JPH0786589A - Manufacture of laminated-diffused-layer type mos semiconductor device - Google Patents

Manufacture of laminated-diffused-layer type mos semiconductor device

Info

Publication number
JPH0786589A
JPH0786589A JP25383493A JP25383493A JPH0786589A JP H0786589 A JPH0786589 A JP H0786589A JP 25383493 A JP25383493 A JP 25383493A JP 25383493 A JP25383493 A JP 25383493A JP H0786589 A JPH0786589 A JP H0786589A
Authority
JP
Japan
Prior art keywords
semiconductor device
gate electrode
diffusion layer
layer
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25383493A
Other languages
Japanese (ja)
Other versions
JP3230351B2 (en
Inventor
Takeshi Ogishi
毅 大岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25383493A priority Critical patent/JP3230351B2/en
Publication of JPH0786589A publication Critical patent/JPH0786589A/en
Application granted granted Critical
Publication of JP3230351B2 publication Critical patent/JP3230351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the parasitic capacitance between a gate electrode and source/drain and to achieve high speed, low power dissipation and the improvement of the performance of a MOS transistor by removing an offset layer and a side wall after the molding of the gate electrode. CONSTITUTION:In the manufacturing method of a laminated-diffused-layer type MOS semiconductor device, a side wall 7a existing between a gate electrode 10 and a laminated diffused layer 3 is removed. Therefore, the part between the electrode 10 and the layer 3 becomes the air-filled part of the vacuum part, and the dielectric constant of the part becomes small. Thus, the parasitic capacitance between the gate electrode and t source/drain can be made small. Furthermore, the laminated-diffused-layer MOS semiconductor device having the excellent high speed and the high performance can be obtained. It is not always necessary that a hollow part 15 is tightly closed to the outside completely with an insulating film 14. It is satisfactory that the part where the side wall 7a is removed is filled with gas such as air or in the vacuum state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積み上げ拡散層型MO
S半導体装置の製造方法、特に積み上げ拡散層とゲート
電極との間の寄生容量を小さくすることができ、高速性
に優れた性能の高い積み上げ拡散層型MOS半導体装置
を得ることのできる新規な積み上げ拡散層型MOS半導
体装置の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a stacked diffusion layer type MO.
S semiconductor device manufacturing method, in particular, new stacking capable of obtaining a stacked diffusion layer type MOS semiconductor device excellent in high speed and capable of reducing parasitic capacitance between the stacked diffusion layer and gate electrode The present invention relates to a method of manufacturing a diffusion layer type MOS semiconductor device.

【0002】[0002]

【従来の技術】図2(A)乃至(D)及び図3(A)乃
至(C)は積み上げ拡散層型MOS半導体装置の製造方
法の一つの従来例を工程順に示す断面図であり、図2
(A)乃至(D)は前半を、図3(A)乃至(C)は後
半をそれぞれ示している。先ず、図2(A)乃至(D)
に従って前半について説明する。 (A)半導体基板1の表面部の選択酸化により選択酸化
膜2を形成した後、半導体基板1上に積み上げ拡散層3
を成膜し、その後、層間絶縁膜としても機能するオフセ
ット層4を形成する。図2(A)はオフセット層4形成
後の状態を示す。
2A to 2D and 3A to 3C are cross-sectional views showing one conventional example of a method for manufacturing a stacked diffusion layer type MOS semiconductor device in the order of steps. Two
3A to 3D show the first half, and FIGS. 3A to 3C show the second half. First, FIGS. 2A to 2D
The first half will be described below. (A) After the selective oxidation film 2 is formed by selective oxidation of the surface portion of the semiconductor substrate 1, the diffusion layer 3 is stacked on the semiconductor substrate 1.
Then, the offset layer 4 which also functions as an interlayer insulating film is formed. FIG. 2A shows a state after the offset layer 4 is formed.

【0003】(B)次に、図2(B)に示すように、レ
ジスト膜5をマスクとしてオフセット層4及び積み上げ
拡散層型3を選択的にエッチングする。6はこのエッチ
ングによりゲート電極を形成するべきところに形成され
た凹部である。 (C)次に、図2(C)に示すように、サイドウォール
形成用絶縁膜7をCVDにより形成する。 (D)次に、図2(D)に示すように上記サイドウォー
ル形成用絶縁膜7に対するRIEにより上記凹部6の内
側面にサイドウォール7aを形成する。
(B) Next, as shown in FIG. 2B, the offset layer 4 and the stacked diffusion layer type 3 are selectively etched using the resist film 5 as a mask. Reference numeral 6 is a concave portion formed at a position where a gate electrode should be formed by this etching. (C) Next, as shown in FIG. 2C, a sidewall forming insulating film 7 is formed by CVD. (D) Next, as shown in FIG. 2D, a sidewall 7a is formed on the inner side surface of the recess 6 by RIE with respect to the sidewall forming insulating film 7.

【0004】次に、図3(A)乃至(C)に従って従来
例の後半について説明する。 (A)次に、図3(A)に示すように、不純物8をイオ
ン注入することによりVthの調節を行う。 (B)次に、半導体基板1の表面部を加熱酸化すること
によりゲート絶縁膜9を形成し、その後、断面T字状の
ゲート電極10を形成し、そして、積み上げ拡散層3内
の不純物を半導体基板1表面部に拡散させてソース11
s、ドレイン11dを形成し、しかる後、層間絶縁膜1
2を形成する。図3(B)は層間絶縁膜12形成後の状
態を示す。 (C)その後、層間絶縁膜12、4に対する選択的エッ
チングによりコンタクトホールを形成し、しかる後、配
線膜13を形成する。図3(C)は配線膜13の形成を
終えた積み上げ拡散層型MOS半導体装置を示す。
Next, the latter half of the conventional example will be described with reference to FIGS. (A) Next, as shown in FIG. 3A, the impurity 8 is ion-implanted to adjust Vth. (B) Next, the gate insulating film 9 is formed by heating and oxidizing the surface portion of the semiconductor substrate 1, and then the gate electrode 10 having a T-shaped cross section is formed, and impurities in the stacked diffusion layer 3 are removed. The source 11 is diffused on the surface of the semiconductor substrate 1.
s, the drain 11d is formed, and thereafter, the interlayer insulating film 1 is formed.
Form 2. FIG. 3B shows a state after the interlayer insulating film 12 is formed. (C) After that, contact holes are formed by selective etching on the interlayer insulating films 12 and 4, and thereafter, the wiring film 13 is formed. FIG. 3C shows a stacked diffusion layer type MOS semiconductor device in which the formation of the wiring film 13 has been completed.

【0005】[0005]

【発明が解決しようとする課題】ところで、図2、図3
に示す従来の方法により製造した積み上げ拡散層型MO
S半導体装置には、断面T字状のゲート電極10と積み
上げ拡散層3との間の対向面積が広く、そのためその間
の寄生容量、即ち、ゲートと、ソース/ドレインとの間
の寄生容量が大きくなり、延いては性能、特に高速性の
向上が制約され、また低消費電力化も制約されるという
問題があった。
By the way, FIG. 2 and FIG.
Stacked diffusion layer type MO manufactured by the conventional method shown in FIG.
In the S semiconductor device, the facing area between the gate electrode 10 having a T-shaped cross section and the stacked diffusion layer 3 is large, and therefore the parasitic capacitance therebetween, that is, the parasitic capacitance between the gate and the source / drain is large. Therefore, there is a problem that improvement in performance, particularly high speed is restricted, and low power consumption is also restricted.

【0006】本発明はこのような問題点を解決すべく為
されたものであり、積み上げ拡散層型MOS半導体装置
の製造方法において、ゲート電極とソース/ドレインと
の間の寄生容量を小さくし、延いては高速化、低消費電
力化を図り、MOSトランジスタの性能の向上を図るこ
とを目的とする。
The present invention has been made to solve such a problem, and in a method of manufacturing a stacked diffusion layer type MOS semiconductor device, parasitic capacitance between a gate electrode and a source / drain is reduced, Furthermore, it is intended to achieve higher speed, lower power consumption, and improved performance of MOS transistors.

【0007】[0007]

【課題を解決するための手段】本発明積み上げ拡散層型
MOS半導体装置の製造方法は、ゲート電極の形成後オ
フセット層及びサイドウォールを除去する工程を有する
ことを特徴とする。
A method of manufacturing a stacked diffusion layer type MOS semiconductor device according to the present invention is characterized by including a step of removing an offset layer and a sidewall after forming a gate electrode.

【0008】[0008]

【作用】本発明積み上げ拡散層型MOS半導体装置の製
造方法によれば、ゲート電極と積み上げ拡散層との間に
存在するサイドウォールを除去するので、その間がエア
ー又は真空となりその誘電率が小さくなる。従って、ゲ
ートとソース/ドレイン間の寄生容量を小さくすること
ができ、延いては高速性に優れた性能の高い積み上げ拡
散層型MOS半導体装置を得ることができる。
According to the method of manufacturing the stacked diffusion layer type MOS semiconductor device of the present invention, the sidewall existing between the gate electrode and the stacked diffusion layer is removed, so that air or vacuum is formed between them and the dielectric constant thereof is reduced. . Therefore, it is possible to reduce the parasitic capacitance between the gate and the source / drain, and thus it is possible to obtain a stacked diffusion layer type MOS semiconductor device having a high speed and a high performance.

【0009】[0009]

【実施例】以下、本発明積み上げ拡散層型MOS半導体
装置の製造方法を図示実施例に従って詳細に説明する。
図1(A)乃至(D)は本発明積み上げ拡散層型MOS
半導体装置の製造方法の一つの実施例の要部を工程順に
示す断面図である。尚、本積み上げ拡散層型MOS半導
体装置の製造方法の説明にあたり積み上げ拡散層3及び
オフセット層4に形成した凹部6の内側面にオフセット
層7aを形成するまでの工程については図2(A)乃至
(D)に示した工程と全く同じなので図示、説明を省略
し、それ以後の工程について説明する。そして、全図を
通して共通する部分には共通の符号を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a stacked diffusion layer type MOS semiconductor device of the present invention will be described in detail below with reference to the illustrated embodiments.
1A to 1D are stacked diffusion layer type MOSs according to the present invention.
FIG. 6 is a cross-sectional view showing the main parts of one embodiment of a method for manufacturing a semiconductor device in the order of steps. It should be noted that, in describing the method of manufacturing the stacked diffusion layer type MOS semiconductor device, steps up to forming the offset layer 7a on the inner surface of the recess 6 formed in the stacked diffusion layer 3 and the offset layer 4 will be described with reference to FIGS. Since it is exactly the same as the step shown in FIG. 3D, the illustration and description thereof will be omitted, and the subsequent steps will be described. Further, common parts are denoted by common reference numerals throughout the drawings.

【0010】(A)サイドウォール7aの形成後、図3
(A)と全く同じように不純物8をイオン打込みしてV
thの調節をし、次に、半導体基板1の表面部を加熱酸
化することによりゲート絶縁膜9を形成し、その後、断
面T字状のゲート電極10を形成し、そして、積み上げ
拡散層3内の不純物を半導体基板1表面部に拡散させて
ソース11s、ドレイン11dを形成する。図1(A)
はソース11s、11d形成後の状態を示す。
(A) After formation of the side wall 7a, FIG.
Impurity 8 is ion-implanted in the same manner as in (A), and V
Then, the gate insulating film 9 is formed by adjusting the th and then heating and oxidizing the surface portion of the semiconductor substrate 1. Then, the gate electrode 10 having a T-shaped cross section is formed, and the stacked diffusion layer 3 is formed. The impurities are diffused into the surface of the semiconductor substrate 1 to form the source 11s and the drain 11d. Figure 1 (A)
Shows the state after forming the sources 11s and 11d.

【0011】(B)次に、図1(B)に示すように、オ
フセット層4及びサイドウォール7bをエッチングによ
り除去する。 (C)次に、ステップカバレッジの悪い成膜法、例えば
スパッタリングにより図1(C)に示すように層間絶縁
膜14を形成する。すると、該層間絶縁膜14はゲート
電極10と積み上げ拡散層3との間の部分、即ちサイド
ウォール7aが除去された部分15に入り込むことがな
く、その部分15を外部から密閉する。従って、そのサ
イドウォール7aが除去された部分15は真空又はエア
ーからなる中空部となる。
(B) Next, as shown in FIG. 1B, the offset layer 4 and the sidewall 7b are removed by etching. (C) Next, the interlayer insulating film 14 is formed as shown in FIG. 1C by a film forming method having poor step coverage, for example, sputtering. Then, the interlayer insulating film 14 does not enter the portion between the gate electrode 10 and the stacked diffusion layer 3, that is, the portion 15 where the sidewall 7a is removed, and seals the portion 15 from the outside. Therefore, the portion 15 where the sidewall 7a is removed becomes a hollow portion made of vacuum or air.

【0012】SiO2 からなるサイドウォール7aは
3.9程度の比誘電率を有するが、そのサイドウォール
7aが真空又はエアーに置換されるので、誘電率は、
3.9分の1に激減する。従って、ゲート電極・ソース
/ドレイン間寄生容量も非常に小さくなる。即ち、略
3.9分の1になる。 (D)その後、層間絶縁膜12、4に対する選択的エッ
チングによりコンタクトホールを形成し、しかる後、配
線膜13を形成する。図1(D)は配線膜13の形成を
終えた積み上げ拡散層型MOS半導体装置を示す。
The side wall 7a made of SiO 2 has a relative dielectric constant of about 3.9, but since the side wall 7a is replaced with vacuum or air, the dielectric constant is
It will be drastically reduced to 1 / 3.9. Therefore, the parasitic capacitance between the gate electrode and the source / drain is also very small. That is, it is about 1 / 3.9. (D) After that, contact holes are formed by selective etching on the interlayer insulating films 12 and 4, and thereafter, the wiring film 13 is formed. FIG. 1D shows a stacked diffusion layer type MOS semiconductor device in which the formation of the wiring film 13 has been completed.

【0013】このような積み上げ拡散層型MOS半導体
装置の製造方法によれば、ゲート電極と積み上げ拡散層
との間に存在するサイドウォールを除去するので、その
間がエアー又は真空となりその誘電率が小さくなる。従
って、ゲートとソース/ドレインとの間の寄生容量を小
さくすることができ、延いては高速性に優れた性能の高
い積み上げ拡散層型MOS半導体装置を得ることができ
る。尚、中空部15は必ずしも絶縁膜14により完全に
外部から密閉されていることは必要ではない。サイドウ
ォール7aが除去された部分がエアー等の気体で満たさ
れているか真空になっていればよい。
According to such a method of manufacturing the stacked diffusion layer type MOS semiconductor device, since the sidewall existing between the gate electrode and the stacked diffusion layer is removed, air or vacuum is formed between them and the dielectric constant thereof is small. Become. Therefore, it is possible to reduce the parasitic capacitance between the gate and the source / drain, and thus it is possible to obtain a stacked diffusion layer type MOS semiconductor device having excellent high speed and high performance. The hollow part 15 does not necessarily need to be completely sealed from the outside by the insulating film 14. The part where the sidewall 7a is removed may be filled with a gas such as air or may be in a vacuum.

【0014】[0014]

【発明の効果】本発明積み上げ拡散層型MOS半導体装
置の製造方法は、ゲート電極の形成後、オフセット層及
びサイドウォールを除去する工程を有することを特徴と
するものである。従って、本発明積み上げ拡散層型MO
S半導体装置の製造方法によれば、ゲート電極と積み上
げ拡散層との間に存在するサイドウォールを除去するの
で、その間がエアー又は真空となりその誘電率が小さく
なる。従って、ゲートとソース/ドレイン間の寄生容量
を小さくすることができ、延いては高速性に優れた性能
の高い積み上げ拡散層型MOS半導体装置を得ることが
できる。
The method of manufacturing the stacked diffusion layer type MOS semiconductor device of the present invention is characterized by including a step of removing the offset layer and the sidewall after forming the gate electrode. Therefore, the stacked diffusion layer type MO of the present invention
According to the method for manufacturing an S semiconductor device, the sidewall existing between the gate electrode and the stacked diffusion layer is removed, so that air or vacuum is provided between them and the dielectric constant thereof is reduced. Therefore, it is possible to reduce the parasitic capacitance between the gate and the source / drain, and thus it is possible to obtain a stacked diffusion layer type MOS semiconductor device having a high speed and a high performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)乃至(D)は本発明積み上げ拡散層型M
OS半導体装置の製造方法の一つの実施例の要部を示す
断面図である。
1A to 1D are stacked diffusion layer types M according to the present invention.
FIG. 6 is a cross-sectional view showing the main parts of one embodiment of a method for manufacturing an OS semiconductor device.

【図2】(A)乃至(D)は積み上げ拡散層型MOS半
導体装置の製造方法の従来例の前半を工程順に示す断面
図である。
2A to 2D are cross-sectional views showing, in the order of steps, the first half of a conventional example of a method for manufacturing a stacked diffusion layer type MOS semiconductor device.

【図3】(A)乃至(C)は積み上げ拡散層型MOS半
導体装置の製造方法の従来例の後半を工程順に示す断面
図である。
3A to 3C are cross-sectional views showing, in the order of steps, the latter half of a conventional example of a method for manufacturing a stacked diffusion layer type MOS semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 3 積み上げ拡散層 4 オフセット層 6 凹部 7a サイドウォール 10 ゲート電極 15 中空部 1 Semiconductor Substrate 3 Stacked Diffusion Layer 4 Offset Layer 6 Recess 7a Sidewall 10 Gate Electrode 15 Hollow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に積み上げ拡散層とそれを
覆うオフセット層を形成する工程と、 上記積み上げ拡散層及びオフセット層の少なくともゲー
ト電極を形成すべき部分を除去するエッチング工程と、 上記積み上げ拡散層及びオフセット層の除去によりゲー
ト電極すべき部分に形成された凹部の内側面にサイドウ
ォールを形成する工程と、 上記サイドウォールの内側の部分にゲート電極を形成す
る工程と、 を有する積み上げ拡散層型MOS半導体装置の製造方法
において、 上記ゲート電極の形成後、上記オフセット層及び上記サ
イドウォールを除去する工程を有することを特徴とする
積み上げ拡散層型MOS半導体装置の製造方法
1. A step of forming a stacked diffusion layer and an offset layer covering the stacked diffusion layer on a semiconductor substrate, an etching step of removing at least a portion of the stacked diffusion layer and the offset layer where a gate electrode is to be formed, and the stacked diffusion. And a step of forming a sidewall on the inner side surface of the recess formed in the portion to be the gate electrode by removing the offset layer, and a step of forming the gate electrode on the inner side of the sidewall. A method of manufacturing a stacked-type MOS semiconductor device, comprising the step of removing the offset layer and the sidewall after forming the gate electrode.
JP25383493A 1993-09-14 1993-09-14 Manufacturing method of stacked diffusion layer type MOS semiconductor device Expired - Fee Related JP3230351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25383493A JP3230351B2 (en) 1993-09-14 1993-09-14 Manufacturing method of stacked diffusion layer type MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25383493A JP3230351B2 (en) 1993-09-14 1993-09-14 Manufacturing method of stacked diffusion layer type MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH0786589A true JPH0786589A (en) 1995-03-31
JP3230351B2 JP3230351B2 (en) 2001-11-19

Family

ID=17256789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25383493A Expired - Fee Related JP3230351B2 (en) 1993-09-14 1993-09-14 Manufacturing method of stacked diffusion layer type MOS semiconductor device

Country Status (1)

Country Link
JP (1) JP3230351B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794577A2 (en) * 1996-03-07 1997-09-10 Nec Corporation FET with a source/drain and gate structure and a method of producing the same
KR100360873B1 (en) * 1995-07-07 2003-03-03 엘지전자 주식회사 Method for manufacturing thin film transistor
JP2004273508A (en) * 2003-03-05 2004-09-30 Sharp Corp Semiconductor device and its manufacturing method
KR100623328B1 (en) * 2002-07-05 2006-09-11 매그나칩 반도체 유한회사 Method for fabrication cmos transistor of semiconductor device
US8729608B2 (en) 2012-01-31 2014-05-20 Panasonic Corporation Semiconductor device and method of manufacturing the device
CN105374743A (en) * 2014-08-08 2016-03-02 三菱电机株式会社 Method for manufacturing semiconductor device
EP1508164B1 (en) * 2002-05-11 2019-07-10 United Monolithic Semiconductors GmbH Method for producing a semiconductor component, and semiconductor component produced by the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360873B1 (en) * 1995-07-07 2003-03-03 엘지전자 주식회사 Method for manufacturing thin film transistor
EP0794577A2 (en) * 1996-03-07 1997-09-10 Nec Corporation FET with a source/drain and gate structure and a method of producing the same
EP0794577A3 (en) * 1996-03-07 1998-09-30 Nec Corporation FET with a source/drain and gate structure and a method of producing the same
US6051861A (en) * 1996-03-07 2000-04-18 Nec Corporation Semiconductor device with reduced fringe capacitance and short channel effect
US6124176A (en) * 1996-03-07 2000-09-26 Nec Corporation Method of producing a semiconductor device with reduced fringe capacitance and short channel effect
EP1508164B1 (en) * 2002-05-11 2019-07-10 United Monolithic Semiconductors GmbH Method for producing a semiconductor component, and semiconductor component produced by the same
KR100623328B1 (en) * 2002-07-05 2006-09-11 매그나칩 반도체 유한회사 Method for fabrication cmos transistor of semiconductor device
JP2004273508A (en) * 2003-03-05 2004-09-30 Sharp Corp Semiconductor device and its manufacturing method
US8729608B2 (en) 2012-01-31 2014-05-20 Panasonic Corporation Semiconductor device and method of manufacturing the device
CN105374743A (en) * 2014-08-08 2016-03-02 三菱电机株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3230351B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US5633181A (en) Fabrication method of semiconductor integrated circuit device having capacitors, bipolar transistors and igfets
JPS59188974A (en) Manufacture of semiconductor device
JPH06177345A (en) Semiconductor memory and its manufacture
JP3229665B2 (en) Method of manufacturing MOSFET
JPH02295163A (en) Manufacture of semiconductor memory
US5677210A (en) Method of producing a fully planarized concave transistor
JPH0786589A (en) Manufacture of laminated-diffused-layer type mos semiconductor device
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH09312331A (en) Semiconductor device and manufacture thereof
KR100308072B1 (en) Manufacturing method of semiconductor device
GB2345578A (en) A method of manufacturing a semiconductor device including a trench
KR20040012321A (en) Method for fabricating a BiCMOS transistor
JP3125929B2 (en) Method for manufacturing semiconductor device
JPS6129148B2 (en)
JPH067596B2 (en) Method for manufacturing semiconductor device
JPH0225073A (en) Manufacture of semiconductor element
JPH0665221B2 (en) Method for manufacturing semiconductor device
KR100372638B1 (en) Method of fabricating MOSFET
JPH08316303A (en) Semiconductor device and its manufacturing method
KR0149942B1 (en) Method for fabricating cmos device
JPH11150266A (en) Semiconductor device and manufacture thereof
JPH0945913A (en) Semiconductor integrated circuit and its manufacture
JPH08213492A (en) Semiconductor device and its production
JPS61134058A (en) Manufacture of semiconductor device
JPH08236608A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees