JPH0778634A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0778634A
JPH0778634A JP5223256A JP22325693A JPH0778634A JP H0778634 A JPH0778634 A JP H0778634A JP 5223256 A JP5223256 A JP 5223256A JP 22325693 A JP22325693 A JP 22325693A JP H0778634 A JPH0778634 A JP H0778634A
Authority
JP
Japan
Prior art keywords
lithium
acid
electrolytic solution
secondary battery
oxycarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5223256A
Other languages
Japanese (ja)
Other versions
JP3060796B2 (en
Inventor
Kenichi Morigaki
健一 森垣
Takahiro Teraoka
孝浩 寺岡
Noriko Kabuto
紀子 兜
Kazunori Haraguchi
和典 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5223256A priority Critical patent/JP3060796B2/en
Publication of JPH0778634A publication Critical patent/JPH0778634A/en
Application granted granted Critical
Publication of JP3060796B2 publication Critical patent/JP3060796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium secondary battery excellent in the charge/ discharge cycle characteristics by enhancing the charging/discharging efficiency of a lithium electrode, and suppressing the generation of lithium dendorite. CONSTITUTION:Negative electrodes using lithium metal or lithium alloy as active material are arranged with positive electrodes using metal oxide, metal sulfide, etc., as active material where an organic electrolytic solution and separators are interposed, wherein 0.001-1% by wt. oxycarbonic acid or its derivative is added to the organic electrolytic solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液を用い、ア
ルカリ金属であるリチウムまたはリチウム合金を負極活
物質とするリチウム電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery which uses an organic electrolyte and uses lithium or lithium alloy which is an alkali metal as a negative electrode active material.

【0002】[0002]

【従来の技術】有機電解液を用い、リチウムなどのアル
カリ金属を負極活物質とするリチウム二次電池は、水溶
液系の二次電池に比べてエネルギー密度が高く、かつ低
温特性が優れていることから注目を集めている。
2. Description of the Related Art A lithium secondary battery using an organic electrolytic solution and an alkali metal such as lithium as a negative electrode active material has higher energy density and excellent low temperature characteristics than an aqueous secondary battery. Is attracting attention from.

【0003】しかしながら、充電によって生ずる活性な
リチウムが電解液の有機溶媒と反応することや、析出し
たリチウムがデンドライト状に成長し、析出リチウムと
溶媒との反応により絶縁層が形成されるために電子伝導
性のないリチウムが生成すること(R.Selim and Bro,J.
Electrochem.Soc,121,1457(1974)など)により、リチウ
ム極の充放電効率が悪い。
However, the active lithium generated by charging reacts with the organic solvent of the electrolytic solution, and the deposited lithium grows in the form of dendrite, and the reaction between the deposited lithium and the solvent forms an insulating layer, so that electrons are generated. Production of non-conductive lithium (R. Selim and Bro, J.
Electrochem.Soc, 121,1457 (1974)), the charge / discharge efficiency of the lithium electrode is poor.

【0004】また、デンドライト状に成長したリチウム
により電池の内部短絡が発生することなどの問題点があ
り、実用的に十分なリチウム二次電池は得られていな
い。
Further, there is a problem that an internal short circuit of the battery occurs due to the lithium grown in the dendrite form, and a lithium secondary battery practically sufficient has not been obtained.

【0005】従来、このようなリチウム極の問題点を解
決するために、リチウム極に種々の合金、例えばLi−
Al合金(特開昭63−114062号、63−285
878号公報など)を用いることや、電解液に種々の添
加物や新規溶媒を用いること、例えば有機Li化合物
(特開平1−286262号公報)、ジカルボン酸化合
物(特開昭64−30178号公報)、無水コハク酸
(特開平1−134872号公報)などの提案がなされ
ているが、いずれも十分な改良に至っていない。
Conventionally, in order to solve the problems of the lithium electrode, various alloys such as Li- have been added to the lithium electrode.
Al alloy (Japanese Patent Laid-Open No. 63-114062, 63-285)
No. 878, etc.), various additives and new solvents are used in the electrolytic solution, for example, organic Li compounds (JP-A-1-286262) and dicarboxylic acid compounds (JP-A-64-30178). ), Succinic anhydride (Japanese Patent Laid-Open No. 1-134872) and the like have been proposed, but none of them has been sufficiently improved.

【0006】[0006]

【発明が解決しようとする課題】上記構成において、充
電時にリチウム負極上にデンドライト状のリチウムが析
出し、セパレータを貫通して正極側に達し内部短絡が発
生する課題や、充電時に析出した活性なリチウムが電解
液と反応することや反応によって生じた絶縁性被膜のた
めに析出したリチウムが電気的に孤立し、次の放電に用
いられず充放電効率が低下するという課題を有してい
た。
In the above structure, dendrite-like lithium is deposited on the lithium negative electrode during charging, penetrates the separator and reaches the positive electrode side, and an internal short circuit occurs. There is a problem in that the lithium that has reacted with the electrolytic solution and the lithium that is deposited due to the insulating coating formed by the reaction are electrically isolated and are not used for the next discharge, and the charge and discharge efficiency decreases.

【0007】本発明は上記従来の課題を解決するもの
で、充電時のリチウム極のデンドライト発生を抑制し、
リチウム極の充放電効率の良いリチウム二次電池を提供
することを目的とする。
The present invention solves the above-mentioned conventional problems by suppressing the generation of dendrites at the lithium electrode during charging,
An object of the present invention is to provide a lithium secondary battery having a high charge / discharge efficiency of a lithium electrode.

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、本発明のリチウム二次電池はエチレンカーボネイ
ト、プロピレンカーボネイト、ジメトキシエタンなどの
有機溶媒にオキシカルボン酸またはオキシカルボン酸誘
導体を添加剤として混合して用いたものである。
To achieve this object, the lithium secondary battery of the present invention comprises an organic solvent such as ethylene carbonate, propylene carbonate or dimethoxyethane mixed with an oxycarboxylic acid or an oxycarboxylic acid derivative as an additive. It was used.

【0009】[0009]

【作用】オキシカルボン酸またはオキシカルボン酸誘導
体を添加剤として用いることにより、カーボネイト系な
どの従来の溶媒だけの場合と異なったリチウムと電解液
の界面が形成されていると考えられる。オキシカルボン
酸はアルコールとカルボン酸の両方の性質・反応性を有
し、共にプロトン性の水素が存在することから、従来は
リチウム電池系には不適当な物質とされていた。しか
し、添加量を限定することによりガス発生反応などの影
響を少なくし、カルボキシル基、水酸基のリチウム表面
への部分的な反応による電析表面の活性化もしくはリチ
ウム表面への優先的な吸着が生じることにより、デンド
ライトの発生・成長を抑制しているのではないかと考え
られる。また、オキシカルボン酸のリチウム表面への優
先的な吸着によりプロピレンカーボネイトやジメトキシ
エタンなどが活性なリチウムと反応することを阻害する
ために、リチウム極の充放電効率を改善するものではな
いかと考えられる。
It is considered that by using oxycarboxylic acid or an oxycarboxylic acid derivative as an additive, a different interface between lithium and the electrolytic solution is formed, which is different from the case of using a conventional solvent such as carbonate. Oxycarboxylic acid has both properties and reactivity of alcohol and carboxylic acid, and both of them have protic hydrogen, and thus have been conventionally regarded as unsuitable substances for lithium battery systems. However, by limiting the addition amount, the influence of gas generation reaction etc. is reduced, and the partial reaction of the carboxyl group or hydroxyl group on the lithium surface causes activation of the electrodeposited surface or preferential adsorption on the lithium surface. Therefore, it is thought that the generation and growth of dendrites are suppressed. In addition, it is thought that it may improve the charge / discharge efficiency of the lithium electrode because it inhibits the reaction of propylene carbonate or dimethoxyethane with active lithium due to the preferential adsorption of oxycarboxylic acid on the lithium surface. .

【0010】このような活性なオキシカルボン酸または
オキシカルボン酸誘導体を添加剤として有効に作用させ
るには一定の添加量の範囲とすることが必要であり、種
々検討した結果、添加剤としてオキシカルボン酸または
オキシカルボン酸誘導体は0.001重量%以上である
こと、1重量%以上添加した場合には電池の内部抵抗が
増大することなどが分かった。これは、オキシカルボン
酸またはオキシカルボン酸誘導体とリチウムとの反応な
どによるガス発生・電解液の変質などが生じたものと考
えられる。従って、オキシカルボン酸またはオキシカル
ボン酸誘導体の添加量は0.001〜1重量%の範囲が
適当である。これらの作用により、充電時のデンドライ
ト発生を抑制し、充放電効率のよいリチウム二次電池を
得ることができる。
In order for such an active oxycarboxylic acid or oxycarboxylic acid derivative to act effectively as an additive, it is necessary to set the addition amount within a certain range. As a result of various studies, oxycarboxylic acid was added as an additive. It was found that the acid or oxycarboxylic acid derivative is 0.001% by weight or more, and that the addition of 1% by weight or more increases the internal resistance of the battery. It is considered that this is due to gas generation and alteration of the electrolytic solution due to the reaction between the oxycarboxylic acid or the oxycarboxylic acid derivative and lithium. Therefore, the addition amount of the oxycarboxylic acid or the oxycarboxylic acid derivative is appropriately in the range of 0.001 to 1% by weight. Due to these actions, generation of dendrites during charging can be suppressed, and a lithium secondary battery with good charge / discharge efficiency can be obtained.

【0011】[0011]

【実施例】以下本発明の実施例について、図を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1は、本発明の実施例に用
いた直径20mm高さ1.6mmのコイン形電池の断面図で
ある。図において、1はステンレス製ケース、2はステ
ンレス製封口板、3は負極活物質の金属リチウムで封口
板の内面に圧着されている。4はポリエチレン製セパレ
ータである。5は正極活物質の二酸化マンガンと導電材
のカーボンブラックと結着剤のフッ素樹脂を重量比8
0::10:10で混合し、直径14.5mm高さ0.8
mmのペレット状に成型したものである。6はポリプロピ
レン製ガスケットである。そして、ケース1内には、電
解液が充填されている。電解液はプロピレンカーボネイ
ト(PC)とジメトキシエタン(DME)を体積比5
0:50の配合比で混合した混合溶媒に、電解質として
過塩素酸リチウム(LiClO4 )を1モル/lの濃度に
溶解し、さらにグリコール酸を0.05重量%添加させ
たものである。
(Embodiment 1) FIG. 1 is a sectional view of a coin-shaped battery used in an embodiment of the present invention and having a diameter of 20 mm and a height of 1.6 mm. In the figure, 1 is a case made of stainless steel, 2 is a sealing plate made of stainless steel, and 3 is metallic lithium as a negative electrode active material, which is pressure-bonded to the inner surface of the sealing plate. 4 is a polyethylene separator. 5 is a weight ratio of manganese dioxide as a positive electrode active material, carbon black as a conductive material, and fluororesin as a binder.
Mix at 0 :: 10: 10, diameter 14.5mm, height 0.8
It was molded into mm pellets. 6 is a polypropylene gasket. The case 1 is filled with the electrolytic solution. The electrolytic solution contains propylene carbonate (PC) and dimethoxyethane (DME) in a volume ratio of 5
Lithium perchlorate (LiClO 4 ) was dissolved at a concentration of 1 mol / l as an electrolyte in a mixed solvent mixed at a compounding ratio of 0:50, and 0.05% by weight of glycolic acid was further added.

【0013】(実施例2)電解液へのグリコール酸の添
加量を0.001重量%としたものを用いたこと以外は
実施例1と同一の構成とした。
Example 2 The same constitution as in Example 1 was used except that the amount of glycolic acid added to the electrolytic solution was 0.001% by weight.

【0014】(実施例3)電解液へのグリコール酸の添
加量を1重量%としたものを用いたこと以外は実施例1
と同一の構成とした。
Example 3 Example 1 was repeated except that the amount of glycolic acid added to the electrolytic solution was 1% by weight.
It has the same configuration as.

【0015】(実施例4)電解液への添加物質をリンゴ
酸ジメチルエステルとし、その添加量を0.2重量%と
したものを用いたこと以外は実施例1と同一の構成とし
た。
(Example 4) The same constitution as in Example 1 was adopted except that malic acid dimethyl ester was used as a substance added to the electrolytic solution and the addition amount thereof was 0.2% by weight.

【0016】(比較例)電解液の混合溶媒を、従来通り
オキシカルボン酸、オキシカルボン酸誘導体を用いず、
プロピレンカーボネイト(PC)とジメトキシエタン
(DME)を体積比50:50で混合したものを用いた
こと以外は実施例1と同一の構成とした。
(Comparative Example) A mixed solvent of an electrolytic solution was used as in the conventional method without using oxycarboxylic acid or an oxycarboxylic acid derivative.
The same configuration as in Example 1 was used except that a mixture of propylene carbonate (PC) and dimethoxyethane (DME) in a volume ratio of 50:50 was used.

【0017】図2は、上記実施例1〜4と比較例の電池
を0.5mAの電流で充放電サイクルを行った際の放電容
量と充放電サイクルの関係を示したものである。図から
明らかなように、オキシカルボン酸またはオキシカルボ
ン酸誘導体を混合した本発明の実施例はいずれも、充放
電サイクルによる放電容量の劣化が比較例である従来例
よりも改良されていることが分かる。また添加量も0.
001〜1重量%の範囲が好ましいことが明らかであ
る。オキシカルボン酸またはオキシカルボン酸誘導体を
添加することによって充放電効率が改良できる理由は不
明であるが、オキシカルボン酸に特有のカルボン酸のカ
ルボキシル基、アルコールの水酸基の両方の作用によ
り、リチウムと電解液の界面に安定な有機被膜層が形成
され、デンドライト発生を抑制し、充放電効率を向上さ
せているものと考えられる。
FIG. 2 shows the relationship between the discharge capacity and the charge / discharge cycle when the batteries of Examples 1 to 4 and Comparative Example were charged / discharged at a current of 0.5 mA. As is clear from the figure, in all of the examples of the present invention in which an oxycarboxylic acid or an oxycarboxylic acid derivative is mixed, the deterioration of the discharge capacity due to the charge / discharge cycle is improved as compared with the conventional example which is a comparative example. I understand. Also, the addition amount is 0.
It is clear that the range from 001 to 1% by weight is preferred. The reason why the charge / discharge efficiency can be improved by adding an oxycarboxylic acid or an oxycarboxylic acid derivative is not clear, but due to the action of both the carboxyl group of the carboxylic acid unique to the oxycarboxylic acid and the hydroxyl group of the alcohol, lithium and electrolysis It is considered that a stable organic coating layer is formed at the interface of the liquid, which suppresses dendrite generation and improves charge / discharge efficiency.

【0018】なお本実施例ではオキシカルボン酸として
グリコール酸を用いたが、乳酸、リンゴ酸などを用いて
もよい。また、オキシカルボン酸誘導体としてリンゴ酸
ジメチルエステルを用いたが、2量体であるジグリコー
ル酸、ラクチドやエステルのグリコール酸エチルエステ
ル、乳酸メチルエステル、乳酸エチルエステル、リンゴ
酸ジエチルエステルなどを用いてもよい。さらに、混合
溶媒としても本実施例のプロピレンカーボネイト、ジメ
トキシエタン以外のエチレンカーボネイト、2−メチル
テトラハイドロフラン、ジエチレンカーボネイト、γ−
ブチルラクトン、1,3−ジオキソランなどを用いても
よい。また同様に電解質も本実施例の過塩素酸リチウム
(LiClO4 )以外の6フッ化リン酸リチウム(Li
PF6 ),トリフロロメタンスルホン酸リチウム(Li
CF3 SO3 )などを用いてもよい。正極活物質も本実
施例の二酸化マンガン以外の酸化物、硫化物を用いるこ
とも可能である。
In this embodiment, glycolic acid was used as the oxycarboxylic acid, but lactic acid, malic acid, etc. may be used. Although malic acid dimethyl ester was used as the oxycarboxylic acid derivative, diglycolic acid, which is a dimer, glycolic acid ethyl ester of lactide or ester, lactic acid methyl ester, lactic acid ethyl ester, malic acid diethyl ester, and the like were used. Good. Further, as a mixed solvent, propylene carbonate of this example, ethylene carbonate other than dimethoxyethane, 2-methyltetrahydrofuran, diethylene carbonate, γ-
Butyl lactone, 1,3-dioxolane and the like may be used. Similarly, for the electrolyte, lithium hexafluorophosphate (Li) other than lithium perchlorate (LiClO 4 ) of this embodiment is used.
PF 6), trifluoromethane sulfonic lithium (Li
CF 3 SO 3 ) or the like may be used. As the positive electrode active material, oxides or sulfides other than manganese dioxide of this embodiment can be used.

【0019】[0019]

【発明の効果】このように本発明は、リチウム金属また
はリチウム合金からなる負極と、有機電解液およびセパ
レータを介して、金属酸化物または金属硫化物を活物質
とする正極とを配してなるリチウム二次電池において、
上記有機電解液にオキシカルボン酸またはオキシカルボ
ン酸誘導体を添加させることにより、リチウム極の充放
電効率を向上させ、充放電サイクル特性の優れたリチウ
ム二次電池を得ることができるものである。
As described above, according to the present invention, a negative electrode made of lithium metal or a lithium alloy and a positive electrode having a metal oxide or a metal sulfide as an active material are arranged via an organic electrolytic solution and a separator. In the lithium secondary battery,
By adding an oxycarboxylic acid or an oxycarboxylic acid derivative to the organic electrolytic solution, the charge / discharge efficiency of the lithium electrode can be improved, and a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の一実施例の断面図FIG. 1 is a sectional view of an embodiment of a lithium secondary battery of the present invention.

【図2】本発明の実施例と従来例によるリチウム二次電
池の充放電サイクル特性図
FIG. 2 is a charge / discharge cycle characteristic diagram of lithium secondary batteries according to an example of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 負極 4 セパレータ 5 正極 6 ガスケット 1 Case 2 Sealing Plate 3 Negative Electrode 4 Separator 5 Positive Electrode 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原口 和典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazunori Haraguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムまたはリチウム合金を負極活物
質とし、有機電解液とセパレータを介して、金属酸化物
または金属硫化物である正極活物質を配してなるリチウ
ム二次電池において、前記電解液が、オキシカルボン酸
またはオキシカルボン酸誘導体のうち少なくとも一種を
添加剤として0.001〜1重量%含有していることを
特徴とするリチウム二次電池。
1. A lithium secondary battery in which lithium or a lithium alloy is used as a negative electrode active material and a positive electrode active material that is a metal oxide or a metal sulfide is disposed through an organic electrolytic solution and a separator, wherein the electrolytic solution is A lithium secondary battery containing 0.001 to 1% by weight of at least one of an oxycarboxylic acid or an oxycarboxylic acid derivative as an additive.
【請求項2】 前記オキシカルボン酸がグリコール酸、
乳液またはリンゴ酸であり、前記オキシカルボン酸誘導
体がグリコール酸エチルエステル、ジグリコール酸、乳
酸メチルエステル、乳酸エチルエステル、ラクチド、リ
ンゴ酸ジメチルエステル、またはリンゴ酸ジエチルエス
テルである請求項1のリチウム二次電池。
2. The oxycarboxylic acid is glycolic acid,
An emulsion or malic acid, wherein the oxycarboxylic acid derivative is glycolic acid ethyl ester, diglycolic acid, lactic acid methyl ester, lactic acid ethyl ester, lactide, malic acid dimethyl ester, or malic acid diethyl ester. Next battery.
JP5223256A 1993-09-08 1993-09-08 Lithium secondary battery Expired - Fee Related JP3060796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223256A JP3060796B2 (en) 1993-09-08 1993-09-08 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223256A JP3060796B2 (en) 1993-09-08 1993-09-08 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0778634A true JPH0778634A (en) 1995-03-20
JP3060796B2 JP3060796B2 (en) 2000-07-10

Family

ID=16795255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223256A Expired - Fee Related JP3060796B2 (en) 1993-09-08 1993-09-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3060796B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331709A (en) * 1999-05-19 2000-11-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2005222947A (en) * 2004-02-04 2005-08-18 Samsung Sdi Co Ltd Organic electrolytic solution and lithium battery that adopts it
WO2007004813A1 (en) * 2005-07-01 2007-01-11 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
EP2251926A1 (en) * 2008-03-13 2010-11-17 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
WO2011030487A1 (en) * 2009-09-11 2011-03-17 パナソニック株式会社 Lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331709A (en) * 1999-05-19 2000-11-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2005222947A (en) * 2004-02-04 2005-08-18 Samsung Sdi Co Ltd Organic electrolytic solution and lithium battery that adopts it
US7514182B2 (en) 2004-02-04 2009-04-07 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP4493513B2 (en) * 2004-02-04 2010-06-30 三星エスディアイ株式会社 Organic electrolyte and lithium battery using the same
WO2007004813A1 (en) * 2005-07-01 2007-01-11 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
US7910249B2 (en) 2005-07-01 2011-03-22 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
EP2251926A1 (en) * 2008-03-13 2010-11-17 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
EP2251926A4 (en) * 2008-03-13 2012-12-05 Ube Industries Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
US8580429B2 (en) 2008-03-13 2013-11-12 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
WO2011030487A1 (en) * 2009-09-11 2011-03-17 パナソニック株式会社 Lithium battery
CN102165634A (en) * 2009-09-11 2011-08-24 松下电器产业株式会社 Lithium battery

Also Published As

Publication number Publication date
JP3060796B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH0778634A (en) Lithium secondary battery
JPH0778632A (en) Lithium secondary battery
JPH0582168A (en) Nonaqueous electrolyte battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JP2643046B2 (en) Non-aqueous secondary battery
JP2975627B2 (en) Battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JPH06338346A (en) Lithium secondary battery
JP2000090970A (en) Lithium secondary battery
JP3054435B2 (en) Non-aqueous electrolyte battery
JPH05190205A (en) Lithium secondary battery
JP2940710B2 (en) Non-aqueous electrolyte battery
JP3157209B2 (en) Non-aqueous electrolyte secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees