JPH0778271B2 - Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching - Google Patents

Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching

Info

Publication number
JPH0778271B2
JPH0778271B2 JP63204622A JP20462288A JPH0778271B2 JP H0778271 B2 JPH0778271 B2 JP H0778271B2 JP 63204622 A JP63204622 A JP 63204622A JP 20462288 A JP20462288 A JP 20462288A JP H0778271 B2 JPH0778271 B2 JP H0778271B2
Authority
JP
Japan
Prior art keywords
slab
streak unevenness
alloy
during etching
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63204622A
Other languages
Japanese (ja)
Other versions
JPH0254744A (en
Inventor
正臣 津田
俊彦 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP63204622A priority Critical patent/JPH0778271B2/en
Priority to CA 607827 priority patent/CA1319589C/en
Priority to KR1019890011655A priority patent/KR930006300B1/en
Priority to FR8911041A priority patent/FR2641546B1/en
Priority to DE19893927310 priority patent/DE3927310C2/en
Priority to FR909000060A priority patent/FR2641796B1/en
Publication of JPH0254744A publication Critical patent/JPH0254744A/en
Priority to US07/686,847 priority patent/US5325911A/en
Publication of JPH0778271B2 publication Critical patent/JPH0778271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エッチング時のスジむら抑制効果に優れるFe
−Ni系合金の製造方法に関し、特にカラーテレビブラウ
ン管のシャドウマスクや蛍光表示管等の電子機器用材料
として好適に用いられるFe−Ni系合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides Fe, which has an excellent effect of suppressing streak unevenness during etching.
The present invention relates to a method for producing a Ni-based alloy, and more particularly to a Fe-Ni-based alloy that is preferably used as a material for electronic devices such as shadow masks for color television Braun tubes and fluorescent display tubes.

なお、本発明のかかるFe−Ni系合金は、シャドウマスク
用36Niアンバー合金、リードフレーム用42Ni合金、低熱
膨張特性や磁気的特性に着目して使用される電子,電磁
用Fe−Ni系合金、および電磁用材料として用いられるパ
ーマロイ合金などのFe−Ni系合金の連続鋳造材によるも
のを対象としている。
Incidentally, the Fe-Ni-based alloy of the present invention, 36Ni amber alloy for shadow mask, 42Ni alloy for lead frame, electronic used for the low thermal expansion characteristics and magnetic characteristics, Fe-Ni-based alloy for electromagnetic, Also, it is intended for continuous cast materials of Fe-Ni alloys such as permalloy alloys used as electromagnetic materials.

〔従来の技術〕[Conventional technology]

カラーテレビブラウン管のシャドウマスク素材用鉄−ニ
ッケル合金鋼(Fe−Ni系合金)は、これをフォトエッチ
ング穿孔してシャドウマスクを製造する際に、白すじ模
様すなわり“スジむら”が発生する欠点のあることが指
摘されていた。
Iron-nickel alloy steel (Fe-Ni alloy) for shadow mask materials of color TV cathode-ray tubes produces white streaky patterns "streaks" when a shadow mask is manufactured by photo-etching perforation of this steel. It was pointed out that there were drawbacks.

従来、このエッチング時のスジむらの発生を抑制するた
めのいくつかの技術が提案されており、例えば特開昭60
−128253号公報に開示の技術では、普通造塊インゴット
を850℃以上に加熱後、各ヒートでのトータル断面減少
率40%以上の鍛造を施すことにより、ニッケルの成分偏
析部を軽減することを通じ、該スジむらの発生を抑制し
ている。
Heretofore, several techniques have been proposed for suppressing the occurrence of streak unevenness during etching.
According to the technology disclosed in Japanese Unexamined Patent Publication No. -128253, after heating an ordinary ingot at 850 ° C. or higher, forging is performed at a total cross-sectional reduction rate of 40% or more in each heat, thereby reducing the nickel segregation portion. The occurrence of the streak unevenness is suppressed.

また、特開昭61−223188号公報に開示の技術は、インゴ
ット製造時の偏析防止あるいは条材製造工程中での熱処
理によるニッケルの拡散処理を施すことにより、ニッケ
ルの偏析率,偏析帯を管理して、エッチングのスジむら
を抑制している。
Further, the technology disclosed in Japanese Patent Laid-Open No. 61-223188 controls the segregation rate and segregation zone of nickel by preventing segregation during ingot production or by performing nickel diffusion treatment by heat treatment during the strip manufacturing process. Thus, uneven etching streaks are suppressed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、特開昭60−128253号公報に開示された上
記従来技術は、トータル断面減少率が40%を超えるよう
な鍛造をすることが特徴であるが、一般にこの程度の作
業は普通に行われる負荷であり、かような方法では各種
元素の偏析がなかなか消滅せず、したがって、エッチン
グ時のスジむらの発生を防止するのには不十分であっ
た。
However, the above-mentioned conventional technique disclosed in JP-A-60-128253 is characterized in that forging is performed so that the total cross-section reduction rate exceeds 40%, but generally this degree of work is normally performed. This is a load, and segregation of various elements is not easily eliminated by such a method, and thus it was insufficient to prevent the occurrence of streak unevenness during etching.

一方、特開昭61−223188号公報に開示された上記従来技
術は、高温熱処理によるNiの拡散を通じてその成分偏析
を軽減することを特徴としているが、スラブ段階での加
熱に比べ板厚が薄いため酸化ロスが相対的に大きくな
り、歩留り低下が著しくなる点で問題点があった。
On the other hand, the above-mentioned conventional technique disclosed in Japanese Patent Laid-Open No. 61-223188 is characterized by reducing the segregation of its components through the diffusion of Ni by high temperature heat treatment, but the plate thickness is thinner than the heating at the slab stage. Therefore, there is a problem in that the oxidation loss is relatively large and the yield is significantly reduced.

また、これらの従来技術は、素材がいずれも普通造塊イ
ンゴットであり、そのため凝固組織には特に問題はない
ものの製品の歩留りが低く、コスト高になるという問題
点があった。
Further, these conventional techniques have a problem that the yield is low and the cost is high, although the material is an ordinary ingot, and therefore there is no particular problem with the solidification structure.

以上述べたように、各従来技術は、いずれもエッチング
時のスジむらを完全に克服することができないばかり
か、安価な製品を工業的に製造することができていない
のが実情であった。
As described above, none of the conventional techniques can completely overcome the streak unevenness at the time of etching, and it has not been possible to industrially manufacture an inexpensive product.

本発明の目的は、かかる斯界の実情に鑑み、エッチング
時にスジむらが発生することのない合金材料、すなわち
Niを30〜80%含有し、Bを0.001〜0.03%を含有するFe
−Ni系合金を連続鋳造材を使って製造する方法を提案す
るところにある。
An object of the present invention is, in view of the circumstances of the art, an alloy material that does not cause streaking during etching, that is,
Fe containing Ni of 30 to 80% and B of 0.001 to 0.03%
-We are proposing a method of manufacturing Ni-based alloys using continuous casting materials.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで、本発明者らは、上述の目的を実現すべく、Fe−
Ni系合金のスジむらについて種々研究を行った。その結
果、探り得たスジむらの原因として、CやSi,Mn,Crな
どの不純物元素の成分偏析、結晶組織の相違、が主た
るものであることを突きとめた。
Therefore, the present inventors have made Fe-
Various studies were conducted on the streak unevenness of Ni-based alloys. As a result, they found that the main causes of the uneven streaks that were found were component segregation of impurity elements such as C, Si, Mn, and Cr, and differences in crystal structure.

たとえば、CやSi,Mn,Crなどの不純物元素の成分偏析部
分は、他の部分に比べると、エッチングの速度が変わる
ため、フォトエッチング穿孔時に孔形状の差異を発生し
てスジむらの原因となるのである。
For example, in the component segregated portion of the impurity element such as C, Si, Mn, and Cr, the etching speed changes as compared with the other portions, so that the difference in the hole shape is caused during the photoetching perforation, which causes streak unevenness. It will be.

一方、結晶組織の相違については、たとえば、(100)
面が多く配向している個所は、他の部分に比べると、エ
ッチングの速度が速くなって、フォトエッチング穿孔時
に孔形状の差異を生じる。これは、鋳造時の凝固組織,
すなわち特定方位を有する柱状組織の存在に起因してお
り、この柱状組織は以後の加工,熱処理段階でも消滅す
ることなく、形を変えながら圧延方向に伸ばされ、最終
的にスジむらの原因をつくることになるのである。
On the other hand, regarding the difference in crystal structure, for example, (100)
A portion where a large number of planes are oriented has a higher etching rate than other portions, resulting in a difference in hole shape during photoetching perforation. This is the solidification structure during casting,
That is, it is caused by the existence of a columnar structure having a specific orientation, and this columnar structure is elongated in the rolling direction while changing the shape without disappearing in the subsequent processing and heat treatment steps, and finally causes the streak unevenness. It will be.

また、本発明者らが知見したとろこによれば、Fe−Ni系
合金に添加成分としてBを使用すると、スラブ加熱時に
上記柱状晶を分断し、ランダム化を加速させる効果のあ
ることが判明した。
In addition, according to the smelt found by the present inventors, it was found that the use of B as an additive component in the Fe-Ni alloy has an effect of severing the columnar crystals during slab heating and accelerating randomization. did.

このことから、本発明では、成分偏析の抑制のみなら
ず、Bの添加という相乗効果による結晶組織の調整をも
狙って、上述の課題の克服を試みた。
From this, in the present invention, an attempt was made to overcome the above-mentioned problems, aiming at not only the suppression of component segregation but also the adjustment of the crystal structure by the synergistic effect of the addition of B.

すなわち、その課題克服の手段として本発明は、 第1に、等軸晶率が20%以下のスラブの場合として、Ni
を30〜80wt%,Bを0.001〜0.03wt%含み,残部が主とし
てFeであるFe−Ni系合金の該連続鋳造スラブを、1000℃
以上の温度で1時間以上加熱保持すること、 そして、第2に、等軸晶率が20%を超えるスラブの場合
には、この連続鋳造スラブを950℃以上の温度で1時間
以上加熱保持することとして、エッチング時のスジむら
制御効果に優れるFe−Ni系合金の製造方法、 を提案する。
That is, as a means for overcoming the problem, the present invention firstly proposes, as a case of a slab having an equiaxed crystal ratio of 20% or less,
Of 30% to 80% by weight, 0.001 to 0.03% by weight of B, and the balance being mainly Fe, the continuously cast slab of the Fe-Ni alloy at 1000 ° C.
Secondly, heating and holding at the above temperature for 1 hour or more, and secondly, in the case of a slab having an equiaxed crystal ratio exceeding 20%, this continuous casting slab is heated and held at a temperature of 950 ° C or higher for 1 hour or more. Therefore, we propose a method for producing Fe-Ni alloys, which has an excellent effect of controlling streak unevenness during etching.

〔作用〕[Action]

さて、本発明において、素材についてのNi含有量の下限
を30wt%(以下は単に「%」で略記する)としたのは、
Fe−Ni系合金を上記機能材として使用する場合にこのNi
含有量が30%未満では十分な電磁気特性が発揮されず実
用に耐えないためであり、逆にNiが80%を超える場合、
電子,電磁用材料としての品質が劣化するためである。
In the present invention, the lower limit of the Ni content of the material is set to 30 wt% (hereinafter simply abbreviated as “%”)
When using a Fe-Ni alloy as the above functional material,
This is because if the content is less than 30%, sufficient electromagnetic characteristics are not exhibited and it cannot withstand practical use. Conversely, if Ni exceeds 80%,
This is because the quality of electronic and electromagnetic materials deteriorates.

なお、フォトエッチングにより穿孔される材料として
は、Ni50%以下のFe−Ni系合金を用いるのがより好適で
ある。
As a material to be perforated by photoetching, it is more preferable to use an Fe-Ni-based alloy containing 50% or less of Ni.

またBは、この発明のFe−Ni系合金の特性をきわだたせ
る重要な元素であり、CやSi,Mn,Crなど不純物元素の結
晶粒界への偏析を阻止すると共に、みずから結晶粒界や
他の欠陥部に優先的に凝集して再結晶の核となり、結晶
粒を微細化して等軸晶化を向上させる。しかし、このよ
うな作用は0.001%未満の含有量では不十分であり、含
有量が増加するにしたがって顕著な効果を示すが、0.03
%を超えて添加すると、M2B(Ni,Cr,Fe)の金属間化合
物の外に、C,O,Nを含む種々のホウ化物が生成し高温で
凝固割れを起こす危険性が高くなるので、上限は0.03%
に限定する必要がある。
In addition, B is an important element that brings out the characteristics of the Fe-Ni alloy of the present invention, and prevents segregation of impurity elements such as C, Si, Mn, and Cr to the crystal grain boundaries, and at the same time grain boundaries themselves. And preferentially agglomerate in other defect portions to become nuclei for recrystallization, and refine the crystal grains to improve equiaxed crystallization. However, such an effect is insufficient at a content of less than 0.001%, and a remarkable effect is exhibited as the content increases, but 0.03%
When added in excess of%, various boride compounds containing C, O, N are produced in addition to M 2 B (Ni, Cr, Fe) intermetallic compounds, increasing the risk of solidification cracking at high temperatures. So the upper limit is 0.03%
Need to be limited to.

本発明において採用するFe−Ni系合金の素材は、通常の
造塊材ではなく連続鋳造材とする。このように被処理材
を、連続鋳造材(スラブ)とする理由は、普通造塊材に
比べると、連続鋳造スラブの方がマクロ的成分偏析が少
なく、かつ加工,熱処理特性に優れるためである。
The Fe-Ni alloy material used in the present invention is not an ordinary ingot material but a continuous casting material. The reason why the material to be treated is a continuous cast material (slab) is that the continuous cast slab has less macroscopic component segregation and is excellent in processing and heat treatment characteristics as compared with the ordinary ingot material. .

なお、この連続鋳造スラブの場合、鋳片断面の結晶組織
は両側から柱状晶が発達した偏析の少ないものになる
が、その反面で“スジむら”に着目した場合次のような
現象も見られた。
In addition, in the case of this continuous cast slab, the crystal structure of the cross section of the cast slab has a small amount of segregation in which columnar crystals have developed from both sides, but on the other hand, when attention is paid to "streak unevenness", the following phenomenon is also observed. It was

すなわち、このスジむらは、成分偏析の他に、鋳造時の
柱状晶が、その後の加工,熱処理で消滅することなく、
形を変化させながら圧延加工により圧延方向に伸ばされ
たものが起因していることが判った。しかも、本発明者
らの研究によれば、最終板厚にまで加工された際に特定
方位をもつ柱状晶の長さの短いものは、その幅,長さも
相対的に小さくなり、エッチング穿孔時に発生する部分
的なエッチング速度の差は見られず、したがって、連続
したスジむらとしては観察されなかった。ところが、こ
の柱状晶(結晶粒)の長さが長いものは、加工を経ても
その幅および長さに相当するものがそのまま,すなわち
大きいまま残存し、これがエッチング時のスジむらとな
ったのである。
That is, the streak unevenness is not only the segregation of the components but also the columnar crystals at the time of casting not disappearing by the subsequent processing and heat treatment.
It was found that this was caused by what was stretched in the rolling direction by rolling while changing the shape. Moreover, according to the research conducted by the present inventors, when the columnar crystals having a specific orientation when processed to the final plate thickness have a short length, the width and the length thereof are relatively small, and when the holes are formed by etching, No difference in the partial etching rate that occurred was observed and, therefore, was not observed as continuous stripe unevenness. However, in the columnar crystals (crystal grains) having a long length, the ones corresponding to the width and length of the columnar crystals remained as they were even after the processing, that is, remained large, which resulted in stripe unevenness during etching. .

このスジむらが出るか否かの限界となる柱状晶の長さ
は、上記成分組成の場合、すなわちBを含むと、鋳片の
等軸晶率にして20%が境となる。
The length of the columnar crystal, which is the limit of whether streaks appear or not, is 20% in the equiaxed crystal ratio of the slab in the case of the above component composition, that is, when B is included.

本発明は、こうした両者の問題点をともに克服する方法
として、等軸晶率20%を境にする好適な熱処理法を提供
して、いずれの場合もスジむらが出ないようにしたので
ある。
As a method of overcoming both of these problems, the present invention provides a suitable heat treatment method with an equiaxed crystal ratio of 20% as a boundary so that streak unevenness does not occur in any case.

次に、スラブ熱処理温度を1000℃以上とした理由は、等
軸晶率20%以下のスラブにおいては、安定な方位をもつ
柱状晶の影響が強いため、1000℃以下の低い温度では、
スジむらが出ないようにするべくかかる柱状晶を分断
し、ランダム化させるには不十分なためである。
Next, the reason for setting the slab heat treatment temperature to 1000 ° C or higher is that in a slab with an equiaxed crystal ratio of 20% or less, the effect of columnar crystals with stable orientation is strong, so at a low temperature of 1000 ° C or less,
This is because it is not sufficient to divide and randomize the columnar crystals in order to prevent stripe unevenness.

これに対し、等軸晶率が20%を超えると、この柱状晶が
熱間圧延後も残るようなことがなく、したがって、スジ
むらの発生機会が少ないので950℃という低い熱処理温
度でもよいのである。ただし、この熱処理温度が950℃
以下になると、偏析の軽減が十分に行なわれず、偏析を
原因とするスジむらの発生が生じるようになる。
On the other hand, when the equiaxed crystal ratio exceeds 20%, the columnar crystals do not remain even after hot rolling. Therefore, the occurrence of streak unevenness is small, so a heat treatment temperature as low as 950 ° C may be used. is there. However, this heat treatment temperature is 950 ℃
In the following cases, segregation is not sufficiently reduced, and streak unevenness due to segregation occurs.

なお、本発明においては、上述のように連続鋳造鋳片の
等軸晶率をコントロールするために、連続鋳造機のモー
ルドもしくは2次冷却帯に電磁攪拌装置(EMS)を設置
し、電磁力を調整することにより、鋳片内の未凝固溶湯
を攪拌して等軸晶率を目標のものにする。あるいは、注
湯温度のコントロール,超音波振動によっても等軸晶率
を目標のものにすることができる。
In the present invention, in order to control the equiaxed crystal ratio of the continuously cast slab as described above, an electromagnetic stirrer (EMS) is installed in the mold or the secondary cooling zone of the continuous casting machine, and electromagnetic force is applied. By adjusting, the unsolidified molten metal in the slab is stirred to bring the equiaxed crystal ratio to a target. Alternatively, the equiaxed crystal ratio can be targeted by controlling the pouring temperature and ultrasonic vibration.

以上説明したように本発明は、Fe−Ni系合金に対し、適
量のBを添加し、連続鋳造時での凝固をコントロールし
かつ連鋳スラブに対し適正な熱処理を施すことにより、
結晶の均質化および成分偏析の軽減が同時に実現でき
る。そのため、本発明においては、エッチング時のスジ
むらを発生することのないFe−Ni系合金を製造すること
ができる。
As described above, the present invention, by adding an appropriate amount of B to the Fe-Ni-based alloy, controlling the solidification during continuous casting, and subjecting the continuous casting slab to an appropriate heat treatment,
Homogenization of crystals and reduction of component segregation can be realized at the same time. Therefore, in the present invention, it is possible to produce a Fe-Ni-based alloy that does not cause stripe unevenness during etching.

〔実施例〕〔Example〕

第1表に、この実施例で用いたFe−Ni系合金の化学組成
および等軸晶率などの実施の条件とその結果を示す。
Table 1 shows the conditions of implementation and the results such as the chemical composition and equiaxed crystal ratio of the Fe-Ni alloy used in this example.

この第1表に示した特に本発明の対象とする合金は、電
気炉で溶解した溶融金属を、引き続いてAOD法またはVOD
法により精錬し、次いで連続鋳造機にてこれに付帯させ
た電磁攪拌装置を作動させ等軸晶率を制御しながら鋳造
し、第1表に示すような所定の連鋳スラブを得た。
The alloys shown in Table 1 and specifically targeted by the present invention are obtained by melting molten metal in an electric furnace, followed by AOD method or VOD.
After refining by the method, then a continuous casting slab as shown in Table 1 was obtained by operating a magnetic stirrer attached to the continuous casting machine while controlling the equiaxed crystal ratio.

次いで、この連鋳スラブを冷却し手入れを施した後、95
0℃以上の所定の温度で1時間以上加熱保持し、その後
熱間圧延を施して5.5mm厚のコイルとした。その熱間圧
延以降は常法に従い冷間圧延と熱処理を適宜組合わせた
常法に従う処理を行って最終製品を得た。
Then, this continuous cast slab is cooled and cared for, and then 95
The coil was heated and held at a predetermined temperature of 0 ° C. or higher for 1 hour or longer, and then hot-rolled to obtain a coil having a thickness of 5.5 mm. After the hot rolling, the final product was obtained by performing a treatment according to a conventional method in which cold rolling and heat treatment were appropriately combined according to a conventional method.

このようにして製造した供試材料を、塩化第二鉄溶液
(比重1.45,50℃)で実際のフォトエッチング開孔を行
い、スジむら発生の有無を調査した。
The test material produced in this manner was subjected to actual photoetching opening with a ferric chloride solution (specific gravity: 1.45, 50 ° C.) to investigate whether streaks occurred.

その結果は第1表に示すとおりであった。The results are shown in Table 1.

この第1表に示すところから判るように、本発明法に従
って製造したFe−Ni系合金は、同一組成の従来法によっ
て製造した、普通造塊材のFe−Ni系合金(比較例)に比
べると、エッチング時のスジむらの発生はほとんど見ら
れず、エッチング用素材として優れた合金であることが
明らかとなった。
As can be seen from Table 1, the Fe-Ni-based alloy produced according to the method of the present invention is compared with the Fe-Ni-based alloy (comparative example) having the same composition and produced by the conventional method. Then, almost no streaking was observed during etching, and it was revealed that the alloy was an excellent material for etching.

〔発明の効果〕 以上説明したように、本発明方法によって製造したBを
適量添加したFe−Ni系合金は、フォトエッチング穿孔後
のスジむらが全く無いため、電子,電磁材料として望ま
しい性質を有するFe−Ni系合金を安価に提供することが
できる。
[Effects of the Invention] As described above, the Fe-Ni-based alloy produced by the method of the present invention and containing an appropriate amount of B has no streaking after photoetching and therefore has desirable properties as an electronic or electromagnetic material. Fe-Ni alloy can be provided at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Niを30〜80wt%,Bを0.001〜0.03wt%含
み、残部が主としてFeであるFe−Ni系合金の等軸晶率20
%以下の連続鋳造スラブを、1000℃以上の温度で1時間
以上加熱保持することを特徴とするエッチング時のスジ
むら抑制効果に優れるFe−Ni系合金の製造方法。
1. An equiaxed crystal ratio of an Fe-Ni alloy containing 30 to 80 wt% of Ni, 0.001 to 0.03 wt% of B, and the balance being mainly Fe 20
% Or less of a continuously cast slab is heated and held at a temperature of 1000 ° C. or more for 1 hour or more, and a method for producing a Fe—Ni alloy having an excellent effect of suppressing streak unevenness during etching.
【請求項2】Niを30〜80wt%,Bを0.001〜0.03wt%含
み、残部が主としてFeであるFe−Ni系合金を連続鋳造す
ると共にこの鋳造に際して電磁攪拌,注湯温度のコント
ロール,または超音波振動を施すことにより鋳片の等軸
晶率が20%を超える連続鋳造スラブを調製し、この連続
鋳造スラブを950℃以上の温度で1時間以上加熱保持す
ることを特徴とするエッチング時のスジむら抑制効果に
優れるFe−Ni系合金の製造方法。
2. An Fe-Ni alloy containing 30 to 80 wt% of Ni and 0.001 to 0.03 wt% of B, the balance being mainly Fe, is continuously cast, and at the time of casting, electromagnetic stirring, control of pouring temperature, or During etching, which is characterized by preparing a continuous casting slab whose equiaxed crystal ratio of the slab exceeds 20% by applying ultrasonic vibration, and heating and maintaining this continuous casting slab at a temperature of 950 ° C or higher for 1 hour or more. A method for producing a Fe-Ni based alloy excellent in the streak unevenness suppressing effect.
JP63204622A 1988-08-19 1988-08-19 Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching Expired - Lifetime JPH0778271B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63204622A JPH0778271B2 (en) 1988-08-19 1988-08-19 Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
CA 607827 CA1319589C (en) 1988-08-19 1989-08-09 Method of producing fe-ni series alloys having improved effect for restraining streaks during etching
KR1019890011655A KR930006300B1 (en) 1988-08-19 1989-08-16 Manufacture of fe-ni alloy having excellent suppression effect for striped unevenness at the time of etching
FR8911041A FR2641546B1 (en) 1988-08-19 1989-08-18 PROCESS FOR PRODUCING FE-NI SERIES ALLOYS HAVING AN IMPROVED MODERATOR EFFECT OF THE PRESENCE OF TRAILS DURING ENGRAVING
DE19893927310 DE3927310C2 (en) 1988-08-19 1989-08-18 Process for the production of plates of Fe-Ni alloys suitable for shadow masks of cathode ray tubes with improved resistance to etching strips
FR909000060A FR2641796B1 (en) 1988-08-19 1990-01-04 PROCESS FOR PRODUCING FE-NI-B SERIES ALLOYS HAVING IMPROVED MODERATOR EFFECT OF THE PRESENCE OF TRAILS DURING ENGRAVING
US07/686,847 US5325911A (en) 1988-08-19 1991-04-17 Method of producing Fe-Ni series alloys having improved effect for restraining streaks during etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204622A JPH0778271B2 (en) 1988-08-19 1988-08-19 Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching

Publications (2)

Publication Number Publication Date
JPH0254744A JPH0254744A (en) 1990-02-23
JPH0778271B2 true JPH0778271B2 (en) 1995-08-23

Family

ID=16493523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204622A Expired - Lifetime JPH0778271B2 (en) 1988-08-19 1988-08-19 Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching

Country Status (1)

Country Link
JP (1) JPH0778271B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515954B1 (en) * 1991-05-30 1996-01-10 Hitachi Metals, Ltd. High-fineness shadow mask material and process for producing the same
JP6300574B2 (en) * 2014-02-28 2018-03-28 新報国製鉄株式会社 High rigidity low thermal expansion casting
CN116162868A (en) * 2023-01-17 2023-05-26 北京北冶功能材料有限公司 Medium nickel soft magnetic alloy and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128253A (en) * 1983-12-15 1985-07-09 Nippon Mining Co Ltd Manufacture of iron-nickel alloy for shadow mask which inhibits streaking during etching
JPS613835A (en) * 1984-06-19 1986-01-09 Nippon Mining Co Ltd Manufacture of fe-ni alloy
JPS61199059A (en) * 1985-03-01 1986-09-03 Nippon Mining Co Ltd Production of shadow mask
JPS61223188A (en) * 1985-03-28 1986-10-03 Nippon Mining Co Ltd Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPH0676650B2 (en) * 1987-02-03 1994-09-28 日本鋼管株式会社 Fe-Ni alloy for shadow mask

Also Published As

Publication number Publication date
JPH0254744A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
KR920004707B1 (en) METHOD OF PRODUCING Fe-Ni SERIES ALLOYS HAVING IMPROVED EFFECT FOR RESTRAINING STREAKS DURING ETCHING
JPH0778271B2 (en) Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
JPH0693397A (en) Production of aluminum foil excellent in strength and foil rollability
KR930006300B1 (en) Manufacture of fe-ni alloy having excellent suppression effect for striped unevenness at the time of etching
JPH0778270B2 (en) Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
JPH0730402B2 (en) Method for producing Fe-Ni alloy having excellent streak unevenness suppressing effect during etching
JP2584615B2 (en) Method of manufacturing hard aluminum alloy rolled sheet for forming
JPH0711033B2 (en) Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
JPH0711032B2 (en) Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
JPH0978168A (en) Aluminum alloy sheet
JP3584209B2 (en) Slab for shadow mask material, method for manufacturing the slab, and method for manufacturing shadow mask material excellent in streak quality and surface quality
JPH09176805A (en) Production of aluminum fin material
JP3871150B2 (en) Method for producing Fe-Ni alloy thin plate for electronic member
JP2000001721A (en) Production of base stock for shadow mask restraining generation of linear unevenness
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JP3509643B2 (en) Low thermal expansion alloy steel slab excellent in etchability after thinning and method for producing the same
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
JP3615300B2 (en) Method for producing shadow mask material without uneven stripes
JPH04293755A (en) Production of fe-ni high permeability alloy
JP2000096188A (en) Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JPH05320759A (en) Production of cast slab having fine subboundary and thick steel plate having fine metallic structure
JP2000096190A (en) Stock for shadow mask, free from striped irregularity at etching, and its manufacture
JPH0430465B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

EXPY Cancellation because of completion of term