JPH087923A - Electrolyte for lithium secondary cell - Google Patents

Electrolyte for lithium secondary cell

Info

Publication number
JPH087923A
JPH087923A JP6164584A JP16458494A JPH087923A JP H087923 A JPH087923 A JP H087923A JP 6164584 A JP6164584 A JP 6164584A JP 16458494 A JP16458494 A JP 16458494A JP H087923 A JPH087923 A JP H087923A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
active agent
surface active
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6164584A
Other languages
Japanese (ja)
Inventor
Tamiko Anpo
多美子 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6164584A priority Critical patent/JPH087923A/en
Publication of JPH087923A publication Critical patent/JPH087923A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance charging/discharging characteristics by adding the specified amount of surface active agent in a fluorine system having perfluoro-alkyl, groups to organic electrolyte, forming an absorption film composed of surface active agent over the surface of lithium, and thereby forming a smooth deposition surface. CONSTITUTION:Surface active agent in a fluorine system having perfluoro-alkyl groups is added in concentration from 0.005 to 0.1% by weight as additives to electrolyte. In this case, an absorption film composed of surface active agent is formed over the surface of lithium, nuclear formation takes precedence to grain growth when lithium electrolytic deposition is carried out, concurrently grain growth becomes uniform in direction, and a smooth deposition surface can thereby be obtained. By this constitution, the reversibility of lithium charging/discharging can be enhanced, concurrently the absorption film composed of surface active agent acts as a protection film so as to control the reaction of constituents in electrolyte with lithium, as a result, a lithium secondary cell can thereby be obtained, the negative electrode of which is excellent in charging/discharging characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム2次電池の電
解液に関するものであり、特に有機溶媒電解液の添加剤
による改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for a lithium secondary battery, and more particularly to improvement by an additive for an organic solvent electrolytic solution.

【0002】[0002]

【従来の技術】負極活物質に金属リチウムを用いた2次
電池は、次世代の高エネルギ−密度電池としてその開発
が期待されている。従来、この種の電池の電解液に適す
る有機溶媒として用いられているのは、例えばプロピレ
ンカーボネイト(PC)、γ−ブチルラクトン(γ−B
L)、エチレンカーボネイト(EC)等のエステル系溶
媒や、テトラヒドロフラン(THF)、1,2ジメトキ
シエタン(DME)、1、3ジオキソラン等のエーテル
系溶媒等である。又溶質として、過塩素酸リチウム(L
iClO4)、リチウムヘキサフルオロホスフェート
(LiPF6)、リチウムヘキサフルオロアルセネート
(LiAsF6)、ホウフッ化リチウム(LiBF4)、
トリフルオロメタンスルホン酸リチウム(LiCF3
3)等のリチウム塩が用いられる。
2. Description of the Related Art A secondary battery using metallic lithium as a negative electrode active material is expected to be developed as a next-generation high energy-density battery. Conventionally, for example, propylene carbonate (PC) and γ-butyl lactone (γ-B) have been used as an organic solvent suitable for the electrolyte of this type of battery.
L), ester solvents such as ethylene carbonate (EC), and ether solvents such as tetrahydrofuran (THF), 1,2 dimethoxyethane (DME) and 1,3 dioxolane. As a solute, lithium perchlorate (L
iClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium borofluoride (LiBF 4 ),
Lithium trifluoromethanesulfonate (LiCF 3 S
A lithium salt such as O 3 ) is used.

【0003】[0003]

【発明が解決しようとする課題】従来、この種の金属リ
チウムを負極活物質とする2次電池は、充放電の繰り返
しに伴う金属リチウムの劣化が早いために、充分なサイ
クル寿命が得られないという問題があった。この原因の
一つとして、従来用いられている電解液で充放電を繰り
返すと、電解液と活性なリチウム金属との反応等によ
り、負極上に充放電に関与しない電気的に孤立したリチ
ウムの表面皮膜が生成するためと言われている。又、サ
イクル寿命に大きく関与していると考えられるリチウム
の電析形態に対して、電解液の組成が及ぼす影響の大き
いことが指摘されており、平滑なリチウム析出表面が得
られる電解液組成が模索されている。
Conventionally, a secondary battery using this kind of metallic lithium as a negative electrode active material cannot obtain a sufficient cycle life because the metallic lithium deteriorates rapidly with repeated charging and discharging. There was a problem. As one of the causes of this, when charging and discharging are repeated with a conventionally used electrolytic solution, the surface of the electrically isolated lithium that does not participate in charging and discharging on the negative electrode is caused by the reaction between the electrolytic solution and active lithium metal. It is said that a film is formed. Further, it has been pointed out that the composition of the electrolytic solution has a large influence on the electrodeposition form of lithium, which is considered to be largely involved in the cycle life, and that the electrolytic solution composition that can obtain a smooth lithium deposition surface is Being sought.

【0004】この問題を解決するために、有機電解液中
に種々の添加剤を加えることで、リチウム/電解液の反
応を制御し、電析形態を改善しようとする試みがなされ
ている。サイクル効率の改善が認められた添加剤として
は、2−メチルフラン(2MeF)、ピロール(P
y)、チオフェン(Tp)等の複素環化合物、ベンゼン
等の無極性化合物、弗化水素(HF)や、よう化物等の
無機化合物等が挙げられるが、いずれもその効果は充分
ではない。
In order to solve this problem, it has been attempted to add various additives to the organic electrolyte to control the reaction of lithium / electrolyte and improve the electrodeposition form. Additives that have been found to improve cycle efficiency include 2-methylfuran (2MeF) and pyrrole (P
Examples thereof include y), heterocyclic compounds such as thiophene (Tp), nonpolar compounds such as benzene, inorganic compounds such as hydrogen fluoride (HF) and iodide, but the effects are not sufficient.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決すべくなされたものであり、従来の電解液にフッ素系
界面活性剤の内一種以上を電解液中に添加することを特
徴とする。
The present invention has been made to solve the above-mentioned problems and is characterized in that one or more fluorine-containing surfactants are added to the conventional electrolytic solution. To do.

【0006】即ち、本発明は、従来リチウム2次電池に
用いられている有機電解液に、パーフルオロアルキル基
を有するフッ素系界面活性剤の内一種以上を0.005
wt%以上0.1wt%以下添加することにより、充放
電サイクル特性に優れたリチウム2次電池を提供するも
のである。
That is, according to the present invention, one or more kinds of fluorine-containing surfactants having a perfluoroalkyl group are added to the organic electrolytic solution conventionally used for lithium secondary batteries in 0.005.
The addition of wt% or more and 0.1 wt% or less provides a lithium secondary battery having excellent charge / discharge cycle characteristics.

【0007】[0007]

【作用】フッ素系界面活性剤を電解液に添加することに
より、リチウム表面には界面活性剤の吸着膜が形成され
る。この吸着膜により、リチウム電析の際に粒成長より
核発生の方が優先されるとともに、粒成長の方向が一様
になり、平滑な析出面が得られ、リチウムの充放電の可
逆性を向上させていると考えられる。又、界面活性剤に
よる吸着膜が保護膜として作用し、電解液中の成分とリ
チウムとの反応が制御されるという効果が期待できる。
By adding a fluorinated surfactant to the electrolytic solution, an adsorption film of the surfactant is formed on the lithium surface. With this adsorption film, nucleation is prioritized over grain growth during lithium electrodeposition, the grain growth direction is uniform, a smooth deposition surface is obtained, and reversibility of lithium charge / discharge is improved. It is considered to be improving. Further, the effect that the adsorption film of the surfactant acts as a protective film and the reaction between the components in the electrolytic solution and lithium is controlled can be expected.

【0008】界面活性剤の添加効果は、1mol/lL
iClO4/PC電解液に0.05から0.1wt%のパ
ーフルオロアルキル基を有する界面活性剤を添加した時
に最も大きく効果が現れた。添加するフッ素系界面活性
剤の添加濃度が、0.1wt%以上になると、リチウム
の析出を阻害する効果の方が大きくなると考えられ、濃
度0.005wt%以下では添加した効果が充分に得ら
れない。
The effect of adding a surfactant is 1 mol / lL
The greatest effect was obtained when 0.05 to 0.1 wt% of a surfactant having a perfluoroalkyl group was added to the iClO 4 / PC electrolyte. When the added concentration of the fluorine-based surfactant to be added is 0.1 wt% or more, the effect of inhibiting the precipitation of lithium is considered to be greater, and when the concentration is 0.005 wt% or less, the added effect is sufficiently obtained. Absent.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0010】(実施例1)1mol/lLiClO4
プロピレンカーボネイトに溶解させ、パーフルオロアル
キルカルボン酸ナトリウム、パーフルオロアルキルトリ
メチルアンモニウム塩、パーフルオロアルキルエチレン
オキサイドをそれぞれ0.1%添加したものをそれぞれ
電解液1,2,3とした。作用極(負極)にニッケル基
板、対極(正極)にリチウム、参照極(電位測定用)に
リチウムを用いて電池を構成し、まず、1mA/cm2
の定電流で30分間ニッケル基板上にリチウムを析出さ
せた後(Q=1.8C/cm2)、析出したリチウムを電
極電位が1.6V(vs.Li/Li+)に達するまで溶
解させた。この時の電気量から充放電の電流効率を求め
た。
(Example 1) 1 mol / l LiClO 4 was dissolved in propylene carbonate, and 0.1% of sodium perfluoroalkylcarboxylate, perfluoroalkyltrimethylammonium salt, and perfluoroalkylethylene oxide were added, respectively. Liquids 1, 2 and 3 were used. A battery is constructed by using a nickel substrate as a working electrode (negative electrode), lithium as a counter electrode (positive electrode), and lithium as a reference electrode (for potential measurement). First, 1 mA / cm 2
After depositing lithium on the nickel substrate at a constant current of 30 minutes (Q = 1.8 C / cm 2 ), the deposited lithium was dissolved until the electrode potential reached 1.6 V (vs. Li / Li + ). It was The current efficiency of charging / discharging was calculated from the amount of electricity at this time.

【0011】図1は、充放電サイクルを繰り返した時の
サイクル数に対する充放電効率(%)の変化を示す図で
ある。なお、比較のために、界面活性剤を添加しない電
解液を用いた時の充放電効率の変化も同図に示す(比較
例)。図1からわかるように、無添加の場合、サイクル
数を重ねるごとに充放電効率が低下するのがみられるの
に対し、パーフルオロアルキル基を有するフッ素系界面
活性剤の添加により、サイクル数を50回繰り返した後
も、効率の低下は、ほとんど見られなかった。
FIG. 1 is a diagram showing a change in charge / discharge efficiency (%) with respect to the number of cycles when the charge / discharge cycle is repeated. For comparison, a change in charge / discharge efficiency when an electrolyte solution containing no surfactant is used is also shown in the same figure (comparative example). As can be seen from FIG. 1, in the case of no addition, the charge / discharge efficiency is seen to decrease as the number of cycles is increased, whereas the number of cycles is increased by adding the fluorosurfactant having a perfluoroalkyl group. After repeating 50 times, there was almost no decrease in efficiency.

【0012】特に、パーフルオロアルキルカルボン酸ナ
トリウムを添加した電解液(電解液1)では、充放電効
率の値が高く、又、サイクルを繰り返しても、安定した
特性が得られた。
In particular, in the electrolytic solution (electrolytic solution 1) containing sodium perfluoroalkylcarboxylate, the charge / discharge efficiency was high, and stable characteristics were obtained even after repeated cycles.

【0013】(実施例2)実施例1と同様に電池を構成
し、電解液として1mol/lLiClO4をプロピレ
ンカーボネイトに溶解させ、パーフルオロアルキルカル
ボン酸ナトリウムを添加量を0.001から0.5wt%
まで変化させて添加したものを用いた。これを用いて、
実施例1と同様に充放電の電流効率を求めた。
Example 2 A battery was constructed in the same manner as in Example 1, 1 mol / l LiClO 4 was dissolved in propylene carbonate as an electrolytic solution, and sodium perfluoroalkylcarboxylate was added in an amount of 0.001 to 0.5 wt. %
What was added and changed to was used. With this,
The current efficiency of charging / discharging was obtained in the same manner as in Example 1.

【0014】表1に、パーフルオロアルキルカルボン酸
ナトリウムの添加量と、充放電サイクルを30回繰り返
した後の電流効率とを示す。
Table 1 shows the amount of sodium perfluoroalkylcarboxylate added and the current efficiency after repeating the charge / discharge cycle 30 times.

【0015】[0015]

【表1】 [Table 1]

【0016】又、図2に、電解液1,4,5,8を用い
た時のサイクル数に対する充放電効率の変化を示す。
FIG. 2 shows the change in charge / discharge efficiency with respect to the number of cycles when the electrolytic solutions 1, 4, 5, 8 were used.

【0017】表1及び図2からわかるように、界面活性
剤の添加効果がよく現れるのは、電解液1,5,6,7
で、添加量が0.005から0.1wt%の場合であっ
た。特に、電解液1と5の範囲である0.05から0.1
wt%添加した時が、最も効果が大きいことがわかっ
た。電解液8の場合は、添加量が低すぎるため、効果が
あまり現れず、無添加の場合(図1の比較例参照)と同
じように、サイクルを重ねるに従って、効率は低下し
た。一方、電解液4の場合電流効率が低下するのは、添
加量が多すぎるため、界面活性剤がリチウムの溶解析出
を阻害する傾向を示したものと考えられる。
As can be seen from Table 1 and FIG. 2, the effect of adding the surfactant is most apparent in the electrolytic solutions 1, 5, 6, 7
Then, it was the case where the added amount was 0.005 to 0.1 wt%. In particular, the range of electrolytes 1 and 5 is 0.05 to 0.1.
It was found that the effect was greatest when the addition was wt%. In the case of the electrolyte solution 8, since the amount added was too low, the effect did not appear so much, and as in the case of no addition (see the comparative example in FIG. 1), the efficiency decreased as the cycle was repeated. On the other hand, in the case of the electrolytic solution 4, it is considered that the reason why the current efficiency is lowered is that the surfactant tends to inhibit the dissolution and precipitation of lithium because the addition amount is too large.

【0018】なお、本発明のリチウム2次電池の電解液
に用いられる溶媒及びリチウム塩は、基本的に、本実施
例で用いられたものに限定されるものではない。
The solvent and lithium salt used in the electrolytic solution of the lithium secondary battery of the present invention are basically not limited to those used in this embodiment.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、従
来リチウム2次電池に用いられている有機電解液に、パ
ーフルオロアルキル基を有するフッ素系界面活性剤を
0.005から0.1wt%添加することにより、負極の
充放電サイクル特性に優れたリチウム2次電池を提供す
ることができる。
As described above, according to the present invention, the fluorine-containing surfactant having a perfluoroalkyl group is added to the organic electrolyte conventionally used in lithium secondary batteries in an amount of 0.005 to 0.005. By adding 1 wt%, it is possible to provide a lithium secondary battery having excellent negative electrode charge-discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電解液を用いたリチウム2次電池
の、充放電のサイクル数に対する充放電効率の関係を示
す特性図。
FIG. 1 is a characteristic diagram showing the relationship between charge / discharge efficiency and the number of charge / discharge cycles of a lithium secondary battery using an electrolytic solution according to the present invention.

【図2】界面活性剤の添加濃度を変化させた時の充放電
のサイクル数に対する充放電効率の関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between charge / discharge efficiency and the number of charge / discharge cycles when the concentration of surfactant added is changed.

【符号の説明】[Explanation of symbols]

1 電解液1 2 電解液2 3 電解液3 4 電解液4 5 電解液5 8 電解液8 1 Electrolyte 1 2 Electrolyte 2 3 Electrolyte 3 4 Electrolyte 4 5 Electrolyte 5 8 Electrolyte 8

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム塩を有機溶媒に溶解させたリチ
ウム2次電池用電解液において、前記電解液の添加剤と
して、パーフルオロアルキル基を有するフッ素系界面活
性剤の内一種以上を前記電解液中に添加したことを特徴
とするリチウム2次電池用電解液。
1. An electrolytic solution for a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, wherein, as an additive to the electrolytic solution, at least one of fluorochemical surfactants having a perfluoroalkyl group is used as the electrolytic solution. An electrolyte solution for a lithium secondary battery, which is added in the inside.
【請求項2】 請求項1記載のリチウム2次電池用電解
液において、添加されたパーフルオロアルキル基を有す
るフッ素系界面活性剤の濃度は、0.005から0.1w
t%であることを特徴とするリチウム2次電池用電解
液。
2. The electrolyte for a lithium secondary battery according to claim 1, wherein the concentration of the added fluorine-containing surfactant having a perfluoroalkyl group is 0.005 to 0.1 w.
An electrolytic solution for a lithium secondary battery, which is t%.
JP6164584A 1994-06-22 1994-06-22 Electrolyte for lithium secondary cell Pending JPH087923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164584A JPH087923A (en) 1994-06-22 1994-06-22 Electrolyte for lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164584A JPH087923A (en) 1994-06-22 1994-06-22 Electrolyte for lithium secondary cell

Publications (1)

Publication Number Publication Date
JPH087923A true JPH087923A (en) 1996-01-12

Family

ID=15795956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164584A Pending JPH087923A (en) 1994-06-22 1994-06-22 Electrolyte for lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH087923A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
JP2002033117A (en) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2002091497A2 (en) * 2001-05-09 2002-11-14 Lg Chem, Ltd. Electrolyte comprising non-ionic surfactant and lithium ion battery using the same
WO2011072792A1 (en) * 2009-12-17 2011-06-23 Li-Tec Battery Gmbh Lithium-ion battery
JP2020514962A (en) * 2017-05-15 2020-05-21 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
CN114914543A (en) * 2022-05-09 2022-08-16 四川大学 Electrolyte additive for efficiently inhibiting dendritic crystal, application thereof and lithium metal secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
JP2002033117A (en) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2002091497A2 (en) * 2001-05-09 2002-11-14 Lg Chem, Ltd. Electrolyte comprising non-ionic surfactant and lithium ion battery using the same
WO2002091497A3 (en) * 2001-05-09 2005-06-09 Lg Chemical Ltd Electrolyte comprising non-ionic surfactant and lithium ion battery using the same
US6960410B2 (en) 2001-05-09 2005-11-01 Lg Chem, Ltd. Electrolyte comprising non-ionic surfactant and lithium ion battery using the same
WO2011072792A1 (en) * 2009-12-17 2011-06-23 Li-Tec Battery Gmbh Lithium-ion battery
JP2013514609A (en) * 2009-12-17 2013-04-25 リ−テック・バッテリー・ゲーエムベーハー Lithium Ion Battery
JP2020514962A (en) * 2017-05-15 2020-05-21 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
US11133507B2 (en) 2017-05-15 2021-09-28 Lg Chem, Ltd. Lithium electrode and lithium secondary battery comprising same
CN114914543A (en) * 2022-05-09 2022-08-16 四川大学 Electrolyte additive for efficiently inhibiting dendritic crystal, application thereof and lithium metal secondary battery

Similar Documents

Publication Publication Date Title
US6852450B2 (en) Electrolyte for a lithium-sulfur battery and a lithium-sulfur battery using the same
US5352548A (en) Secondary battery
JP3760540B2 (en) Electrolyte for lithium secondary battery
WO2021208955A1 (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
JP2002075447A (en) Electrolyte liquid for lithium-sulfur cell, and lithium- sulfur cell using the same
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JPH10189008A (en) Lithium battery
JPH09245834A (en) Electrolytic solution for lithium secondary battery
US20040191629A1 (en) Positive electrode, non-aqueous electrolyte secondary battery, and method of manufacturing the same
EP0281352B1 (en) Lithium-lithium nitride anode
JPH10189041A (en) Electrolyte for lithium secondary battery
CN111313086B (en) Electrolyte and lithium ion battery
JPH06333598A (en) Electrolyte for lithium secondary battery
JPH0922722A (en) Electrolytic solution for lithium ion battery
JPH087923A (en) Electrolyte for lithium secondary cell
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
JPH09245833A (en) Electrolytic solution for lithium secondary battery
JP3408152B2 (en) Non-aqueous electrolyte secondary battery
JPH1131526A (en) Lithium secondary battery
JP2975627B2 (en) Battery
JPH0424824B2 (en)
JPH07153487A (en) Electrolyte for lithium secondary battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2940710B2 (en) Non-aqueous electrolyte battery