回路43
とダイオード47を介して入力側の直流電源1の電圧に固
定される。したがって変流器41の一次側から二次側への
帰還電力はEi×I/n(ここにEiは直流電源1の電
圧,Iは主変圧器25の電流,nは変流器41の巻数比)と
なり,IGBT17の電流Iは急速に減少して,時刻t2でゼロ
となる。(図3aの破線で示す波形の従来の裾引きが長
い場合と比較するとこの作用が理解される。)変流器39
で主スイッチング素子の電流がゼロになったことを確認
し(この場合はFET45のオンよりτ2 時間後)主スイッ
チング素子17をオフさせる。そして時刻t2とt3との間で
補助スイッチング素子のFET45 を再びオンさせる。ここ
で期間(τ1+τ2)の値は可聴周波数の下限の周期よ
り短い値の範囲で選ぶ必要がある。以上述べたように,
主スイッチング素子を強制的にターンオフするよりもソ
フトにその電流をオフさせることができる。
[Explanation of operation when output voltage is low] In the deep drooping region and low output voltage, the energy consumption of the resonant circuit is small, so the tailing of the current I of the IGBT17 (or 19, the same applies hereinafter) of the main switching element becomes long ( See Figure 3a). When the tail of this current I becomes longer and does not become zero even after a certain time τ1 from when the IGBT 17 is turned on, the FET 45 of the auxiliary switching element is turned off at time t1. By doing this, the secondary current of the current transformer 41 changes from the current transformer 41 to the rectifier 43 to the diode.
47 ⇒ DC power supply 1 ⇒ Rectifier 43 ⇒ Current transformer 41 and energy is returned to the input side DC power supply 1. In addition, since the FET 45 is turned off, the secondary side of the current transformer 41 is connected to the rectifier circuit 43.
The voltage of the DC power supply 1 on the input side is fixed via the diode 47. Therefore, the feedback power from the primary side to the secondary side of the current transformer 41 is Ei × I / n (where Ei is the voltage of the DC power supply 1, I is the current of the main transformer 25, and n is the number of turns of the current transformer 41). Ratio), and the current I of the IGBT 17 rapidly decreases to zero at time t2. (This effect is understood by comparison with the case where the conventional tailing of the waveform shown by the broken line in FIG. 3a is long.) Current transformer 39
Then, it is confirmed that the current of the main switching element has become zero (in this case, τ2 hours after the turning on of the FET 45), the main switching element 17 is turned off. Then, between the times t2 and t3, the FET 45 of the auxiliary switching element is turned on again. Here, the value of the period (τ1 + τ2) needs to be selected within a range of values shorter than the lower limit cycle of the audible frequency. As mentioned above,
The current can be turned off softer than forcibly turning off the main switching element.

【0013】[0013]

【発明の効果】本発明は以上述べたような特徴を有し,
変流器を介して共振回路の余剰エネルギーを入力電源に
帰還するようにしたため,主スイッチング素子の電流を
ソフトにゼロにでき,スイッチング素子の損失,耐圧お
よびオフ時の不要輻射電磁波を軽減できるという効果が
得られる。
The present invention has the features described above,
Since the surplus energy of the resonant circuit is fed back to the input power source through the current transformer, the current of the main switching element can be softened to zero, and the loss of the switching element, breakdown voltage, and unnecessary radiated electromagnetic waves when turned off can be reduced. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる直列共振コンバータの一実施例
を示す図である。
FIG. 1 is a diagram showing an embodiment of a series resonance converter according to the present invention.

【図2】図1に示す直列共振コンバータの動作波形であ
って,出力電圧正常時の各部の波形を示す。
FIG. 2 shows operation waveforms of the series resonant converter shown in FIG. 1, showing waveforms of various parts when the output voltage is normal.

【図3】図1に示す直列共振コンバータの動作波形であ
って,出力電圧の低いときの各部の波形を示す。
FIG. 3 shows operation waveforms of the series resonant converter shown in FIG. 1, showing waveforms of respective portions when the output voltage is low.

【図4】従来の直列共振コンバータの一例を示す。FIG. 4 shows an example of a conventional series resonant converter.

【符号の説明】[Explanation of symbols]

1…直流電源 3,5…入力端子 7,9…コン
デンサ 11,13…ダイオード 15…インダクタ 17,19…IG
BT 21,23…駆動回路 25…変圧器 27 29…ダ
イオード 31…コンデンサ 33 35…出力端子 37…制御回
路 39…変流器 41…変流器 43…ダイオード 45…FET
47…ダイオード
1 ... DC power supply 3, 5 ... Input terminal 7, 9 ... Capacitor 11, 13 ... Diode 15 ... Inductor 17, 19 ... IG
BT 21, 23 ... Driving circuit 25 ... Transformer 27 29 ... Diode 31 ... Capacitor 33 35 ... Output terminal 37 ... Control circuit 39 ... Current transformer 41 ... Current transformer 43 ... Diode 45 ... FET
47 ... Diode

フロントページの続き (72)発明者 山本 克彦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 田中 孝一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front page continuation (72) Inventor Katsuhiko Yamamoto 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Koichi Tanaka 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Phone Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】共振コンデンサの両端にダイオードを並列
に接続しコンデンサの電圧が逆方向とならないように抑
制するコンデンサ電圧クランプ形直列共振コンバータに
おいて,共振電流の通流点に変流器を挿入し,主変圧器
の電圧が低下したときに共振電流の一部を前記の変流器
を通して入力電源側に帰還することを特徴とする直列共
振コンバータ。
1. A capacitor voltage clamp type series resonance converter in which a diode is connected in parallel to both ends of a resonance capacitor to prevent the voltage of the capacitor from being in the opposite direction, and a current transformer is inserted at a current passing point of the resonance current. , A series resonance converter characterized in that when the voltage of the main transformer drops, a part of the resonance current is fed back to the input power source side through the current transformer.
【請求項2】一対の入力端子と;この一対の入力端子に
両端を接続されたブリッジ回路であって,第1のコンデ
ンサとこれに並列接続された第1のダイオードと,第2
のコンデンサとこれに並列接続された第2のダイオード
とが直列接続されたアームと,第1のスイッチング素子
と第2のスイッチング素子とが直列接続されたアームと
からなるブリッジ回路と;このブリッジ回路の各アーム
の中点間に接続されたインダクタとからなり,このイン
ダクタに流れる共振電流から出力を得る直列共振コンバ
ータにおいて:前記共振電流の経路に変流器を設け,こ
の変流器より前記一対の入力端子へ接続する帰還回路を
備えてなることを特徴とする直列共振コンバータ。
2. A pair of input terminals; a bridge circuit having both ends connected to the pair of input terminals, wherein a first capacitor, a first diode connected in parallel therewith, and a second capacitor.
Bridge circuit composed of an arm in which a second capacitor connected in series with a second capacitor connected in parallel with the above capacitor, and an arm in which a first switching element and a second switching element are connected in series; In a series resonant converter that consists of an inductor connected between the midpoints of the arms of the, and obtains output from the resonant current flowing through the inductor: A current transformer is provided in the path of the resonant current, and A series resonance converter comprising a feedback circuit connected to the input terminal of the.
【請求項3】前記帰還回路の作動について,前記共振電
流の各周期の通流期間が設定値τ1を越えたときに作動
させることを特徴とする請求項2記載の直列共振コンバ
ータ。
3. The series resonance converter according to claim 2, wherein the feedback circuit is operated when the conduction period of each cycle of the resonance current exceeds a set value τ1.
JP25251993A 1993-09-14 1993-09-14 Series resonant converter Expired - Fee Related JP3214679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25251993A JP3214679B2 (en) 1993-09-14 1993-09-14 Series resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25251993A JP3214679B2 (en) 1993-09-14 1993-09-14 Series resonant converter

Publications (2)

Publication Number Publication Date
JPH0787736A true JPH0787736A (en) 1995-03-31
JP3214679B2 JP3214679B2 (en) 2001-10-02

Family

ID=17238503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25251993A Expired - Fee Related JP3214679B2 (en) 1993-09-14 1993-09-14 Series resonant converter

Country Status (1)

Country Link
JP (1) JP3214679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993922A (en) * 1995-09-26 1997-04-04 Nec Corp Resonance-type dc-dc converter
JP2017028987A (en) * 2015-07-23 2017-02-02 ゼネラル・エレクトリック・カンパニイ Circuits and methods for synchronous rectification in resonant converters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993922A (en) * 1995-09-26 1997-04-04 Nec Corp Resonance-type dc-dc converter
JP2017028987A (en) * 2015-07-23 2017-02-02 ゼネラル・エレクトリック・カンパニイ Circuits and methods for synchronous rectification in resonant converters

Also Published As

Publication number Publication date
JP3214679B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
EP1120896B1 (en) Resonant power converter
US6366476B1 (en) Switching power supply apparatus with active clamp circuit
US5708571A (en) Synchronous rectifying circuit of an active clamping type with less driving loss and less continuity loss
JPH10341575A (en) Partial resonance series converter with improved waveform factor and reduced electromagnetic interference
US5475580A (en) Power supply circuit
KR20070064654A (en) Power converter
US6185111B1 (en) Switching power supply apparatus
JP2002101655A (en) Switching power supply device
US6900996B2 (en) Method and apparatus for controlling a DC-DC converter
US7596003B2 (en) Electric power converter
US6243275B1 (en) Dc to dc power converter using synchronously switched switches
JPH07123717A (en) Switching power unit
JPH08154379A (en) Dc power supply device
JP3214679B2 (en) Series resonant converter
JP3263751B2 (en) Switching power supply
JPH07135769A (en) Dc resonance converter
JP4430188B2 (en) Resonant power supply
JP3493273B2 (en) Power factor improvement circuit of three-phase rectifier
JP3235755B2 (en) Converter device
JPH0884473A (en) Dc power supply
JPH10136646A (en) Synchronous rectifier
JP3163655B2 (en) Inverter device
JP3419343B2 (en) DC-DC converter
JP2000341945A (en) Ringing choke converter circuit
JP2001086750A (en) Power-supply unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees