JPH07107742A - Series resonance converter - Google Patents
Series resonance converterInfo
- Publication number
- JPH07107742A JPH07107742A JP26559993A JP26559993A JPH07107742A JP H07107742 A JPH07107742 A JP H07107742A JP 26559993 A JP26559993 A JP 26559993A JP 26559993 A JP26559993 A JP 26559993A JP H07107742 A JPH07107742 A JP H07107742A
- Authority
- JP
- Japan
- Prior art keywords
- resonance
- series
- switching element
- current
- resonance current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は例えばスイッチング式
電源装置に適用される直列共振コンバ−タに関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a series resonance converter applied to, for example, a switching type power supply device.
【0002】[0002]
【従来の技術】直列共振コンバ−タの回路構成の一例を
第1図に示す。MOS−FETなどの2個の主スイッチ
ング素子11、12の直列回路と同じくMOS−FET
などの2個の補助スイッチング素子13、14の直列回
路と、2個の帰還ダイオ−ド15、16の直列回路と、
2個の共振コンデンサ19、20の直列 (2) 回路とが直流電源10に接続され、2個の補助スイッチ
ング素子13、14と2個の帰還ダイオ−ド15、16
はそれぞれ並列接続され、主スイッチング素子11、1
2の直列回路の接続点と共振コンデンサ19、20の直
列回路の接続点との間に第1のトランス17の一次巻線
と共振インダクタ18の直列回路が接続され、かつ第1
のトランス17の二次巻線に整流用のダイオ−ド21、
22が接続されて全波整流回路が構成され、全波整流回
路の出力に平滑用コンデンサ23及び負荷抵抗24が接
続されている。2. Description of the Related Art FIG. 1 shows an example of a circuit configuration of a series resonance converter. A MOS-FET as well as a series circuit of two main switching elements 11 and 12 such as a MOS-FET
, A series circuit of two auxiliary switching elements 13 and 14, and a series circuit of two feedback diodes 15 and 16,
A series (2) circuit of two resonance capacitors 19 and 20 is connected to the DC power source 10, and two auxiliary switching elements 13 and 14 and two feedback diodes 15 and 16 are connected.
Are respectively connected in parallel, and the main switching elements 11, 1 are connected.
The series circuit of the primary winding of the first transformer 17 and the resonance inductor 18 is connected between the connection point of the second series circuit and the connection point of the series circuits of the resonance capacitors 19 and 20, and
A rectifying diode 21 on the secondary winding of the transformer 17 of
22 is connected to form a full-wave rectifier circuit, and a smoothing capacitor 23 and a load resistor 24 are connected to the output of the full-wave rectifier circuit.
【0003】次にこの直列共振コンバ−タの動作を説明
する。スイッチング素子11をタ−ンオンさせると、直
流電源10−スイッチング素子11−トランス17の一
次巻線−共振インダクタ18−共振コンデンサ20−直
流電源10のル−プで図の点線の様に共振電流I1が流
れる。トランス17の一次巻線数と二次巻線数との比を
nとするとトランス17の二次巻線には1/n倍の共振
電流が流れるので、この共振電流を整流用ダイオ−ド2
1、22で整流し、平滑用コンデンサ23を充電して直
流電圧を負荷抵抗24に供給する。又主スイッチング素
子11がOFFの時、共振コンデンサ20に図示の極性
でたくわえられた電荷は、帰還ダイオ−ド15を通っ
て、図の一点鎖線の様に帰還電流I2となって電源10
に帰還される。この帰還電流I2は負荷側には変換され
ないでOFF期間TOFFの間継続して流れる。尚この波
形は図3に示すが、前に述べた共振電流(トランス1次
電流)I1がON期間TON流れ続ける事は云うまでもな
い。Next, the operation of this series resonance converter will be described. When the switching element 11 is turned on, the resonance current I1 is generated by the loop of the DC power supply 10-the switching element 11-the primary winding of the transformer 17, the resonance inductor 18, the resonance capacitor 20 and the DC power supply 10 as shown by the dotted line in the figure. Flows. When the ratio of the number of primary windings to the number of secondary windings of the transformer 17 is n, a resonance current of 1 / n times flows in the secondary winding of the transformer 17, so this resonance current is rectified by the diode 2 for rectification.
It is rectified by Nos. 1 and 22, the smoothing capacitor 23 is charged, and a DC voltage is supplied to the load resistor 24. When the main switching element 11 is OFF, the electric charge stored in the resonance capacitor 20 with the polarity shown in the figure passes through the feedback diode 15 and becomes the feedback current I2 as shown by the chain line in the figure.
Be returned to. This feedback current I2 is not converted to the load side and continues to flow during the OFF period TOFF. Although this waveform is shown in FIG. 3, it goes without saying that the resonance current (primary primary current) I1 described above continues to flow in the ON period TON.
【0004】特に軽負荷時には、上記共振電流I1が流
れている時に補助スイッチング素子13がタ−ンオンし
て直流電源10−補助スイッチング素子13−共振イン
ダクタ18−共振コンデンサ20−直流電源10のル−
プで図の点線の様にバイパス共振電流I1′を流すこと
により、共振特性を損なうことなくPWM制御を併用す
る事ができる。その後に続く帰還電流I2については前
に述べたのと全く同じル−トで流れ (3) る。尚このもようについては図4にその波形を示してい
る。Particularly at a light load, the auxiliary switching element 13 turns on when the resonance current I1 is flowing, and the DC power supply 10-auxiliary switching element 13-resonance inductor 18-resonance capacitor 20-DC power supply 10-router-
By passing the bypass resonance current I1 'as shown by the dotted line in the figure, PWM control can be used together without impairing the resonance characteristics. The subsequent feedback current I2 flows in exactly the same route as described above (3). Incidentally, the waveform of this case is shown in FIG.
【0005】この様に、図1に示すハ−フブリッヂ方式
の直列共振コンバ−タは重負荷時は周波数制御を行い、
軽負荷になり可聴周波数領域(20KHZ程度)に近づ
くとPWM(PULSE WIDTH MODULAT
ION)制御に切替わる事によって、広い負荷範囲に亘
ってスイッチングによる騒音の発生しない、かつスイッ
チングロスやスイッチングノイズの少ない直列共振コン
バ−タとして使用することが出来る。As described above, the half-bridge series resonance converter shown in FIG. 1 controls the frequency when the load is heavy,
When the load becomes light and approaches the audible frequency range (about 20 KHZ), PWM (PULSE WIDTH MODULAT)
By switching to ION) control, it can be used as a series resonance converter which does not generate noise due to switching over a wide load range and has less switching loss and switching noise.
【0006】[0006]
【発明が解決しようとする課題】しかしこの方式のハ−
フブリッヂ方式直列共振コンバ−タは次の様な問題点が
ある。すなわち P0=K・f・C・Vin2の式で示す如
く、入力電圧Vinが一定であれば最大出力容量P0は
共振周波数fと共振コンデンサの容量Cの積に比例す
る。この式を展開するとP0=K・C0.5/L0.5・Vinと
なるので最大出力容量P0を増大させるためには共振イ
ンダクタLを小さくするか、あるいは共振コンデンサの
容量Cを増大させる方法があるが、共振インダクタLを
小さくすると転流時の素子の保護の上から限界があり、
共振コンデンサの容量Cを増大させると共振周波数fが
下がり可聴周波数20KHZ以上で制御出来る幅が狭く
なってしまう。[Problems to be Solved by the Invention]
The hybrid system series resonance converter has the following problems. That is, as indicated by the equation P0 = K · f · C · Vin2, if the input voltage Vin is constant, the maximum output capacitance P0 is proportional to the product of the resonance frequency f and the capacitance C of the resonance capacitor. When this formula is expanded, P0 = K · C 0.5 / L 0.5 · Vin. Therefore, in order to increase the maximum output capacitance P0, there is a method of reducing the resonance inductor L or increasing the capacitance C of the resonance capacitor. , If the resonance inductor L is made smaller, there is a limit from the viewpoint of protection of the element during commutation,
When the capacitance C of the resonance capacitor is increased, the resonance frequency f decreases and the controllable width becomes narrow at the audible frequency of 20 KHZ or higher.
【0007】そこで直列共振コンバ−タで出力容量を増
大させる為には、基本的には図1で示す様なハ−フブリ
ッヂ方式直列共振コンバ−タを並列に二組組合わせるい
わゆるフルブリッヂ方式が採用されている。しかし従来
のフルブリッヂ方式では帰還用ダイオ−ドの逆方向阻止
機能が回復するまではスイッチング素子に大きなスパイ
ク状の電流が流れて損失や雑音の増加、スイッチング素
子へのストレスの増大等の問題が発生したり、そ (4) れを防止するために部品点数の増大等の問題が発生す
る。Therefore, in order to increase the output capacitance with the series resonance converter, basically, a so-called full bridge system is used in which two pairs of the half bridge series resonance converters are combined in parallel as shown in FIG. Has been adopted. However, in the conventional full bridge system, until the reverse blocking function of the feedback diode is restored, a large spike-shaped current flows through the switching element, causing problems such as increased loss and noise and increased stress on the switching element. However, problems such as an increase in the number of parts will occur in order to prevent this (4).
【0008】そこでこの発明の目的は出力容量を増大さ
せるためにフルブリッヂ方式を採用しながら、部品点数
の増大を抑え、スイッチング素子の電流の立ち上がりが
急峻にならず又帰還用ダイオ−ドの逆方向阻止機能が回
復していなくともスパイク状の電流が流れないようにし
た大容量の直列共振コンバ−タを提供することにある。Therefore, the object of the present invention is to suppress the increase in the number of components while adopting the full bridge system to increase the output capacitance, to prevent the rising of the current of the switching element from becoming steep, and to reverse the feedback diode. It is an object of the present invention to provide a large-capacity series resonant converter in which a spike-shaped current does not flow even if the direction blocking function is not restored.
【0009】[0009]
【実施例】図2はこの発明の実施例を示し、図1と対応
する部分には同一符号がつけてある。図2に示すように
この発明によれば、共振インダクタ18の替わりに共振
インダクタ29、30となり、補助スイッチング素子2
5と帰還ダイオ−ド27の並列回路と2個の共振インダ
クタ29、30と補助スイッチング素子26と帰還ダイ
オ−ド28の並列回路を直列とした回路が新たに直流電
源10に接続され、共振コンデンサ19、20の代わり
に、共振コンデンサ19がトランス17の1次巻線の一
端と共振インダクタ29、30の接続点との間に接続さ
れている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an embodiment of the present invention, in which parts corresponding to those in FIG. As shown in FIG. 2, according to the present invention, resonance inductors 29 and 30 are provided instead of the resonance inductor 18, and the auxiliary switching element 2 is provided.
A circuit in which the parallel circuit of 5 and the feedback diode 27, the two resonance inductors 29 and 30, the auxiliary switching element 26 and the parallel circuit of the feedback diode 28 are connected in series to the DC power supply 10 and the resonance capacitor is connected. Instead of 19, 20, a resonance capacitor 19 is connected between one end of the primary winding of the transformer 17 and the connection point of the resonance inductors 29, 30.
【0010】この発明の直列共振コンバ−タの動作を以
下に説明する。主スイッチング素子11と補助スイッチ
ング素子26をタ−ンオンさせると、直流電源10−主
スイッチング素子11−トランス17の一次巻線−共振
コンデンサ19−共振インダクタ30−主スイッチング
素子26−直流電源10のル−プで図の点線の様に共振
電流I1が流れる。この共振電流I1が流れ終わった時
に、共振コンデンサ19に図示の極性で充電された電荷
が、共振コンデンサ19−帰還ダイオ−ド15−直流電
源10−帰還ダイオ−ド28−共振インダクタ30−共
振コンデンサ19のル−プで図の一点鎖線の様に帰還電
流I2が流れる。この時の電流波形は図3に示す様に従
来方式と全く同じである。 (5)The operation of the series resonant converter of the present invention will be described below. When the main switching element 11 and the auxiliary switching element 26 are turned on, the DC power supply 10-the main switching element 11-the primary winding of the transformer 17-the resonance capacitor 19-the resonance inductor 30-the main switching element 26-the DC power supply 10 are connected. The resonance current I1 flows as shown by the dotted line in the figure. When this resonance current I1 has finished flowing, the charge charged in the resonance capacitor 19 with the polarity shown in the figure is the resonance capacitor 19-return diode 15-DC power supply 10-feedback diode 28-resonance inductor 30-resonance capacitor. In the loop of 19, the feedback current I2 flows as shown by the alternate long and short dash line in the figure. The current waveform at this time is exactly the same as that of the conventional method as shown in FIG. (5)
【0011】又正の半サイクルのモ−ドから負の半サイ
クルのモ−ドに転流する時、帰還ダイオ−ド15、16
のリカバリ−タイムの間、転流時の短絡電流を防止する
為にトランス17の一次巻線と直列のインダクタンス
や、帰還電流ル−トに別にインダクタンスを入れる必要
があるが、本発明の主要な部分ではないので図では省略
してある。When commutating from the positive half-cycle mode to the negative half-cycle mode, the feedback diodes 15, 16 are used.
During the recovery time, it is necessary to add an inductance in series with the primary winding of the transformer 17 or another inductance to the feedback current route in order to prevent a short-circuit current during commutation. Since it is not a part, it is omitted in the figure.
【0012】又、負荷抵抗24が大きくなり定電圧制御
により動作周波数が可聴周波数領域(20KHZ)程度
まで下がってきた時に、例えば第1の共振電流I1ル−
プにおいて補助スイッチング素子13をタ−ンオンさせ
ると、共振電流は図の点線I1′のル−トに転流され
る。この共振電流I1′ル−プは、直流電源10−補助
スイッチング素子13−共振コンデンサ19−共振イン
ダクタ30−スイッチング素子26−直流電源10のル
−プに切り替わり共振電流I1を流し続ける。これをこ
こではバイパス共振電流I1′ル−プとする。従って、
共振電流は連続的に流し続けながらトランス17の一次
巻線に必要な期間のみ共振電流I1を流すことが出来
る。又、共振電流ル−プI1からバイパス共振電流ル−
プI1′に切り替わる時、スイッチングロスやスイッチ
ングノイズは発生しないのは負荷抵抗24が小さい場合
と同じである。When the load resistance 24 becomes large and the operating frequency is lowered to the audible frequency range (20 KHZ) by the constant voltage control, for example, the first resonance current I1
When the auxiliary switching element 13 is turned on in the loop, the resonance current is commutated to the route indicated by the dotted line I1 'in the figure. The resonance current I1 'loop is switched to the loop of the DC power supply 10-auxiliary switching element 13-resonance capacitor 19-resonance inductor 30-switching element 26-DC power supply 10 to keep the resonance current I1 flowing. Here, this is the bypass resonance current I1 'loop. Therefore,
The resonance current I1 can be made to flow only for a period required for the primary winding of the transformer 17 while continuously flowing the resonance current. Also, from the resonance current loop I1 to the bypass resonance current loop
Switching loss or switching noise does not occur when the load resistance 24 is switched to the low level I1 '.
【0013】ここで図1の従来型ハ−フブリッヂ方式の
直列共振コンバ−タでは直流入力電圧Vinとすると、
トランス17の1次巻線には1/2・Vinの電圧が印
加されるが、本発明である図2のフルブリッヂ方式の直
列共振コンバ−タでは直流入力電圧Vinがそのままト
ランス17の1次巻線に印加される。従って前に述べた
様に最大出力容量P0はトランス1次巻線に印加される
電圧の2乗に比例するので、本発明のフルブリッヂ方式
の直列共振コンバ−タは、従来のハ−フブリッヂ方式に
比べ4倍の出力容量がとれる。In the conventional half-bridge type series resonant converter shown in FIG.
A voltage of 1 / 2.Vin is applied to the primary winding of the transformer 17, but in the full bridge type series resonance converter of FIG. 2 according to the present invention, the DC input voltage Vin is the same as the primary voltage of the transformer 17. Applied to the winding. Therefore, since the maximum output capacitance P0 is proportional to the square of the voltage applied to the primary winding of the transformer as described above, the full-bridge series resonant converter of the present invention is a conventional half-bridge system. 4 times the output capacity can be obtained.
【0014】[0014]
(6) 以上説明したように、この発明による直列共振コンバ−
タは、フルブリッヂ方式として出力容量を増大しなが
ら、電流を急峻に切りかえてスイッチングロスやスイッ
チングノイズを発生させないという電流共振の特徴を失
うことなく、出力への電力変換比を高くしたりPWM制
御を併用させることが出来る。(6) As described above, the series resonance converter according to the present invention.
As a full bridge system, the power conversion ratio is increased or PWM control is performed without increasing the output capacitance and without losing the characteristic of current resonance that switching current is not steeply generated to cause switching loss and switching noise. Can be used together.
【図1】従来のハ−フブリッヂ方式直列共振コンバ−タFIG. 1 A conventional half-bridge type serial resonance converter.
【図2】本発明のフルブリッヂ方式直列共振コンバ−タFIG. 2 is a full-bridge type series resonance converter of the present invention.
【図3】周波数制御時の主要電流波形[Fig. 3] Main current waveform during frequency control
【図4】PWM制御時の主要部電流波形FIG. 4 Current waveform of main part during PWM control
11、12、25、26 主スイッチング素子 15、16 帰還ダイオ−ド 17 トランス 18、29、30 共振インダクタンス 19、20 共振コンデンサ 21、22 整流ダイオ−ド 23 平滑コンデンサ 24 負荷抵抗 13、14 補助スイッチング素子 I1 トランス1次電流(共振電
流) I1′ バイパス共振電流 I2 帰還電流 T 1サイクル期間 (7) TON ON巾期間 TOFF OFF巾期間 TA PWM ON巾期間 TB PWM OFF巾期間 T1 帰還電流期間 T2 休止期間11, 12, 25, 26 Main switching element 15, 16 Feedback diode 17 Transformer 18, 29, 30 Resonance inductance 19, 20 Resonance capacitor 21, 22 Rectifying diode 23 Smoothing capacitor 24 Load resistance 13, 14 Auxiliary switching element I1 Transformer primary current (resonance current) I1 'Bypass resonance current I2 Feedback current T 1 cycle period (7) TON ON width period TOFF OFF width period TA PWM ON width period TB PWM OFF width period T1 Feedback current period T2 idle period
Claims (1)
れた第1のブリッヂ回路と、2個の主スイッチング素子
と電源に帰還する方向の帰還ダイオ−ドの並列回路が各
々の共振インダクタンスを介して直列接続された第2の
ブリッヂ回路が直流電源に接続され、第1のブリッヂ回
路の2個直列の主スイッチング素子の接続点にはトラン
スの一次巻線の一端が接続され、該トランスの一次巻線
の他端より共振コンデンサの一端を接続し、前記第2の
ブリッヂ回路を構成する2個の共振インダクタンスの接
続点に前記共振コンデンサの他端を接続した直列共振コ
ンバ−タに於いて、前記トランスの一次巻線と前記共振
コンデンサの接続点に、電源に帰還する方向の2個直列
の帰還ダイオ−ドと電源に順方向の2個直列の補助スイ
ッチング素子が並列接続され、前記主スイッチング素子
の動作周波数が可聴周波数より低い周波数の時は、前記
2個の補助スイッチング素子がそれぞれの主スイッチン
グ素子の導通期間内で導通巾制御(PWM)を行う如く
動作する様に構成された事を特徴とする直列共振コンバ
−タ。1. A first bridge circuit in which two main switching elements are connected in series, and a parallel circuit of two main switching elements and a feedback diode in the direction of returning to a power source through respective resonance inductances. Second bridge circuit connected in series by a DC power supply, and one end of the primary winding of the transformer is connected to the connection point of the two main switching elements in series of the first bridge circuit. A series resonance converter in which one end of a resonance capacitor is connected to the other end of a winding, and the other end of the resonance capacitor is connected to a connection point of two resonance inductances forming the second bridge circuit, At the connection point between the primary winding of the transformer and the resonance capacitor, two series feedback diodes in the direction of returning to the power source and two series auxiliary switching elements in the forward direction of the power source are parallel. When connected and the operating frequency of the main switching element is lower than the audible frequency, the two auxiliary switching elements operate so as to perform conduction width control (PWM) within the conduction period of each main switching element. A series resonant converter characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26559993A JPH07107742A (en) | 1993-09-28 | 1993-09-28 | Series resonance converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26559993A JPH07107742A (en) | 1993-09-28 | 1993-09-28 | Series resonance converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07107742A true JPH07107742A (en) | 1995-04-21 |
Family
ID=17419370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26559993A Pending JPH07107742A (en) | 1993-09-28 | 1993-09-28 | Series resonance converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107742A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454733C (en) * | 2004-08-14 | 2009-01-21 | 燕山大学 | Series (parallel) resonance ring energy transient valve direct control method |
JP2009171729A (en) * | 2008-01-16 | 2009-07-30 | Honda Motor Co Ltd | Control method of vehicular power system and vehicular power system |
-
1993
- 1993-09-28 JP JP26559993A patent/JPH07107742A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454733C (en) * | 2004-08-14 | 2009-01-21 | 燕山大学 | Series (parallel) resonance ring energy transient valve direct control method |
JP2009171729A (en) * | 2008-01-16 | 2009-07-30 | Honda Motor Co Ltd | Control method of vehicular power system and vehicular power system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5065188B2 (en) | Series resonant converter | |
US8891261B2 (en) | Three-phase three-level soft-switched PFC rectifiers | |
US6038142A (en) | Full-bridge isolated Current Fed converter with active clamp | |
WO2010067629A1 (en) | Dc-dc converter circuit | |
JP3374917B2 (en) | Switching power supply | |
KR0133163B1 (en) | Arc welder | |
US20080037290A1 (en) | Ac-dc converter and method for driving for ac-dc converter | |
JPH0197169A (en) | High-frequency resonance type power converter | |
JP2002101655A (en) | Switching power supply device | |
WO2011052364A1 (en) | Power conversion device | |
JP3681596B2 (en) | DC power supply | |
JP2022011002A (en) | Power regenerative snubber circuit and power supply | |
JP2500580B2 (en) | Power supply circuit | |
JP2001224172A (en) | Power converter | |
JP2001298944A (en) | Dc-dc converter | |
JP2005168266A (en) | Dc power converting device | |
JPH08228486A (en) | Control method of dc-ac inverter | |
JP2015228760A (en) | Switching power supply | |
JP3266389B2 (en) | Series resonant converter | |
JPH07107742A (en) | Series resonance converter | |
JP3703026B2 (en) | Snubber circuit for bidirectional DC-DC converter and bidirectional DC-DC converter | |
JPH08168240A (en) | Dc-dc converter | |
JP3235755B2 (en) | Converter device | |
JP3372868B2 (en) | Current control type inverter circuit, control method therefor, capacitor charger and laser device provided with the same | |
JP2004153990A (en) | Power factor improving converter |