JPH07135769A - Dc resonance converter - Google Patents

Dc resonance converter

Info

Publication number
JPH07135769A
JPH07135769A JP30336493A JP30336493A JPH07135769A JP H07135769 A JPH07135769 A JP H07135769A JP 30336493 A JP30336493 A JP 30336493A JP 30336493 A JP30336493 A JP 30336493A JP H07135769 A JPH07135769 A JP H07135769A
Authority
JP
Japan
Prior art keywords
series
resonance
current
load
switching elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30336493A
Other languages
Japanese (ja)
Other versions
JP3266389B2 (en
Inventor
Kiyotsugu Ozu
清嗣 小津
Katsuhiko Yamamoto
克彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP30336493A priority Critical patent/JP3266389B2/en
Publication of JPH07135769A publication Critical patent/JPH07135769A/en
Application granted granted Critical
Publication of JP3266389B2 publication Critical patent/JP3266389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To avoid an unstable operation caused by the decline of an operation frequency over a whole load range by a method wherein a frequency control is performed in a heavy load range and a PWM control is performed in a light load range. CONSTITUTION:When a load resistance 28 is small, a voltage is controlled by a frequency control performed by switching. A resonance current is made to flow by the on-off operations of main switching devices 11-14. The resonance current is carried by transformers 19 and 20 and converted into the secondary currents of the respective transformers 19 and 20 which are carried by the load resistance 28 as a common load current. If the load resistance 28 is increased, the switching operation frequency is declined. When the frequency becomes close to an audio frequency range, the control is switched to a PWM control. That is, while the resonance current is carried continuously, auxiliary switching devices 29-32 are turned on to apply the resonance current to the primary windings of the transformers 19 and 20 for required periods. As a result, the on-periods are controlled and the voltage control by PWM is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源等に
適用される直列共振コンバータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a series resonant converter applied to a switching power supply or the like.

【0002】[0002]

【従来の技術】従来の直列共振コンバータの回路構成の
一例を図3に示す。例えばMOSFETなどの2個の主
スイッチング素子11,12が直列接続され1組のブリ
ッジ回路が構成され、別に2個の主スイッチング素子1
3,14が直列接続され、もう1組のブリッジ回路が構
成され、各々のブリッジ回路が直流電源10に接続され
て、いわゆるフルブリッジ回路が構成されている。
2. Description of the Related Art FIG. 3 shows an example of a circuit configuration of a conventional series resonance converter. For example, two main switching elements 11 and 12 such as MOSFETs are connected in series to form a set of bridge circuits, and two main switching elements 1 are separately provided.
3, 14 are connected in series to form another set of bridge circuits, and each bridge circuit is connected to the DC power supply 10 to form a so-called full bridge circuit.

【0003】主スイッチング素子11,12の接続点
と、主スイッチング素子13,14の接続点間にそれぞ
れのトランス19,20の一次巻線の一端が接続され、
トランス19,20の他端間に共振インダクタンス21
と共振コンデンサ22が接続されている。
One ends of the primary windings of the transformers 19 and 20 are connected between the connection points of the main switching elements 11 and 12 and the connection points of the main switching elements 13 and 14, respectively.
A resonance inductance 21 is provided between the other ends of the transformers 19 and 20.
Is connected to the resonance capacitor 22.

【0004】共振インダクタンス21と共振コンデンサ
22の両端には、2組のブリッジ回路に対応して、主ス
イッチング素子11,12及び13,14がOFFの期
間エネルギーを直流電源10に帰還する方向に、帰還ダ
イオード15,16の直列回路と帰還ダイオード17,
18の直列回路が直流電源10に接続されている。
At both ends of the resonance inductance 21 and the resonance capacitor 22, corresponding to two sets of bridge circuits, energy is fed back to the DC power supply 10 while the main switching elements 11, 12 and 13, 14 are OFF. A series circuit of the feedback diodes 15 and 16 and the feedback diode 17,
A series circuit of 18 is connected to the DC power supply 10.

【0005】又、トランス19,20の二次巻線にはそ
れぞれ整流用ダイオード23,24及び25,26が全
波整流回路として構成され、各々の出力が並列接続さ
れ、平滑コンデンサ27及び負荷抵抗28が接続されて
いる。
Further, rectifying diodes 23, 24 and 25, 26 are respectively constructed as full-wave rectifying circuits in the secondary windings of the transformers 19, 20, each output is connected in parallel, and a smoothing capacitor 27 and a load resistor are connected. 28 is connected.

【0006】従来技術の直列共振コンバータは次の様な
動作をする。主スイッチング素子11と主スイッチング
素子14をターンオンさせると、直流電源10−主スイ
ッチング素子11−トランス19の一次巻線−共振イン
ダクタンス21−共振コンデンサ22−トランス20の
一次巻線−主スイッチング素子14−直流電源10のル
ープで図3の点線に示す様な共振電流I1 が流れる。
The prior art series resonant converter operates as follows. When the main switching element 11 and the main switching element 14 are turned on, the DC power supply 10-the main switching element 11-the primary winding of the transformer 19-resonance inductance 21-resonance capacitor 22-the primary winding of the transformer 20-the main switching element 14- A resonance current I 1 as shown by the dotted line in FIG. 3 flows in the loop of the DC power supply 10.

【0007】この共振電流I1 は図4の様にON幅期間
ONの期間流れ続ける。共振電流I1 は、トランス1
9,20のそれぞれの一次巻線と二次巻線との比をNと
すると、それぞれのトランスの二次巻線に1/N倍の共
振電流となって流れるので、この共振電流を整流用ダイ
オード23,24及び25,26で整流し、平滑コンデ
ンサ27を充電して直流電圧を負荷抵抗28に供給す
る。
The resonance current I 1 continues to flow during the ON width period T ON as shown in FIG. The resonance current I 1 is applied to the transformer 1
Assuming that the ratio of the primary and secondary windings of 9 and 20 is N, a resonant current of 1 / N times flows in the secondary winding of each transformer, so this resonant current is used for rectification. Rectification is performed by the diodes 23, 24 and 25, 26, the smoothing capacitor 27 is charged, and a DC voltage is supplied to the load resistor 28.

【0008】又、主スイッチング素子11,14のOF
Fの期間に於いては、共振コンデンサ22に図示の極性
で充電された電荷が、図3の点線で示す帰還電流I2
なって電源に帰還され、その電流は図4の帰還電流期間
1 の期間流れる。
In addition, OF of the main switching elements 11 and 14
In the period F, the charge charged in the resonance capacitor 22 with the illustrated polarity becomes the feedback current I 2 shown by the dotted line in FIG. 3 and is fed back to the power supply, and the current is the feedback current period T in FIG. Flow for 1 period.

【0009】この方式では、主スイッチング素子11,
14のON幅は一定であり、OFF幅、すなわち図4の
休止期間T2 の期間を可変させて出力の定電圧制御を行
う様に動作する。従って、軽負荷時は、OFF期間T
OFF の内、休止期間T2 が長くなり、動作周波数が下が
り、やがて20KHZ前後の可聴周波数領域となる。
In this system, the main switching element 11,
The ON width of 14 is constant, and the OFF width, that is, the period of the pause period T 2 in FIG. 4 is varied to perform constant voltage control of the output. Therefore, when the load is light, the OFF period T
In the OFF state , the quiescent period T 2 is lengthened, the operating frequency is lowered, and then the audible frequency region around 20 KHZ is reached.

【0010】尚、以上は半サイクル動作についての説明
であるが、次の半サイクルは主スイッチング素子12,
13がONする事によって上に述べた事と全く同じ動作
を行う。
In the above, the half cycle operation is explained, but in the next half cycle, the main switching element 12,
When 13 is turned on, the same operation as described above is performed.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
技術には次の様な問題点が生ずる。すなわち、負荷の重
い時は、ON幅期間すなわちTONは一定であるので、O
FF幅期間すなわちTOF F の内、休止期間T2 の期間が
短く、従って、動作周波数が30〜60KHZで安定動
作を行っている。しかし、負荷が軽くなると、TONは一
定である為にTOF F の内、休止期間T2 の期間が長くな
り、従って、動作周波数が20KHZ程度まで下がり可
聴周波数領域で動作を行うようになる。
However, the conventional technique has the following problems. That is, when the load is heavy, the ON width period, that is, T ON is constant, so
In the FF width period, that is, T OF F, the idle period T 2 is short, and therefore stable operation is performed at an operating frequency of 30 to 60 KHZ. However, when the load becomes lighter, T ON is constant, and therefore the period T 2 of the pause period of T OF F becomes longer. Therefore, the operating frequency falls to about 20 KHZ and the operation is performed in the audible frequency range. .

【0012】この周波数領域になると動作時の発振音が
耳ざわりになり、騒音問題も引き起こす。又、無負荷に
なるに従ってOFF幅期間(TOFF )が限りなく長くな
り、動作が不安定になるという欠点も生ずる。
In this frequency range, the oscillating sound during operation becomes harsh and causes a noise problem. In addition, the OFF width period (T OFF ) becomes infinitely long as the load is reduced, and the operation becomes unstable.

【0013】従って、上記の如く従来技術の有する問題
点を克服すべく、本発明の目的は次の通りである。すな
わち、直列共振コンバータのサージ電圧、電流によるノ
イズが小さいという特徴を備えたまま、軽負荷時には、
ON幅期間制御、すなわちPWM(PULSE WIDTH MODULA
TION)制御を行う動作を併用して、OFF幅期間が必要
以上に長くならない様な動作を行う。この様にして、可
聴周波数領域にまで動作周波数が下がらない様にした直
列共振コンバータを提供することを目的とする。
Therefore, in order to overcome the problems of the prior art as described above, the object of the present invention is as follows. That is, while maintaining the characteristic that the noise due to the surge voltage and current of the series resonant converter is small,
ON width period control, that is, PWM (PULSE WIDTH MODULA
TION) Control operation is also used to perform operation so that the OFF width period does not become longer than necessary. In this way, it is an object to provide a series resonance converter in which the operating frequency does not drop to the audible frequency range.

【0014】[0014]

【課題を解決するための手段】すなわち本発明は2個の
主スイッチング素子が直列接続された、2組のブリッジ
回路が直流電源に接続され、この2組のブリッジ回路の
2個直列主スイッチング素子の接続点には、各々トラン
スの一次巻線の一端が接続され、各々のトランスの一次
巻線の他端間に共振インダクタンスと共振コンデンサの
直列回路が接続されている。さらに共振インダクタンス
と共振コンデンサの直列回路の両端より、2組のブリッ
ジ回路毎の2個の直列主スイッチング素子に対応して、
電源へエネルギーを帰還する方向に、2個の帰還ダイオ
ードの直列回路が、2組直流電源に接続されている。
又、各々のトランスの二次巻線に全波整流回路と平滑コ
ンデンサが接続され、負荷に電力を供給する様に直列共
振コンバータが構成されている。
That is, according to the present invention, two sets of bridge circuits, in which two main switching elements are connected in series, are connected to a DC power source, and two series main switching elements of the two sets of bridge circuits are connected. One end of the primary winding of each transformer is connected to the connection point of, and a series circuit of a resonance inductance and a resonance capacitor is connected between the other ends of the primary windings of the transformers. Furthermore, from the both ends of the series circuit of resonance inductance and resonance capacitor, corresponding to the two series main switching elements for each of the two sets of bridge circuits,
A series circuit of two feedback diodes is connected to two sets of DC power sources in the direction of returning energy to the power source.
A full-wave rectifier circuit and a smoothing capacitor are connected to the secondary winding of each transformer, and a series resonant converter is configured to supply power to the load.

【0015】そしてこの直列共振コンバータの2組の2
個直列帰還ダイオードの各々に、電源に順方向の補助ス
イッチング素子を並列接続して、主スイッチング素子の
動作周波数が可聴周波数領域より低い周波数の時は、2
組2個の補助スイッチング素子が、それぞれの主スイッ
チング素子の導通期間内で導通幅制御(PWM)を行う
如く動作する様に構成された事を特徴としている。
Then, two sets of 2 of this series resonance converter are used.
When each auxiliary switching element in the forward direction is connected in parallel to the power source and the operating frequency of the main switching element is lower than the audible frequency range, 2 is connected to each of the series feedback diodes.
It is characterized in that the two auxiliary switching elements of the set are configured to operate so as to perform conduction width control (PWM) within the conduction period of each main switching element.

【0016】[0016]

【作用】この様な手段を有する直列共振コンバータは、
負荷の重い時は従来の回路と全く同じ様にOFF幅期間
制御を行うが、負荷が軽くなって動作周波数が可聴周波
数に近くなるまで下がると、ON幅期間制御(PWM制
御)に切替わり可聴周波数まで下らない様な制御を行
う。
The series resonant converter having such means is
When the load is heavy, the OFF width period control is performed in exactly the same way as the conventional circuit, but when the load decreases and the operating frequency drops to near the audible frequency, it switches to the ON width period control (PWM control) and becomes audible. Control so that the frequency does not drop.

【0017】すなわち軽負荷になると、主スイッチング
素子の導通期間内で、それぞれの主スイッチング素子に
対応する補助スイッチング素子が導通して、トランス1
次電流として流れていた共振電流を補助スイッチング素
子に転流させ、トランス1次電流を流さない様にする事
によってON幅期間制御を行うものである。
That is, when the load becomes light, the auxiliary switching element corresponding to each main switching element becomes conductive within the conduction period of the main switching element, and the transformer 1
The ON width period control is performed by diverting the resonance current that has been flowing as the secondary current to the auxiliary switching element so that the transformer primary current does not flow.

【0018】[0018]

【実施例】図1はこの発明の一実施例を示し、従来技術
の図3と対応する部分は同一符号がつけてある。又、図
2はこの発明による主要部分の電流波形を示している。
この発明では、従来技術に対して補助スイッチング素子
29,30,31,32が追加され、直流電源10に順
方向となる様にそれぞれの帰還ダイオード15,16,
17,18に並列接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those of FIG. Further, FIG. 2 shows a current waveform of a main part according to the present invention.
In the present invention, auxiliary switching elements 29, 30, 31, 32 are added to the prior art so that the respective feedback diodes 15, 16,
17 and 18 are connected in parallel.

【0019】この発明の直列共振コンバータの動作は次
の様である。負荷が重い時、すなわち負荷抵抗28が小
さい時は、従来技術で述べた通り、主スイッチング素子
11,14のONにより、図1の点線の様に共振電流I
1 を流す。この共振電流I1は、従来技術の図4と同様
半サイクル期間トランス19,20に流れ、トランス2
次巻線に変換されて負荷抵抗28に負荷電流として流れ
る。
The operation of the series resonant converter of the present invention is as follows. When the load is heavy, that is, when the load resistance 28 is small, as described in the prior art, the main switching elements 11 and 14 are turned on, so that the resonance current I as shown by the dotted line in FIG.
Flow 1 This resonance current I 1 flows through the transformers 19 and 20 during the half cycle period as in FIG.
It is converted to the next winding and flows as a load current through the load resistor 28.

【0020】そして半サイクル後、共振コンデンサ22
にたくわえられた電荷が帰還電流I2 となって流れ、そ
の後休止期間T2 が継続されることは従来技術の図4の
波形と全く同じである。
After half a cycle, the resonance capacitor 22
The stored charge flows as the feedback current I 2 and then the rest period T 2 is continued, which is exactly the same as the waveform of FIG. 4 of the prior art.

【0021】次に軽負荷となり負荷抵抗28が大きくな
った時、定電圧制御により、OFF幅期間TOFF の内、
休止期間T2 期間が長くなり動作周波数が下がる。そし
て20KHZ程度の可聴周波数領域に近ずくと、ON幅
期間制御すなわちPWM(PULSE WIDTH MODULATION)制
御による定電圧制御に切替わる。
Next, when the load becomes light and the load resistance 28 becomes large, by constant voltage control, within the OFF width period T OFF ,
The quiescent period T 2 becomes longer and the operating frequency lowers. Then, when it approaches the audible frequency region of about 20 KHZ, it is switched to constant voltage control by ON width period control, that is, PWM (PULSE WIDTH MODULATION) control.

【0022】このPWM制御の動作以後が本発明に係わ
る部分である。すなわち、可聴周波数領域に近づくと、
次の様な動作によりPWM制御が行われる。主スイッチ
ング素子11,14がONしていて、共振電流であるト
ランス1次電流I1 が図1の点線の様に流れている期間
に、補助スイッチング素子29,32をターンオンさせ
ると、トランス19及びトランス20の一次巻線にはト
ランス1次電流I1 による一次巻線電圧が発生している
為、共振電流(トランス1次電流)I1 は主スイッチン
グ素子から補助スイッチング素子側に転流する。
The operation after the PWM control is the portion related to the present invention. That is, when approaching the audible frequency range,
PWM control is performed by the following operation. When the main switching elements 11 and 14 are turned on and the auxiliary switching elements 29 and 32 are turned on while the transformer primary current I 1 which is a resonance current is flowing as shown by the dotted line in FIG. Since the primary winding voltage due to the transformer primary current I 1 is generated in the primary winding of the transformer 20, the resonance current (transformer primary current) I 1 is commutated from the main switching element to the auxiliary switching element side.

【0023】すなわち図2の様にトランス1次電流I1
がPWM ON幅期間TA の期間流れている時に補助ス
イッチング素子29,32をONさせると、トランス1
次電流I1 は直流電源10−補助スイッチング素子29
−共振インダクタンス21−共振コンデンサ22−補助
スイッチング素子32−直流電源10のループに転流さ
れ、図1の一点鎖線の様にバイパス共振電流I1 ’に切
替わり共振電流を流し続ける。
That is, as shown in FIG. 2, the transformer primary current I 1
When the auxiliary switching elements 29 and 32 are turned on during the PWM ON width period T A , the transformer 1
Next current I 1 is DC power supply 10-auxiliary switching element 29
-Resonance inductance 21-Resonance capacitor 22-Auxiliary switching element 32-Commuted into the loop of the DC power supply 10 and switched to the bypass resonance current I 1 'as shown by the alternate long and short dash line in FIG.

【0024】このバイパス共振電流I1 ’はトランス1
9,20の一次巻線には流れない為、図2の様にPWM
OFF幅期間TB の期間トランス1次電流I1 は零と
なり、バイパス共振電流I1 ’がバイパスループに流れ
るので、共振電流としては半サイクルの期間連続的に流
し続けることになる。
This bypass resonance current I 1 'is applied to the transformer 1
As it does not flow in the primary winding of 9 and 20, PWM as shown in Fig. 2
Since the transformer primary current I 1 becomes zero during the OFF width period T B and the bypass resonance current I 1 ′ flows through the bypass loop, the resonance current continues to flow continuously for a half cycle.

【0025】従って、共振電流は連続的に流し続けなが
ら、トランス19,トランス20の一次巻線には、補助
スイッチング素子をONさせる事によって、必要な期間
のみ共振電流(トランス1次電流)I1 を流すことが出
来るので、結果的にON幅期間TONが制御されて定電圧
制御が行われることになる。
Therefore, while the resonance current continues to flow continuously, the auxiliary switching element is turned on in the primary windings of the transformer 19 and the transformer 20, so that the resonance current (transformer primary current) I 1 is maintained only for a necessary period. As a result, the ON width period T ON is controlled and constant voltage control is performed.

【0026】共振電流が流れ終わった後、共振コンデン
サ22にたくわえられた電荷が帰還電流I2 となって、
帰還電流期間T1 の期間電源に帰還されるモード、及び
休止期間T2 のモードについては従来技術と全く同じで
ある。
After the resonance current has finished flowing, the charge stored in the resonance capacitor 22 becomes the feedback current I 2 ,
The mode in which the power is fed back to the power supply during the feedback current period T 1 and the mode during the idle period T 2 are exactly the same as those in the conventional technique.

【0027】従って、図2に於いて、負荷の重い時のO
N幅期間はTA +TB であるので、動作責務(DUT
Y)は(TA +TB )/Tであり、軽負荷時のON幅期
間はTA であるので動作責務(DUTY)はTA /Tと
なる。この様にして重負荷時は周波数制御を行い、軽負
荷時はPWM制御を行う事によって、常に安定的に定電
圧制御を行う事が出来るものである。
Therefore, in FIG. 2, O when the load is heavy
Since the N width period is T A + T B , the operation duty (DUT
Y) is (T A + T B ) / T, and the ON duty period at light load is T A, so the duty of operation (DUTY) is T A / T. In this way, frequency control is performed under heavy load, and PWM control is performed under light load, so that constant voltage control can always be performed stably.

【0028】又、図示しないがトランス19及びトラン
ス20に固有するリーケージインダクタンス、又は別に
トランスと直列に設けた共振インダクタンス21、ある
いは共振インダクタンス21から帰還回路に直列に新た
な共振インダクタンス21を設ける事により、転流時の
トラブルを防ぐことが出来る。例えば、共振電流I1
ら帰還電流I2 に転流する時、帰還ダイオードのリカバ
リータイムの間、短絡電流の発生を防止したり、各転流
時に一定時間かけて切替わる為に発生するスイッチング
ロスやスイッチングノイズを上に述べたインダクタンス
を設ける事により防止する事が出来る。
Further, although not shown, a leakage inductance specific to the transformer 19 and the transformer 20, or a resonance inductance 21 separately provided in series with the transformer, or a new resonance inductance 21 provided in series from the resonance inductance 21 to the feedback circuit is provided. , It is possible to prevent troubles during commutation. For example, when commutating from the resonance current I 1 to the feedback current I 2 , short circuit current is prevented from occurring during the recovery time of the feedback diode, or switching loss occurs due to switching for a certain time at each commutation. And switching noise can be prevented by providing the above-mentioned inductance.

【0029】[0029]

【発明の効果】本発明は以上説明した様な構成である
為、以下に示すような効果を有する。すなわち、重負荷
時の周波数制御、軽負荷時のPWM制御を併用する事に
よって、全負荷から無負荷までの全領域に於いて、動作
周波数が低くなる事による不安定動作を防止したり、
又、可聴周波数での動作領域をさけている為、騒音防止
の効果も呈する。さらに転流電流の急峻な切替わりによ
るスイッチングロスやスイッチングノイズの発生を防止
出来る従来の直列共振コンバータの特徴を失う事もな
く、本発明回路は実現出来るので、より有用なスイッチ
ング電源を提供し得るものである。
Since the present invention has the structure as described above, it has the following effects. That is, by using the frequency control at the time of heavy load and the PWM control at the time of light load together, it is possible to prevent the unstable operation due to the lowering of the operating frequency in the entire range from the full load to the no load,
Further, since the operating region at the audible frequency is avoided, it also exhibits the effect of preventing noise. Furthermore, the circuit of the present invention can be realized without losing the characteristics of the conventional series resonant converter that can prevent the generation of switching loss and switching noise due to the abrupt switching of the commutation current, so that a more useful switching power supply can be provided. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の直列共振コンバータ。FIG. 1 is a series resonant converter of the present invention.

【図2】本発明の主要部電流波形。FIG. 2 is a main part current waveform of the present invention.

【図3】従来の直列共振コンバータ。FIG. 3 is a conventional series resonant converter.

【図4】従来型の主要部電流波形。FIG. 4 is a conventional main part current waveform.

【符号の説明】[Explanation of symbols]

10 直流電源 11,12,13,14 主スイッチング素子 15,16,17,18 帰還ダイオード 19,20 トランス 21 共振インダクタンス 22 共振コンデンサ 23,24,25,26 整流用ダイオード 27 平滑コンデンサ 28 負荷抵抗 29,30,31,32 補助スイッチング素子 I1 トランス1次電流(共振電流) I1 ’バイパス共振電流 I2 帰還電流 T 1サイクル期間 TON ON幅期間 TOFF OFF幅期間 TA PWM ON幅期間 TB PWM OFF幅期間 T1 帰還電流期間 T2 休止期間10 DC power supply 11, 12, 13, 14 Main switching element 15, 16, 17, 18 Feedback diode 19, 20 Transformer 21 Resonance inductance 22 Resonance capacitor 23, 24, 25, 26 Rectification diode 27 Smoothing capacitor 28 Load resistance 29, 30, 31 and 32 the auxiliary switching element I 1 transformer primary current (resonance current) I 1 'bypass resonance current I 2 feedback current T 1 cycle period T ON ON width period T OFF OFF width period T A PWM ON width period T B PWM OFF width period T 1 Feedback current period T 2 Pause period

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2個の主スイッチング素子が直列接続さ
れた、2組のブリッジ回路が直流電源に接続され、前記
2組のブリッジ回路の2個直列主スイッチング素子の接
続点には、各々トランスの一次巻線の一端が接続され、
前記各々のトランスの一次巻線の他端間に共振インダク
タンスと共振コンデンサの直列回路が接続され、前記共
振インダクタンスと共振コンデンサの直列回路の両端よ
り、前記2組のブリッジ回路毎の2個直列主スイッチン
グ素子に対応して、電源へエネルギーを帰還する方向
に、2個の帰還ダイオードの直列回路が、2組直流電源
に接続され、かつ前記各々のトランスの二次巻線に全波
整流回路と平滑コンデンサが接続され、負荷に電力を供
給する直列共振コンバータに於いて、前記2組の2個直
列帰還ダイオードの各々に、電源に順方向の補助スイッ
チング素子を並列接続し、前記主スイッチング素子の動
作周波数が可聴周波数領域より低い周波数の時は、前記
2組2個の補助スイッチング素子が、それぞれの主スイ
ッチング素子の導通期間内で導通幅制御(PWM)を行
う如く動作する様に構成された事を特徴とする直列共振
コンバータ。
1. Two sets of bridge circuits, in each of which two main switching elements are connected in series, are connected to a DC power supply, and transformers are respectively provided at connection points of the two series main switching elements of the two sets of bridge circuits. One end of the primary winding of is connected,
A series circuit of a resonance inductance and a resonance capacitor is connected between the other ends of the primary windings of the respective transformers. A series circuit of two feedback diodes is connected to two sets of DC power sources in the direction of returning energy to the power source corresponding to the switching elements, and a full-wave rectification circuit is connected to the secondary winding of each transformer. In a series resonance converter to which a smoothing capacitor is connected and which supplies power to a load, a forward auxiliary switching element is connected in parallel to a power source to each of the two sets of two series feedback diodes, and the main switching element When the operating frequency is lower than the audible frequency range, the two sets of two auxiliary switching elements are electrically connected to the respective main switching elements. Series resonant converter, characterized in that configured so as to operate as performing the conduction width control (PWM) in between.
JP30336493A 1993-11-09 1993-11-09 Series resonant converter Expired - Fee Related JP3266389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30336493A JP3266389B2 (en) 1993-11-09 1993-11-09 Series resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30336493A JP3266389B2 (en) 1993-11-09 1993-11-09 Series resonant converter

Publications (2)

Publication Number Publication Date
JPH07135769A true JPH07135769A (en) 1995-05-23
JP3266389B2 JP3266389B2 (en) 2002-03-18

Family

ID=17920106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30336493A Expired - Fee Related JP3266389B2 (en) 1993-11-09 1993-11-09 Series resonant converter

Country Status (1)

Country Link
JP (1) JP3266389B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973220A1 (en) * 2005-12-30 2008-09-24 Emerson Network Power Energy Systems AB A resonant dc/dc converter and its control method
WO2013094871A1 (en) * 2011-12-23 2013-06-27 명지대학교 산학협력단 Battery charging device for an electric vehicle
JP2015186433A (en) * 2014-03-26 2015-10-22 サンケン電気株式会社 Current resonance type power supply device
US9641088B2 (en) 2014-03-06 2017-05-02 Sanken Electric Co., Ltd. Current resonant power source apparatus
US9774262B2 (en) 2013-09-30 2017-09-26 Sanken Electric Co., Ltd. Current resonance type power supply device
CN111786568A (en) * 2020-08-06 2020-10-16 石家庄通合电子科技股份有限公司 Bidirectional power converter, circuit and system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973220A1 (en) * 2005-12-30 2008-09-24 Emerson Network Power Energy Systems AB A resonant dc/dc converter and its control method
EP1973220A4 (en) * 2005-12-30 2014-09-10 Emerson Network Power Energy A resonant dc/dc converter and its control method
WO2013094871A1 (en) * 2011-12-23 2013-06-27 명지대학교 산학협력단 Battery charging device for an electric vehicle
KR101288230B1 (en) * 2011-12-23 2013-07-24 명지대학교 산학협력단 Battery charging device for electric vehicle
US9481257B2 (en) 2011-12-23 2016-11-01 Myongji University Industry And Academia Cooperation Foundation Battery charging device for an electric vehicle
US9774262B2 (en) 2013-09-30 2017-09-26 Sanken Electric Co., Ltd. Current resonance type power supply device
US9641088B2 (en) 2014-03-06 2017-05-02 Sanken Electric Co., Ltd. Current resonant power source apparatus
JP2015186433A (en) * 2014-03-26 2015-10-22 サンケン電気株式会社 Current resonance type power supply device
US9444352B2 (en) 2014-03-26 2016-09-13 Sanken Electric Co., Ltd. Current resonance type power supply device
CN111786568A (en) * 2020-08-06 2020-10-16 石家庄通合电子科技股份有限公司 Bidirectional power converter, circuit and system

Also Published As

Publication number Publication date
JP3266389B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
USRE37889E1 (en) Low loss synchronous rectifier for application to clamped-mode power converters
JPS62178169A (en) Single ended type dc-dc converter without switching loss
JPH10341575A (en) Partial resonance series converter with improved waveform factor and reduced electromagnetic interference
JPH07135769A (en) Dc resonance converter
JPH08154379A (en) Dc power supply device
JP3478693B2 (en) Switching power supply
JP2603646B2 (en) converter
JPS61189167A (en) Switching power source
JPH0884473A (en) Dc power supply
JPH0947024A (en) Step-down type high efficiency converter
US20230412086A1 (en) Isolated full-bridge converter
JP3374836B2 (en) Power supply
JP2867069B2 (en) Switching power supply
JP3235711B2 (en) Switching power supply
JPH0247195B2 (en) CHOKURYUUCHOKURYUHENKANKI
JPS58123369A (en) Constant-voltage power source
JP2001197752A (en) Inverter
JP3400592B2 (en) Power supply
JP2001086750A (en) Power-supply unit
JP3456788B2 (en) Switching power supply
JPH1023747A (en) Step-up voltage converter circuit
JPS5925580A (en) Switching regulator
JPH07107742A (en) Series resonance converter
JP3269413B2 (en) DC-DC converter
JPH0270267A (en) Parallel resonance converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees