JP2940710B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2940710B2
JP2940710B2 JP2320401A JP32040190A JP2940710B2 JP 2940710 B2 JP2940710 B2 JP 2940710B2 JP 2320401 A JP2320401 A JP 2320401A JP 32040190 A JP32040190 A JP 32040190A JP 2940710 B2 JP2940710 B2 JP 2940710B2
Authority
JP
Japan
Prior art keywords
battery
lithium
aqueous electrolyte
electrolyte battery
furanone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2320401A
Other languages
Japanese (ja)
Other versions
JPH04190574A (en
Inventor
浩志 渡辺
精司 吉村
昌利 高橋
竜司 大下
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2320401A priority Critical patent/JP2940710B2/en
Publication of JPH04190574A publication Critical patent/JPH04190574A/en
Application granted granted Critical
Publication of JP2940710B2 publication Critical patent/JP2940710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、正極と、リチウムを活物質とする負極と、
非水電解液とを備えた非水電解液電池に係り、特に非水
電解液の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Application Field The present invention relates to a positive electrode, a negative electrode using lithium as an active material,
The present invention relates to a non-aqueous electrolyte battery provided with a non-aqueous electrolyte, and more particularly to improvement of a non-aqueous electrolyte.

(ロ) 従来の技術 負極活物質としてリチウムを用いる非水電解液電池
は、特に高エネルギー密度を有するために注目されてお
り、活発な研究が行われている。
(B) Conventional technology Non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention because they have a particularly high energy density, and are being actively studied.

ところで、負極活性物質であるリチウムは非常に活性
であるために、電解液を構成する溶媒と反応し、正極や
負極表面にそれらの重合物や分解生成物などが付着する
場合がある。そのため、電池を長期保存した場合に、電
池の内部インピーダンスが上昇し、保存特性が低下した
り、二次電池の場合にはサイクル特性の劣化を引き起こ
すなどの問題がある。
By the way, since lithium, which is a negative electrode active material, is very active, it reacts with a solvent constituting an electrolytic solution, and a polymer or a decomposition product thereof may adhere to a surface of a positive electrode or a negative electrode in some cases. Therefore, when the battery is stored for a long period of time, there are problems such as an increase in the internal impedance of the battery and a decrease in storage characteristics, and in the case of a secondary battery, deterioration of cycle characteristics.

従って、電解液と負極リチウムとの反応性を抑制する
ことは、この種電池の実用化において重要な課題となっ
ている。
Therefore, suppressing the reactivity between the electrolyte and the negative electrode lithium is an important issue in putting this type of battery to practical use.

従来、この種電池の電解液に用いられる有機溶媒とし
ては、1,2−ジメトキシエタン(DME)、テトラヒドロフ
ラン(THF)、1,3−ジオキソラン(DOXL)などの低粘度
エーテル系溶媒や、プロピレンカーボネート(PC)、エ
チレンカーボネート(EC)、γ−ブチロラクトン(γ−
BL)などの環状炭酸エステル或るいは環状ラクトン等が
あるが、上記のような問題を解決する目的で、例えば2
−メチル−テトラヒドロフラン(2Me−THF)や4−メチ
ル−1,3−ジオキソラン(4Me−DOXL)などのように、エ
ーテル系溶媒の一部を置換した誘導体などを用いること
が提案されているが、いずれも十分に満足できるものと
は言い難い。
Conventionally, organic solvents used for the electrolyte of this type of battery include low-viscosity ether solvents such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), and 1,3-dioxolane (DOXL), and propylene carbonate. (PC), ethylene carbonate (EC), γ-butyrolactone (γ-
There are cyclic carbonates such as BL) and cyclic lactones, and the like.
It has been proposed to use a derivative obtained by partially substituting an ether solvent, such as -methyl-tetrahydrofuran (2Me-THF) or 4-methyl-1,3-dioxolane (4Me-DOXL). Neither can be said to be fully satisfactory.

(ハ) 発明が解決しようとする課題 本発明は、リチウムを負極活物質とする一次或いは二
次の非水素電解液電池において、特に負極リチウムと非
水電解液との反応を抑制し、保存特性の改良を図ること
を第1の目的とする。更に、二次電池においては、保存
特性の改良に加えて、充放電サイクル特性を改良するこ
とを第2の目的とする。
(C) Problems to be Solved by the Invention The present invention relates to a primary or secondary non-hydrogen electrolyte battery using lithium as a negative electrode active material, in particular, to suppress the reaction between the negative electrode lithium and the non-aqueous electrolyte and to improve the storage characteristics. It is a first object to improve the above. It is a second object of the secondary battery to improve the charge / discharge cycle characteristics in addition to the storage characteristics.

(ニ) 課題を解決するための手段 正極と、リチウムを活物質とする負極と、非水電解液
とを備える非水電解液電池において、前記非水電解液を
構成する溶媒として少なくとも1種類のC−C環内不飽
和結合を持つ5員環以上の環状ラクトンを用いる。
(D) Means for Solving the Problems In a non-aqueous electrolyte battery including a positive electrode, a negative electrode using lithium as an active material, and a non-aqueous electrolyte, at least one kind of a solvent constituting the non-aqueous electrolyte is used. A 5- or more-membered cyclic lactone having an unsaturated bond in the CC ring is used.

(ホ) 作用 リチウムを負極に用いる非水電解液電池では、高活性
なリチウムと電解液とが反応し、正極や負極表面に、そ
れらの重合物や分解生成物が被膜として付着することが
知られている。こうした被膜はいずれも不活性でイオン
導電性が悪く、電池の内部インピーダンスを上昇させ、
電池特性を劣化させると共に、二次電池ではそのサイク
ル特性をも低下させる原因となる。
(E) Action In a non-aqueous electrolyte battery using lithium as the negative electrode, it is known that highly active lithium reacts with the electrolyte, and that the polymer or decomposition product adheres as a film to the surface of the positive electrode or the negative electrode. Have been. All of these coatings are inert, have poor ionic conductivity, increase the internal impedance of the battery,
In addition to deteriorating the battery characteristics, it also causes the cycle characteristics of the secondary battery to deteriorate.

しかし、本発明の骨子である少なくとも1つのC−C
環内不飽和結合を有する5員環以上の環状ラクトンを溶
媒として用いると、そのような電解液に関する問題点が
大きく改善され、保存等による電池の内部インピーダン
スの上昇が抑えられ、保存特性が向上すると共に、二次
電池の場合はサイクル特性も向上することが明かとなっ
た。
However, at least one C-C
When a cyclic lactone having five or more members having an unsaturated ring in the ring is used as a solvent, the problems relating to such an electrolytic solution are greatly improved, an increase in the internal impedance of the battery due to storage or the like is suppressed, and storage characteristics are improved. In addition, it was found that the cycle characteristics were improved in the case of the secondary battery.

この理由を考察するに、C−C環内不飽和結合を持つ
環状ラクトンは、構造的にはプロピレンカーボネートや
γ−ブチロラクトンなどに近いため、溶媒としての特性
は優れている。そして、環内不飽和結合が、負極の活性
なリチウムに対して、その表面に優先的に配位して、ご
く薄い被膜を形成し、リチウムと電解液との反応を抑制
するとともに、リチウムイオンに対して強い配向性を持
つことにより、電解液中でリチウムイオンを溶媒和して
安定化させ、充電時の負極へのリチウムの析出が均一に
起こるためと考えられる。又、環内不飽和結合により、
溶媒自体もリチウムによる還元を受けにくくなり安定化
されると考えられる。
Considering the reason, the cyclic lactone having a CC internal unsaturated bond is structurally similar to propylene carbonate, γ-butyrolactone, and the like, and therefore has excellent properties as a solvent. Then, the unsaturated ring in the ring is preferentially coordinated with the active lithium of the negative electrode on the surface thereof to form a very thin film, thereby suppressing the reaction between lithium and the electrolytic solution, It is considered that by having a strong orientation with respect to, lithium ions are solvated and stabilized in the electrolytic solution, and lithium is uniformly deposited on the negative electrode during charging. Also, due to the unsaturated ring in the ring,
It is considered that the solvent itself is less susceptible to reduction by lithium and is stabilized.

更に、溶質としてフッ素系ルイス酸リチウム塩を用い
ると、溶質に含まれる微量のフッ素イオンがリチウムと
反応し、前述のリチウム表面被膜との混成被膜を生成す
るために、リチウム表面は安定で緻密な保護被膜で覆わ
れ、保存特性がより改善されると考えられる。
Furthermore, when a fluorine-based lithium Lewis acid salt is used as a solute, a small amount of fluorine ions contained in the solute react with lithium to form a hybrid film with the above-described lithium surface film, so that the lithium surface is stable and dense. It is considered that the storage characteristics are further improved by being covered with the protective film.

又、C−C環内不飽和結合を持つ5員環以上の環状ラ
クトンは、溶媒として単独で用いても良いが、他の溶媒
と混合して用いても良く、その場合には、本発明溶媒の
全溶媒に対する割合は、5vol%以上の混合比であれば良
い。
The 5- or more-membered cyclic lactone having a CC intracyclic unsaturated bond may be used alone as a solvent, or may be used as a mixture with another solvent. The ratio of the solvent to the total solvent may be a mixing ratio of 5 vol% or more.

(ヘ) 実施例 以下に、本発明の実施例につき詳述する。(F) Examples Hereinafter, examples of the present invention will be described in detail.

実施例1 本実施例では、非水電解液一次電池を例にとり詳述す
る。
Example 1 In this example, a nonaqueous electrolyte primary battery will be described in detail as an example.

第1図は、本発明の一実施例としての扁平型非水電解
液一次電池の断面図を示す。1はリチウム金属よりなる
負極であり、フェライト系ステンレス鋼(SUS430)から
なる断面略コ字状の負極缶2の内底面に固着せる負極集
電体3に圧着されている。4は正極であって、350〜430
℃の温度範囲で熱処理した二酸化マンガンを活物質とし
て用い、この二酸化マンガンと、導電剤としてのカーボ
ン粉末と、結着剤としてのフッ素樹脂粉末とを85:10:5
の重量比で混合した後に加圧成型し、更に250〜350℃で
熱処理したものであり、正極缶5の内底面に固着せる正
極集電体6に圧着されている。7はセパレータであっ
て、本発明の骨子とする電解液が含浸されている。電解
液として2(5H)−フラノンと1,2−ジメトキシエタン
の等体積混合溶媒に、溶質としてトリフルオロメタンス
ルホン酸リチウムを1モル/溶解させたものを用い
た。8はポリプロピレン製の絶縁パッキングであり、電
池寸法は直径20.0mm、高さ2.5mmである。そして、この
電池を本発明電池(A)とした。
FIG. 1 is a cross-sectional view of a flat nonaqueous electrolyte primary battery as one embodiment of the present invention. Reference numeral 1 denotes a negative electrode made of lithium metal, which is pressure-bonded to a negative electrode current collector 3 that is fixed to the inner bottom surface of a negative electrode can 2 made of ferritic stainless steel (SUS430) and having a substantially U-shaped cross section. 4 is a positive electrode, 350 to 430
Using manganese dioxide heat-treated in a temperature range of ° C. as an active material, this manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder were mixed at 85: 10: 5.
And then heat-treated at a temperature of 250 to 350 ° C., which is press-bonded to a positive electrode current collector 6 fixed to the inner bottom surface of the positive electrode can 5. Reference numeral 7 denotes a separator, which is impregnated with an electrolytic solution serving as a framework of the present invention. As the electrolyte, a solution prepared by dissolving 1 mol / mol of lithium trifluoromethanesulfonate as a solute in an equal volume mixed solvent of 2 (5H) -furanone and 1,2-dimethoxyethane was used. Reference numeral 8 denotes an insulating packing made of polypropylene, and the battery dimensions are 20.0 mm in diameter and 2.5 mm in height. This battery was designated as battery (A) of the present invention.

比較例1 電解液として2(5H)−フラノンを用いる代わりに、
γ−ブチロラクトンを用いた以外は前記実施例と同様の
電池を作製した。これを比較電池(X)とした。
Comparative Example 1 Instead of using 2 (5H) -furanone as the electrolyte,
A battery similar to that of the above example was prepared except that γ-butyrolactone was used. This was designated as Comparative Battery (X).

第2図に、本発明電池(A)及び比較電池(X)の初
期の放電特性を、また第3図に、これらを60℃恒温槽中
にて3ヶ月保存した後の放電特性を示す。尚、これらの
放電はいずれも300Ωの定抵抗放電で行った。これより
明らかなように、本発明電池は保存後の容量劣化が少な
く、保存特性に優れていることが分かる。又、本発明電
池(A)の保存前後での電池の内部インピーダンスを測
定した結果、表1に示すとおり、本発電池は保存による
インピーダンスの増加が小さいことが分かる。
FIG. 2 shows the initial discharge characteristics of the battery of the present invention (A) and the comparative battery (X), and FIG. 3 shows the discharge characteristics of these batteries after being stored in a 60 ° C. constant temperature bath for 3 months. Each of these discharges was performed by a constant resistance discharge of 300Ω. As is clear from this, it can be seen that the battery of the present invention has a small capacity deterioration after storage and has excellent storage characteristics. Moreover, as a result of measuring the internal impedance of the battery of the present invention (A) before and after storage, as shown in Table 1, it is found that the increase in impedance of the battery of the present invention due to storage is small.

実施例2 本実施例では、非水電解液二次電池を例にとり詳述す
る。
Example 2 In this example, a non-aqueous electrolyte secondary battery will be described as an example.

負極にリチウム−アルミニウム合金を、正極活物質に
予めリチウムを含有させたマンガン酸化物を用いた以外
は実施例1と同様の、直径24.0mm、高さ3.0mmの電池を
作製し、この電池を本発明電池(B)とする。
A battery having a diameter of 24.0 mm and a height of 3.0 mm was produced in the same manner as in Example 1 except that a lithium-aluminum alloy was used for the negative electrode, and a manganese oxide containing lithium in advance for the positive electrode active material was used. This is referred to as a battery (B) of the present invention.

比較例2 電解液として2(5H)−フラノンを用いる代わりに、
γ−ブチロラクトンを用いた以外は前記実施例2と同様
の電池を作製した。そして、この電池を比較電池(Y)
とした。
Comparative Example 2 Instead of using 2 (5H) -furanone as the electrolyte,
A battery similar to that of Example 2 was prepared except that γ-butyrolactone was used. Then, this battery is used as a comparative battery (Y)
And

第4図に、本発明電池(B)と比較電池(Y)の充放
電サイクル特性を示す。充放電条件は、充放電電流を2m
A、充放電時間を4時間とし、放電時間内に1.5Vに達し
た電池を寿命とした。これより明白なるように、本発明
電池(B)は比較電池(Y)に比べサイクル寿命が増加
し、サイクル特性が向上していることが伺える。
FIG. 4 shows the charge / discharge cycle characteristics of the battery of the present invention (B) and the comparative battery (Y). The charge / discharge conditions are as follows:
A, The charge / discharge time was 4 hours, and the battery that reached 1.5 V within the discharge time was regarded as the life. As apparent from this, it can be seen that the battery of the present invention (B) has an increased cycle life and improved cycle characteristics as compared with the comparative battery (Y).

実施例3 本実施例は非水電解液二次電池の他の実施例を例にと
り詳述する。
Embodiment 3 This embodiment will be described in detail with reference to another embodiment of the non-aqueous electrolyte secondary battery.

電解液として、2(5H)−フラノンと2−メチル−テ
トラヒドロフランの等体積混合溶液に、溶質としてヘキ
サフルオロリン酸リチウムを1モル/溶解させたもの
を用いた以外は実施例2と同様の電池を作製しこれを本
発明電池(C)とした。
A battery similar to that of Example 2 except that a solution in which lithium hexafluorophosphate was dissolved at an amount of 1 mol / solute in an equal volume mixed solution of 2 (5H) -furanone and 2-methyl-tetrahydrofuran was used as an electrolytic solution. And this was designated as Battery (C) of the present invention.

比較例3 電解液として、2(5H)−フラノンを用いる代わりに
プロピレンカーボネートを用いた以外は前記実施例3と
同様の電池を作製し、比較電池(Z)とした。
Comparative Example 3 A battery similar to that of Example 3 was prepared except that propylene carbonate was used instead of using 2 (5H) -furanone as an electrolytic solution, and a comparative battery (Z) was obtained.

第5図に、本発明電池(C)及び比較電池(Z)の充
放電サイクル特性を示す。充放電条件は実施例2と同様
である。これより明白なるように、本発明電池(C)は
比較電池(Z)に比べ、サイクル寿命が増加し、サイク
ル特性が向上していることが分かる。
FIG. 5 shows the charge / discharge cycle characteristics of the battery of the present invention (C) and the comparative battery (Z). The charge and discharge conditions are the same as in Example 2. As is clear from this, it can be seen that the battery of the present invention (C) has an increased cycle life and improved cycle characteristics as compared with the comparative battery (Z).

以上本発明電池の実施例につき述べたが、本発明の効
果は上述した2(5H)−フラノン以外でも、少なくとも
1つのC−C環内不飽和結合を持つ5員環以上の環状ラ
クトンであれば同様の効果が得られるが、特に5員環又
は6員環の場合が構造的にも安定で効果が高い。
Although the embodiment of the battery of the present invention has been described above, the effect of the present invention is not limited to the above-mentioned 2 (5H) -furanone, but may be a 5- or more-membered cyclic lactone having at least one CC internal unsaturated bond. A similar effect can be obtained, but a 5-membered or 6-membered ring is particularly structurally stable and highly effective.

(ト) 発明の効果 上述した如く、正極と、リチウムを活物質とする負極
と、非水電解液とを備えた非水電解液電池において、前
記非水電解液に少なくともC−C環内不飽和結合を有す
る5員環以上の環状ラクトンを用いることにより、この
種電池の保存特性及び、二次電池においては充放電サイ
クル特性をも向上し得るものであり、その工業的価値は
極めて大である。
(G) Effect of the Invention As described above, in a non-aqueous electrolyte battery including a positive electrode, a negative electrode using lithium as an active material, and a non-aqueous electrolyte, the non-aqueous electrolyte has at least a CC inner ring. By using a 5-membered or more cyclic lactone having a saturated bond, the storage characteristics of this type of battery and the charge / discharge cycle characteristics of a secondary battery can be improved, and its industrial value is extremely large. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明電池の一実施例である扁平型の非水電
解液一次電池の断面図を、第2図及び第3図は、一次電
池の保存前後の放電特性を、第4図及び第5図は、二次
電池の充放電サイクル特性をそれぞれ示す。 1……負極、2……負極缶、3……負極集電体、4……
正極、5……正極缶、6……正極集電体、7……セパレ
ータ、8……絶縁パッキング。
FIG. 1 is a cross-sectional view of a flat type non-aqueous electrolyte primary battery which is one embodiment of the battery of the present invention. FIGS. 2 and 3 show discharge characteristics before and after storage of the primary battery. 5 and 5 show the charge / discharge cycle characteristics of the secondary battery, respectively. 1 ... Negative electrode, 2 ... Negative electrode can, 3 ... Negative electrode current collector, 4 ...
Positive electrode, 5: positive electrode can, 6: positive electrode current collector, 7: separator, 8: insulating packing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大下 竜司 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 H01M 6/16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuji Oshita 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Norihiro Furukawa 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/40 H01M 6/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、リチウムを活物質とする負極と、
非水電解液とを備えた非水電解液電池において、前記非
水電解液の溶媒として少なくともC−C環内不飽和結合
を有する5員環以上の環状ラクトンを用いることを特徴
とする非水電解液電池。
1. A positive electrode, a negative electrode using lithium as an active material,
A non-aqueous electrolyte battery comprising a non-aqueous electrolyte, wherein a non-aqueous electrolyte is characterized by using a 5- or more-membered cyclic lactone having at least a CC internal unsaturated bond as a solvent for the non-aqueous electrolyte. Electrolyte battery.
【請求項2】前記C−C環内不飽和結合を有する5員環
以上の環状ラクトンが、2−フラノン及びその誘導体よ
り選択された少なくとも1つであることを特徴とする請
求項記載の非水電解液電池。
2. The method according to claim 1, wherein the cyclic lactone having five or more rings having an unsaturated bond in the CC ring is at least one selected from 2-furanone and derivatives thereof. Water electrolyte battery.
【請求項3】前記2−フラノン及びその誘導体が、2
(5H)−フラノンまたは2(3H)−フラノンであること
を特徴とする請求項記載の非水電解液電池。
3. The method of claim 2, wherein said 2-furanone and its derivative are 2
4. The non-aqueous electrolyte battery according to claim 3, wherein the battery is (5H) -furanone or 2 (3H) -furanone.
【請求項4】前記非水電解液の溶質として、少なくとも
1種類のフッ素系ルイス酸リチウム塩を用いることを特
徴とする請求項記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein at least one kind of fluorine-based lithium Lewis acid salt is used as a solute of the non-aqueous electrolyte.
【請求項5】前記フッ素系ルイス酸リチウム塩が、トリ
フルオロメタンスルホン酸リチウム(LiCF3SO3)、ヘキ
サフルオロリン酸リチウム(LiPF6)、テトラフルオロ
ホウ酸リチウム(LiBF4)、ヘキサフルオロ砒酸リチウ
ム(LiAsF6)、ヘキサフルオロアンチモン酸リチウム
(LiSbF6)からなる群より選択された少なくとも1つで
あることを特徴とする請求項記載の非水電解液電池。
5. The lithium fluoride Lewis acid salt includes lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and lithium hexafluoroarsenate. (LiAsF 6), the non-aqueous electrolyte battery according to claim wherein the at least one selected from the group consisting of lithium hexafluoroantimonate (LiSbF 6).
JP2320401A 1990-11-22 1990-11-22 Non-aqueous electrolyte battery Expired - Fee Related JP2940710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320401A JP2940710B2 (en) 1990-11-22 1990-11-22 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320401A JP2940710B2 (en) 1990-11-22 1990-11-22 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH04190574A JPH04190574A (en) 1992-07-08
JP2940710B2 true JP2940710B2 (en) 1999-08-25

Family

ID=18121057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320401A Expired - Fee Related JP2940710B2 (en) 1990-11-22 1990-11-22 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2940710B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581454B2 (en) * 2004-03-29 2010-11-17 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP5017800B2 (en) * 2005-05-12 2012-09-05 ソニー株式会社 Secondary battery electrolyte and secondary battery

Also Published As

Publication number Publication date
JPH04190574A (en) 1992-07-08

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
JP2001223025A (en) Lithium secondary battery
JP3369583B2 (en) Non-aqueous electrolyte battery
JP2016184572A (en) Electrochemical energy storage device
JP6865400B2 (en) Non-aqueous electrolyte secondary battery
JP2005268017A (en) Nonaqueous electrolyte secondary battery
JP2016149351A (en) Electrochemical energy storage device
KR100408085B1 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH0582168A (en) Nonaqueous electrolyte battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP2940710B2 (en) Non-aqueous electrolyte battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JP3123749B2 (en) Non-aqueous electrolyte secondary battery
JP3054435B2 (en) Non-aqueous electrolyte battery
JP3060796B2 (en) Lithium secondary battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JPH087923A (en) Electrolyte for lithium secondary cell
JPH0778632A (en) Lithium secondary battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JP2994705B2 (en) Non-aqueous electrolyte battery
JP2975627B2 (en) Battery
JP3157209B2 (en) Non-aqueous electrolyte secondary battery
JP2002134170A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees