JPH0776731A - Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation - Google Patents

Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation

Info

Publication number
JPH0776731A
JPH0776731A JP5161161A JP16116193A JPH0776731A JP H0776731 A JPH0776731 A JP H0776731A JP 5161161 A JP5161161 A JP 5161161A JP 16116193 A JP16116193 A JP 16116193A JP H0776731 A JPH0776731 A JP H0776731A
Authority
JP
Japan
Prior art keywords
annealing
rolling
steel sheet
less
goss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5161161A
Other languages
Japanese (ja)
Inventor
Kenichi Arai
賢一 荒井
Kazuyuki Ishiyama
和志 石山
Masayoshi Oikawa
正好 及川
Akira Hiura
昭 日裏
Yasushi Tanaka
靖 田中
Misao Namikawa
操 浪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5161161A priority Critical patent/JPH0776731A/en
Publication of JPH0776731A publication Critical patent/JPH0776731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce a grain-oriented silicon steel sheet having crystal orientation accumulated in the Goss orientation by successively executing each treatment of hot rolling, cold rolling and annealing to a steel sheet having a specified compsn. under specified conditions. CONSTITUTION:Steel contg., by weight, <=0.01% C, 2.5 to 7% Si, <=0.01% Cu, <=0.01% S, <=0.01% Al and <=0.01% N is held to >=1000 deg.C. Next, it is subjected to hot rolling so as to regulate the finishing temp. into 700 to 950 deg.C and is thereafter subjected to primary cooling rolling or warm rolling at 70 to 90% draft. Furthermore, secondary and third cold rolling or warm rolling are executed via process annealing for two times. After that, it is annealed at 1000 to 1300 deg.C in a reducing atmosphere, or in a nonoxidizing atmosphere of <=0.5Pa oxygen partial pressure or in a vacuum of <=0.5Pa oxygen partial pressure. Thus, the grain oriented silicon steel sheet having crystal orientation accumulated in the Goss orientation and excellent in magnetic properties can stably be obtd. by annealing treatment in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Goss 方位に集積し
た結晶方位を有する方向性珪素鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having a crystal orientation integrated in the Goss orientation.

【0002】[0002]

【従来の技術】方向性珪素鋼板は、無方向性珪素鋼板よ
りも良好な磁気特性を有しており、主としてトランスの
鉄心として使用されている。Gossによる{110}<0
01>方位に揃った結晶粒を持つ方向性珪素鋼板の製造
方法の発明以来、このようなGoss 組織を有する方向性
珪素鋼板の製造方法が数多く提案されている。これらの
提案を大別すると以下の2つに要約される。
BACKGROUND OF THE INVENTION Grained silicon steel sheets have better magnetic properties than non-oriented silicon steel sheets and are mainly used as transformer iron cores. {110} <0 by Goss
Since the invention of the method for producing a grain-oriented silicon steel sheet having crystal grains aligned in the 01> orientation, many methods for producing a grain-oriented silicon steel sheet having such a Goss structure have been proposed. These proposals are roughly classified into the following two.

【0003】第1の方法は、Al,N等のインヒビター
と呼ばれる結晶粒成長抑制剤を添加し、これらの元素及
びその微細析出物による結晶粒成長抑制作用を利用して
Goss組織を有する二次再結晶粒を選択的に成長させるも
のである(例えば、特公昭51−13469号、特公昭
40−15644号)。
The first method is to add a crystal grain growth inhibitor called an inhibitor such as Al or N, and utilize the crystal grain growth inhibitory effect of these elements and their fine precipitates.
A secondary recrystallized grain having a Goss structure is selectively grown (for example, Japanese Patent Publication No. 51-13469 and Japanese Patent Publication No. 40-15644).

【0004】第2の方法は、インヒビターを用いずに、
単純に特定条件の圧延と熱処理とを組み合わせることに
よりGoss粒を発達させるものである(例えば、特開昭6
4−55339号、特開平2−57635号)。
The second method is the use of no inhibitor
The Goss grains are developed by simply combining rolling under specific conditions and heat treatment (see, for example, Japanese Patent Laid-Open No. 6-58242).
4-55339, JP-A-2-57635).

【0005】[0005]

【発明が解決しようとする課題】第1の方法は脱炭焼
鈍、純化焼鈍が必須であるため、高温長時間の焼鈍が不
可欠である。このため製造コスト、設備コストが高くな
ることが避けられない。また、鉄損を低減するために最
終板厚を0.20mm以下にしようとすると2次再結晶
現象が不安定となり、全面Goss粒で占めることは困難と
なる。このため現状では板厚0.23mm程度のものが
製造限界となっている。
Since the first method requires decarburization annealing and purification annealing, annealing at high temperature for a long time is indispensable. Therefore, it is inevitable that the manufacturing cost and the equipment cost increase. Further, if the final plate thickness is reduced to 0.20 mm or less in order to reduce iron loss, the secondary recrystallization phenomenon becomes unstable and it becomes difficult to occupy the entire surface with Goss grains. Therefore, at present, the production limit is about 0.23 mm in plate thickness.

【0006】これに対して、上記第2の方法では脱炭焼
鈍、インヒビター除去のための純化焼鈍が不要であるた
めに製造コスト上は上記第1の方法に比べて有利であ
る。また、この第2の方法では、最終板厚0.1mm以
下でも表面エネルギを利用したGoss粒成長が安定に短時
間で行われ、低鉄損化を図れるとしており、この点にお
いても第1の方法よりも有利である。
On the other hand, the second method is advantageous over the first method in terms of manufacturing cost because decarburization annealing and purification annealing for removing the inhibitor are unnecessary. Further, according to this second method, even if the final plate thickness is 0.1 mm or less, Goss grain growth utilizing surface energy can be stably performed in a short time, and iron loss can be reduced. In this respect also, Advantage over method.

【0007】しかしながら、本願発明者らによって特開
昭64−55339号、特開平2−57635号に開示
されている方法の追試を行ったところ、そのGoss粒成長
は極めて不安定であって、安定した品質を得ることが困
難であることが判明した。
However, when the inventors of the present application made additional tests of the methods disclosed in JP-A-64-55339 and JP-A-2-57635, the Goss grain growth was extremely unstable and stable. It has proved difficult to obtain the desired quality.

【0008】このような問題を解決するため、本願発明
者らは、先に、2.5〜7wt%Siで特定組成の鋼板
に対して、インヒビターを用いずに中間焼鈍を挟んで3
回の冷間圧延を施し、最終焼鈍として雰囲気中の酸素濃
度をコントロールし、結晶方位がGoss方位に集積した方
向性珪素鋼板を製造する方法について出願した(特願平
4−185374号)。この方法を用いることにより従
来よりも安定してGoss組織を形成することができる
が、本願発明者らのその後の実験によれば、優れた磁気
特性を示すとされる製造条件で作成した試料間において
磁気特性がばらつくことが認められ、B (800A
/mの直流磁界を印加した際の磁束密度)が1.85以
上という良好な磁気特性を示す試料が全試料の8割とな
るためには、最終焼鈍時間が1時間程度必要であり、短
時間の焼鈍処理では安定した磁気特性が得らず、工業的
に安定して所望も方向性珪素鋼板を得るためには未だ不
十分であることが判明した。
In order to solve such a problem, the inventors of the present invention first sandwiched a steel sheet of 2.5 to 7 wt% Si having a specific composition with intermediate annealing without using an inhibitor.
An application was made for a method for producing a grain-oriented silicon steel sheet in which the crystal orientation is integrated in the Goss orientation by performing cold rolling twice and controlling the oxygen concentration in the atmosphere as the final annealing (Japanese Patent Application No. 4-185374). By using this method, a Goss structure can be formed more stably than in the past, but according to the experiments conducted by the inventors of the present application, it was confirmed that the samples formed under the manufacturing conditions that exhibit excellent magnetic characteristics it is recognized that the magnetic properties vary in, B 8 (800A
The final annealing time is about 1 hour in order for 80% of all the samples to exhibit good magnetic characteristics such as a magnetic flux density of 1.85 or more when a DC magnetic field of 1 / m is applied). It has been found that the annealing treatment for a long time does not provide stable magnetic properties, and is still insufficient for obtaining a grain-oriented silicon steel sheet that is industrially stable and desired.

【0009】本発明はこのような事情に鑑みてなされた
ものであって、Goss方位に集積した結晶方位を有する優
れた磁気特性の方向性珪素鋼板を、短時間の焼鈍処理で
安定して製造することができる方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and stably manufactures a grain-oriented silicon steel sheet having excellent magnetic characteristics having a crystal orientation integrated in the Goss orientation by a short-time annealing treatment. The purpose is to provide a method that can.

【0010】[0010]

【課題を解決するための手段及び作用】本発明は、C:
0.01wt%以下、Si:2.5〜7wt%、Cu:
0.01wt%以下、S:0.01wt%以下、Al:
0.01wt%以下、N:0.01wt%以下を含む鋼
材を準備し、この鋼材を1000℃以上に保持した後、
仕上温度が700〜950℃になるような熱間圧延を施
し、次いで、圧下率70〜90%の一次冷間圧延又は温
間圧延を施した後、2回の中間焼鈍を介して二次及び三
次の冷間圧延又は温間圧延を行い、その後還元性雰囲気
若しくは酸素分圧が0.5Pa以下の非酸化性雰囲気、
又は酸素分圧が0.5Pa以下の真空中において100
0〜1300℃の温度で焼鈍することを特徴とするGoss
方位に集積した結晶方位を有する方向性珪素鋼板の製造
方法を提供する。
The present invention provides C:
0.01 wt% or less, Si: 2.5 to 7 wt%, Cu:
0.01 wt% or less, S: 0.01 wt% or less, Al:
After preparing a steel material containing 0.01 wt% or less and N: 0.01 wt% or less and holding the steel material at 1000 ° C. or higher,
Hot rolling is performed so that the finishing temperature becomes 700 to 950 ° C., then primary cold rolling or warm rolling is performed at a reduction rate of 70 to 90%, and then secondary annealing is performed through two intermediate annealings. Third cold rolling or warm rolling is performed, and then a reducing atmosphere or a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less,
Or 100 in a vacuum with an oxygen partial pressure of 0.5 Pa or less.
Goss characterized by annealing at a temperature of 0 to 1300 ℃
Provided is a method for manufacturing a grain-oriented silicon steel sheet having crystal orientations integrated in the orientation.

【0011】本願発明者らは最終焼鈍時間が短時間であ
っても安定して高い磁気特性を有する方向性珪素鋼板を
得るべく研究を重ねた結果、2回の中間焼鈍を介して行
われる3回の冷間圧延又は温間圧延のうち、一次冷間圧
延又は温間圧延の圧下率を70〜90%と高い値に設定
することにより、30分間以内の短時間の最終焼鈍によ
ってGoss粒が安定して成長し、安定して高い磁気特性が
得られることを見出した。本願発明は、本願発明者らの
このような知見に基づいてなされたものである。
The inventors of the present invention have conducted extensive studies to obtain a grain-oriented silicon steel sheet having stable and high magnetic properties even when the final annealing time is short, and as a result, two intermediate annealings are carried out. By setting the rolling reduction of primary cold rolling or warm rolling to a high value of 70 to 90% among the cold rolling or the warm rolling of the number of times, Goss grains can be obtained by the final annealing for a short time within 30 minutes. It has been found that stable growth and stable high magnetic properties can be obtained. The present invention has been made based on such findings of the inventors of the present application.

【0012】以下、本発明について詳細に説明する。ま
ず、化学成分の限定理由について説明する。Cは製鋼段
階でできるだけ低減しておくことが磁気特性上好まし
い。Cが0.01wt%を超えると磁気特性が著しく劣
化する。このためCの上限を0.01wt%に規定す
る。
The present invention will be described in detail below. First, the reasons for limiting the chemical components will be described. It is preferable in terms of magnetic properties that C be reduced as much as possible in the steelmaking stage. If C exceeds 0.01 wt%, the magnetic properties are significantly deteriorated. Therefore, the upper limit of C is specified to be 0.01 wt%.

【0013】Siは、電気抵抗を高める作用と、2.5
wt%以上の含有により金属学的変態点をなくし鋼をα
単相にする作用を有している。また、6.5wt%付近
では磁歪がゼロとなるため極めて優れた軟磁気特性が得
られる。しかし、7wt%を超えると磁歪が再び増大し
磁気特性が悪化するとともに、極めて脆くなるため実用
的ではない。このためSiの含有量を2.5〜7wt%
の範囲に規定する。
Si has the effect of increasing the electric resistance and
The inclusion of more than wt% eliminates the metallurgical transformation point and
It has the effect of making it a single phase. Further, since the magnetostriction becomes zero near 6.5 wt%, extremely excellent soft magnetic characteristics can be obtained. However, if it exceeds 7 wt%, the magnetostriction increases again, the magnetic characteristics deteriorate, and it becomes extremely brittle, which is not practical. Therefore, the Si content is 2.5 to 7 wt%
Stipulate in the range of.

【0014】S,Nは通常の鋼中に含まれる代表的な元
素であるが、これらの元素は、固溶した状態でも析出物
の形態を採った状態でも粒成長性を阻害するため、でき
る限り低減することが好ましい。但し、製鋼段階で極端
な低減を行うとコスト増の原因となるため、粒成長性を
阻害しない範囲としてこれらの含有量の上限をそれぞれ
0.01wt%に規定する。
S and N are typical elements contained in ordinary steel, but these elements inhibit grain growth in the form of solid solution and in the form of precipitates. It is preferable to reduce as much as possible. However, since extreme reduction in the steelmaking stage causes a cost increase, the upper limits of these contents are set to 0.01 wt% respectively as a range that does not hinder grain growth.

【0015】Alはα鉄への固溶度が広く、かつ酸素と
の親和力が強い元素である。従って、最終的な熱処理に
よりGoss組織を形成する際に、熱処理雰囲気中の微量酸
素と反応して鋼板表面に酸化物層を形成してしまうた
め、表面エネルギーによる結晶粒成長が阻害されてしま
う。このため、Alの含有量をこのような不都合が生じ
ない0.01wt%以下に規定する。Al含有量のさら
に好ましい範囲は0.005wt%以下である。
Al is an element having a wide solid solubility in α-iron and a strong affinity with oxygen. Therefore, when the Goss structure is formed by the final heat treatment, it reacts with a small amount of oxygen in the heat treatment atmosphere to form an oxide layer on the surface of the steel sheet, which hinders crystal grain growth due to surface energy. Therefore, the content of Al is specified to be 0.01 wt% or less so that such a disadvantage does not occur. The more preferable range of the Al content is 0.005 wt% or less.

【0016】Cuはα鉄への固溶度が小さな元素であ
り、最終的な熱処理によりGoss組織を形成する際の結晶
粒成長を著しく阻害する元素である。また、Cuは製鋼
段階で0.05wt%程度含有される。従って、その含
有量を上述のような不都合が生じない0.01wt%以
下に減じることが好ましく、0.005wt%以下にす
ることが一層好ましい。ただし、Cuは融点が1083
℃であり、1000℃程度以上の熱処理により揮発する
成分であるため、0.01wt%よりも多く含有されて
いても比較的長時間の熱処理により0.01wt%以下
にすることが可能である。しかし、工程の効率化の観点
からは熱処理時間の延長は好ましくない。
Cu is an element having a small solid solubility in α-iron, and is an element that markedly inhibits the crystal grain growth when the Goss structure is formed by the final heat treatment. Further, Cu is contained in an amount of about 0.05 wt% at the steel making stage. Therefore, it is preferable to reduce the content to 0.01 wt% or less, which does not cause the above-mentioned inconvenience, and more preferably 0.005 wt% or less. However, the melting point of Cu is 1083.
C., which is a component that volatilizes by heat treatment at about 1000.degree. C. or higher, so even if it is contained in excess of 0.01 wt.%, It can be made 0.01 wt.% Or less by heat treatment for a relatively long time. However, extension of the heat treatment time is not preferable from the viewpoint of improving the efficiency of the process.

【0017】これら元素以外の不可避不純物元素は通常
の鋼に含有される程度の量は許容される。しかし、磁気
特性等をより向上させる観点からは少ないほうが好まし
い。特に、α鉄への固溶度が低いSn等は、Cuと同様
に最終的な熱処理によりGoss組織を形成する際の結晶粒
成長を著しく阻害するので、その含有量が0.01wt
%以下、好ましくは0.005wt%以下になるように
注意する必要がある。また、α鉄への固溶度が広く、か
つ酸素との親和力が強いV,Zn等は、Alと同様に表
面エネルギーによる結晶粒成長を阻害する作用を有する
ため、その含有量が0.01wt%以下、好ましくは
0.005wt%以下になるように注意する必要があ
る。さらに、鋼中のOは3次再結晶挙動に影響を与える
ため、極力低いことが望ましく0.008wt%以下で
あることが好ましい。なお、鋼の基本元素のうち上記し
た以外のMn、Pも極力少ないほうが好ましい。
The amount of unavoidable impurity elements other than these elements is acceptable as long as it is contained in ordinary steel. However, the smaller amount is preferable from the viewpoint of further improving the magnetic properties and the like. In particular, Sn, which has a low solid solubility in α-iron, significantly inhibits the crystal grain growth when the Goss structure is formed by the final heat treatment like Cu, so its content is 0.01 wt%.
% Or less, preferably 0.005 wt% or less. Further, V, Zn, etc., which have a wide solid solubility in α-iron and have a strong affinity with oxygen, have the effect of inhibiting crystal grain growth due to surface energy like Al, and therefore their content is 0.01 wt. % Or less, preferably 0.005 wt% or less. Furthermore, since O in steel affects the third-order recrystallization behavior, it is desirable to be as low as possible, preferably 0.008 wt% or less. In addition, it is preferable that Mn and P other than those described above among the basic elements of steel are as small as possible.

【0018】次に熱間圧延条件について説明する。上述
の組成を有する溶鋼は、インゴットに鋳造されるか或い
は連続鋳造法によりスラブとされ、次いで、このインゴ
ット又はスラブは1000℃以上の温度に保持され、熱
間圧延に供される。熱間圧延前の保持温度を1000℃
以上に規定したのは、粗圧延機あるいは仕上げ熱間圧延
機前段での熱延中の再結晶の促進と、700〜950℃
の熱延仕上げ温度を確保するためである。なお、熱間圧
延は、インゴット又はスラブを加熱炉にて1000℃以
上に加熱してから行ってもよいし、直接圧延により連続
鋳造の後スラブ温度を1000℃以上に保持したまま行
ってもよい。
Next, the hot rolling conditions will be described. The molten steel having the above-mentioned composition is cast into an ingot or made into a slab by a continuous casting method, and then this ingot or slab is kept at a temperature of 1000 ° C. or higher and subjected to hot rolling. Holding temperature before hot rolling is 1000 ℃
What has been specified above is the promotion of recrystallization during hot rolling in the preceding stage of the rough rolling mill or finishing hot rolling mill, and 700 to 950 ° C.
This is to secure the hot rolling finishing temperature of. The hot rolling may be performed after heating the ingot or the slab to 1000 ° C or higher in a heating furnace, or may be performed after the continuous casting by direct rolling while keeping the slab temperature at 1000 ° C or higher. .

【0019】また、熱間圧延の仕上温度は700〜95
0℃の範囲であることが必要である。仕上温度が700
℃未満では熱間圧延の圧延負荷が大きくなり過ぎ製造上
好ましくない上に、最終的なGoss粒の成長にも悪影響を
及ぼす。また、仕上温度を950℃超にするにはインゴ
ット又はスラブの初期温度を高目に設定する必要があ
り、製造コスト上不利となる。
The finishing temperature of hot rolling is 700 to 95.
It must be in the range of 0 ° C. Finishing temperature is 700
If the temperature is lower than ℃, the rolling load of hot rolling becomes too large, which is not preferable in manufacturing, and adversely affects the final growth of Goss grains. Further, in order to make the finishing temperature higher than 950 ° C., it is necessary to set the initial temperature of the ingot or slab to a high value, which is disadvantageous in manufacturing cost.

【0020】熱延板の板厚は最終製品の所望板厚によっ
て異なるが、概ね1.6mm程度から5.0mm程度と
なる。このようにして製造された熱延板は常法に従って
巻き取られるが、その巻取温度は560〜800℃とす
ることが好ましい。巻取温度が560℃未満では、熱延
終了後のランアウトテーブル上での冷却が実際上困難で
あるため実用性に欠け、一方、巻取温度が800℃を超
えると、巻取冷却中の表面酸化により酸洗性が悪化し、
実用的ではない。
The plate thickness of the hot-rolled plate varies depending on the desired plate thickness of the final product, but is generally about 1.6 mm to about 5.0 mm. The hot-rolled sheet thus produced is wound up according to a conventional method, but the winding temperature is preferably 560 to 800 ° C. If the coiling temperature is lower than 560 ° C, it is practically difficult to cool on the run-out table after the hot rolling is completed, while if the coiling temperature exceeds 800 ° C, the surface during coiling cooling Pickling deteriorates due to oxidation,
Not practical.

【0021】なお、巻き取られた熱延コイルを、必要に
応じて連続炉或いはバッチ炉で熱延板焼鈍してもよい。
このときの熱延板焼鈍温度は700〜1100℃である
ことが好ましい。熱延板焼鈍温度が700℃未満では、
熱延時に形成された加工組織を消滅させることができな
いため、その効果が実質的に現われない。一方、熱延板
焼鈍温度が1100℃を超えると、操業上のコスト高の
原因となるために実用上問題となる。
The wound hot rolled coil may be annealed in a continuous furnace or a batch furnace, if necessary.
The hot rolled sheet annealing temperature at this time is preferably 700 to 1100 ° C. When the hot-rolled sheet annealing temperature is less than 700 ° C,
Since the processed structure formed during hot rolling cannot be extinguished, the effect is not substantially exhibited. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., it causes a high operating cost, which is a practical problem.

【0022】次に、冷間圧延条件及び焼鈍条件について
説明する。上述のようにして作製された熱延板は、表面
に生じた酸化層除去のため酸洗された後、圧下率は70
〜90%で一次冷間(又は温間)圧延が施される。一次
冷間(又は温間)圧延をこのような高圧下率で行うこと
により、結晶粒の微細化を図り、かつGoss粒に侵食され
やすい(111)粒の密度を増加させ、最終焼鈍前の板
組織をGoss粒形成に好適なものにすることができる。
Next, cold rolling conditions and annealing conditions will be described. The hot rolled sheet produced as described above was pickled to remove the oxide layer formed on the surface, and then had a rolling reduction of 70.
Primary cold (or warm) rolling is performed at ˜90%. By performing the primary cold (or warm) rolling at such a high pressure reduction rate, it is possible to refine the crystal grains and to increase the density of (111) grains that are easily eroded by Goss grains, and to increase the density before the final annealing. The plate structure can be made suitable for Goss grain formation.

【0023】このことを図1を参照して説明する。図1
は表2に組成を示す3%Si鋼に一次冷間圧延を施した
試料についてX線回折を行った結果をまとめたものであ
り、横軸に一次冷間圧延率をとり、縦軸に反射ピーク積
分強度の相対値に相当するP値をとって、各結晶面にお
けるP値の変化を示したものである。この図に示すよう
に、(110)面のP値は一次冷間圧延率の増加と共に
僅かに減少しているのに対し、(111)面のP値は圧
延率70%付近から急激に増加することがわかる。一次
圧延率が70%未満の場合には、短時間の最終焼鈍後に
好ましいGoss組織が得られない。
This will be described with reference to FIG. Figure 1
Is a summary of the results of X-ray diffraction of a sample obtained by subjecting a 3% Si steel having the composition shown in Table 2 to primary cold rolling, in which the horizontal axis represents the primary cold rolling rate and the vertical axis represents the reflection. The P value corresponding to the relative value of the peak integrated intensity is taken to show the change of the P value in each crystal plane. As shown in this figure, the P value of the (110) plane decreased slightly with the increase of the primary cold rolling rate, whereas the P value of the (111) plane increased sharply from around 70% rolling rate. I understand that If the primary rolling ratio is less than 70%, a desirable Goss structure cannot be obtained after the final annealing for a short time.

【0024】図2に板厚2.5mmの表2に組成を示す
3%Si熱延板に対して表1に示す圧下率で3回冷間圧
延を行って0.1mmまで圧延した際における一次冷間
圧延率と最終焼鈍後のB8 の値との関係を示す。ここで
最終焼鈍は1200℃で10分、30分、60分とし
た。この図から、一次冷間圧延率を70%以上にするこ
とにより、最終焼鈍時間30分間以内で1.85T以上
のB8 が得られることがわかる。なお、温間圧延の場合
も同様に一次温間圧延率を70%以上にすればよい。
When a 3% Si hot-rolled sheet having a composition shown in Table 2 and having a plate thickness of 2.5 mm in FIG. 2 is cold-rolled three times at a reduction rate shown in Table 1 and rolled to 0.1 mm The relationship between the primary cold rolling rate and the value of B 8 after the final annealing is shown. Here, the final annealing was performed at 1200 ° C. for 10, 30, and 60 minutes. From this figure, it is understood that by setting the primary cold rolling rate to 70% or more, B 8 of 1.85 T or more can be obtained within the final annealing time of 30 minutes. In the case of warm rolling as well, the primary warm rolling rate may be 70% or more.

【0025】[0025]

【表1】 [Table 1]

【0026】しかし、一次冷間(又は温間)圧延率が9
0%を超えた場合には、冷間圧延ミルに過大な負荷がか
かり操業上好ましくない。なお、通常、冷間圧延は潤滑
材を使用するが、潤滑材を使用せず無潤滑で圧延を行っ
ても同様の効果が得られる。
However, the primary cold (or warm) rolling rate is 9
When it exceeds 0%, an excessive load is applied to the cold rolling mill, which is not preferable in operation. In general, a cold rolling uses a lubricant, but the same effect can be obtained by rolling without lubrication without using a lubricant.

【0027】このような圧下率で圧延された板に対して
中間焼鈍(一次焼鈍)が施される。この際の一次焼鈍
は、600〜900℃の範囲の温度で行われることが好
ましい。焼鈍温度が600℃未満では、焼鈍による完全
再結晶を行わせることができない。一方、焼鈍温度が9
00℃を超えると、再結晶は達成されるが、焼鈍コスト
が不可避的に高くなってしまう。また、短時間で再結晶
を行わせ、かつ経済性をも確保するには、特に680〜
800℃の温度で焼鈍することが好ましい。この焼鈍で
は、鋼板表面が若干酸化されたとしても、後に行われる
冷間(又は温間)圧延前の酸洗によりその除去が可能で
あるため、三次焼鈍(最終焼鈍)時の結晶方位のGoss方
位への集積を確保するという面では大きな問題はない。
しかし、酸化膜を過度に生成しないようにするという観
点から、極力酸素分圧の低い非酸化性雰囲気または真空
中で行うことが好ましい。また、焼鈍時間は通常2分以
上であれば問題はない。このような焼鈍処理は箱型炉に
よるバッチ焼鈍又は連続焼鈍にて実施することが可能で
ある。
Intermediate annealing (primary annealing) is performed on the sheet rolled at such a reduction rate. At this time, the primary annealing is preferably performed at a temperature in the range of 600 to 900 ° C. If the annealing temperature is less than 600 ° C, complete recrystallization due to annealing cannot be performed. On the other hand, the annealing temperature is 9
When the temperature exceeds 00 ° C, recrystallization is achieved, but the annealing cost is inevitably high. Further, in order to carry out recrystallization in a short time and to secure the economical efficiency, particularly, 680 to
It is preferable to anneal at a temperature of 800 ° C. In this annealing, even if the surface of the steel sheet is slightly oxidized, it can be removed by pickling before cold (or warm) rolling that is performed later, so Goss of the crystal orientation during the third annealing (final annealing) There is no major problem in terms of securing the accumulation in the direction.
However, from the viewpoint of preventing the oxide film from being excessively generated, it is preferable to carry out the process in a non-oxidizing atmosphere or vacuum where oxygen partial pressure is as low as possible. There is no problem if the annealing time is usually 2 minutes or more. Such annealing treatment can be performed by batch annealing or continuous annealing in a box furnace.

【0028】焼鈍処理における加熱条件は、連続焼鈍で
は加熱速度200〜500℃/分、保持時間が2〜5分
間程度が適当であり、バッチ焼鈍では加熱速度4〜20
℃/分、保持時間が1〜10時間が適当である。冷却速
度は、熱収縮による歪みが鋼板内に残留しない限りにお
いて、通常採用される冷却速度で構わない。例えば、6
00℃まで13.5℃/秒、300℃まで12℃/秒の
冷却速度が採用される。
Regarding the heating conditions in the annealing treatment, a heating rate of 200 to 500 ° C./minute and a holding time of 2 to 5 minutes are suitable for continuous annealing, and a heating rate of 4 to 20 for batch annealing.
C./minute and holding time of 1 to 10 hours are suitable. The cooling rate may be a cooling rate that is usually adopted as long as the strain due to heat shrinkage does not remain in the steel sheet. For example, 6
A cooling rate of 13.5 ° C / sec up to 00 ° C and 12 ° C / sec up to 300 ° C is adopted.

【0029】上記一次焼鈍が施された鋼板は、一次冷間
(又は温間)圧延と同方向に二次冷間(又は温間)圧延
される。この際の圧下率は20〜80%の範囲が好まし
い。圧下率が20%未満あるいは80%超では最終的な
GOSS 粒の集積が十分でない。二次圧延率がこのように
広い範囲において許容されるのは、本発明において一次
圧延率を上述のように狭い範囲に規定したことによるも
のである。この場合の冷間圧延は、一次冷間圧延と同
様、無潤滑、潤滑のいずれでも実施可能である。
The steel sheet subjected to the primary annealing is subjected to secondary cold (or warm) rolling in the same direction as the primary cold (or warm) rolling. The rolling reduction in this case is preferably in the range of 20 to 80%. If the rolling reduction is less than 20% or more than 80%, the final accumulation of GOSS grains is not sufficient. The reason why the secondary rolling rate is allowed in such a wide range is that the primary rolling rate is defined in the narrow range as described above in the present invention. The cold rolling in this case can be carried out without lubrication or lubrication, like the primary cold rolling.

【0030】このようにして得られた二次圧延板は、再
び中間焼鈍(二次焼鈍)されるが、この際にも一次焼鈍
と同様、600〜900℃の温度が好ましい。焼鈍温度
が600℃未満では、焼鈍による完全再結晶を行わせる
ことができない。一方、焼鈍温度が900℃を超える
と、再結晶は達成されるが、焼鈍コストが不可避的に高
くなってしまう。また、短時間で再結晶を行わせ、かつ
経済性をも確保するには、特に680〜800℃の温度
で焼鈍することが好ましい。この二次焼鈍でも一次焼鈍
と同様の理由で鋼板表面の若干の酸化が許容されるが、
この場合も酸化膜を過度に生成しないようにするという
観点から、極力酸素分圧の低い非酸化性雰囲気または真
空中で行うことが好ましい。この二次焼鈍時間も一次焼
鈍と同様に通常2分以上であれば問題はない。この二次
焼鈍処理も箱型炉によるバッチ焼鈍又は連続焼鈍にて実
施することができる。
The secondary rolled sheet thus obtained is subjected to intermediate annealing (secondary annealing) again, and at this time as well as the primary annealing, a temperature of 600 to 900 ° C. is preferable. If the annealing temperature is less than 600 ° C, complete recrystallization due to annealing cannot be performed. On the other hand, if the annealing temperature exceeds 900 ° C., recrystallization is achieved, but the annealing cost will inevitably increase. Further, it is preferable to anneal at a temperature of 680 to 800 ° C. in order to carry out recrystallization in a short time and to secure economy. Even in this secondary annealing, some oxidation of the steel sheet surface is allowed for the same reason as in the primary annealing,
In this case as well, from the viewpoint of preventing the oxide film from being excessively generated, it is preferable to carry out in a non-oxidizing atmosphere or in a vacuum where oxygen partial pressure is as low as possible. As with the primary annealing, there is no problem if the secondary annealing time is usually 2 minutes or more. This secondary annealing treatment can also be performed by batch annealing or continuous annealing in a box furnace.

【0031】二次焼鈍が施された鋼板は、さらに三次冷
間(又は温間)圧延される。この際の圧下率は50〜9
0%が好ましい。圧下率が50%未満あるいは90%超
では、最終的なGoss粒の集積が十分でない。この場合の
冷間圧延も、一次および二次冷間圧延と同様、無潤滑、
潤滑のいずれでも実施可能である。
The steel sheet subjected to the secondary annealing is further subjected to tertiary cold (or warm) rolling. The reduction rate at this time is 50 to 9
0% is preferable. When the rolling reduction is less than 50% or more than 90%, the final accumulation of Goss grains is insufficient. Cold rolling in this case is also unlubricated, as in the case of primary and secondary cold rolling.
Either lubrication can be performed.

【0032】このようにして得られた三次圧延板に対し
ては、最終焼鈍(三次焼鈍)が施される。この際の温度
は1000〜1300℃が好ましい。焼鈍温度が100
0℃未満では、表面エネルギーを利用した結晶粒成長の
駆動力が十分でないため所望のGoss組織を得ることはで
きない。一方、焼鈍温度が1300℃を超えると、実質
的にこのような高温加熱のために必要なエネルギーコス
トが大きくなり過ぎ、実用上の問題を生じる。
Final annealing (tertiary annealing) is performed on the thus obtained tertiary rolled plate. The temperature at this time is preferably 1000 to 1300 ° C. Annealing temperature is 100
If the temperature is lower than 0 ° C, the desired Goss structure cannot be obtained because the driving force for crystal grain growth utilizing surface energy is insufficient. On the other hand, if the annealing temperature exceeds 1300 ° C., the energy cost required for such high temperature heating becomes substantially too large, which causes a practical problem.

【0033】また、この最終焼鈍は、水素が必要量以上
含まれている実質的に還元性を有する雰囲気中か、実質
的に窒素、Ar等の不活性ガスを主体とし酸素分圧が
0.5Pa以下の非酸化性雰囲気又は酸素分圧が0.5
Pa以下の真空中で行う必要がある。これは、結晶方位
のGoss方位への集積を阻害する鋼板表面に対する酸化膜
の形成を防止するためである。
The final annealing is carried out in an atmosphere containing hydrogen in a necessary amount or more and having a substantially reducing property, or is mainly composed of an inert gas such as nitrogen or Ar, and an oxygen partial pressure of 0. Non-oxidizing atmosphere of 5 Pa or less or oxygen partial pressure is 0.5
It is necessary to carry out in a vacuum of Pa or less. This is to prevent the formation of an oxide film on the surface of the steel sheet that hinders the integration of the crystal orientation in the Goss orientation.

【0034】図3は、表1と同様の条件で圧延した試料
に対し1200℃で3分、5分、10分間の最終焼鈍を
施した際の一次圧延圧下率とB8 の値及びそのばらつき
との関係を示すものである。ここでは各温度につき20
本のサンプルを測定した結果を示す。この図から明らか
なように、一次冷間圧延の圧下率が70〜90%の範囲
であれば3〜10分間という短い焼鈍時間であってもB
8 の値のばらつきは小さく、安定して高い磁束密度が得
られる。このように、本発明においては、最終焼鈍時間
がほぼ3分間以上で安定的に高い磁束密度の方向性珪素
鋼板を得ることができ、30分間以内の短時間焼鈍で充
分に良好な磁気特性が安定して得られ、経済性の点で優
れている。
FIG. 3 shows the reduction ratio of primary rolling, the value of B 8 and its variation when the final rolling was performed at 1200 ° C. for 3 minutes, 5 minutes, and 10 minutes on the sample rolled under the same conditions as in Table 1. It shows the relationship with. Here, 20 for each temperature
The result of having measured the sample of a book is shown. As is clear from this figure, if the reduction ratio of the primary cold rolling is in the range of 70 to 90%, even if the annealing time is as short as 3 to 10 minutes, B
The variation in the value of 8 is small, and a stable high magnetic flux density can be obtained. As described above, in the present invention, a grain-oriented silicon steel sheet having a high magnetic flux density can be stably obtained with a final annealing time of approximately 3 minutes or more, and sufficiently good magnetic properties can be obtained by short-time annealing within 30 minutes. Obtained stably and excellent in economic efficiency.

【0035】なお、上述の温間圧延は約200〜400
℃で行う圧延をいう。本発明の方法で製造された鋼板は
いずれも30分間以内の短時間でGoss粒が安定して成長
し、3%Si鋼の場合にはB8 が1.85T以上の優れ
た磁気特性が安定して得られる。
The above-mentioned warm rolling is about 200 to 400.
Rolling performed at ℃. All the steel sheets produced by the method of the present invention have stable Goss grains within a short time of 30 minutes, and have excellent magnetic properties with B 8 of 1.85 T or more in the case of 3% Si steel. Obtained.

【0036】[0036]

【実施例】【Example】

[実施例1]表2に示す化学成分を有する鋼(Si:
3.02%)を溶製し、仕上温度810℃、巻取温度6
40℃、仕上板厚2.0mmの条件で熱間圧延を行っ
た。
Example 1 Steel having the chemical composition shown in Table 2 (Si:
3.02%), the finishing temperature is 810 ° C., the winding temperature is 6
Hot rolling was performed under the conditions of 40 ° C. and a finished plate thickness of 2.0 mm.

【0037】[0037]

【表2】 [Table 2]

【0038】このようにして作製された熱延板を表面酸
化膜除去のため酸洗した後、40〜90%の圧下率で一
次冷間圧延し、次いでこの鋼板に対して100%窒素雰
囲気中において800℃で2分間の一次焼鈍処理を施し
た。
The hot-rolled sheet thus produced was pickled to remove a surface oxide film, then primary cold-rolled at a reduction rate of 40 to 90%, and then the steel sheet was placed in a 100% nitrogen atmosphere. Was subjected to a primary annealing treatment at 800 ° C. for 2 minutes.

【0039】次に、一次焼鈍後の鋼板に対して40〜9
0%の圧下率で二次冷間圧延を行い、引き続き一次焼鈍
と同様の条件にて二次焼鈍処理を施した。その後、二次
焼鈍後の鋼板に対して三次冷間圧延を行い、最終板厚を
0.1mmとした。次いでこれらの鋼板に対して0.5
P以下の真空中1200℃で3分、10分、30分、1
時間の三次焼鈍(最終焼鈍)を施した。
Next, 40 to 9 for the steel sheet after the primary annealing.
Secondary cold rolling was performed at a reduction rate of 0%, and then secondary annealing treatment was performed under the same conditions as the primary annealing. Then, tertiary cold rolling was performed on the steel sheet after the secondary annealing to give a final thickness of 0.1 mm. Then 0.5 for these steel sheets
3 minutes, 10 minutes, 30 minutes, 1 minute at 1200 ° C in vacuum below P
A third annealing (final annealing) was performed for a time.

【0040】以上のようにして得られた鋼板のB8 を直
流磁気測定装置を用いて測定した。この際における一
次、二次冷間圧延の圧下率を種々変化させた場合の三次
焼鈍後のB8 の値を図4〜6に示す。なお、図4〜6
は、夫々三次焼鈍時間が10分、30分、60分に対応
するものである。
The B 8 of the steel sheet obtained as described above was measured using a DC magnetic measuring device. The values of B 8 after the third annealing when the reduction ratios of the primary and secondary cold rolling in this case are variously changed are shown in FIGS. 4 to 6
Correspond to tertiary annealing times of 10 minutes, 30 minutes, and 60 minutes, respectively.

【0041】これらの図から、最終焼鈍時間が10分程
度であれば、一次冷間圧延及び二次冷間圧延の圧下率を
夫々70〜90%、20〜80%に設定すればB8
1.85T以上の磁気特性を示し、特に、一次冷間圧延
及び二次冷間圧延の圧下率が夫々75〜95%、20〜
50%の時に、1.88T以上の優れた特性を示すこと
が確認された。 [実施例2]実施例1と同様の熱延板を使用し、この鋼
板を酸洗した後、表3に示す圧下率で75%窒素+25
%水素中で800℃、2分の一次焼鈍(中間焼鈍)を挟
んで一次冷間圧延及び二次冷間圧延を行った。この後、
一次焼鈍と同じ条件で二次焼鈍を施した。次いで、これ
ら鋼板に対して0.08mmまで三次冷間圧延を行い、
さらに100%水素雰囲気中1200℃×0分、3分、
5分、10分、20分、30分の三次焼鈍(最終焼鈍)
を施した(試料A,B)。
From these figures, if the final annealing time is about 10 minutes, B 8 will be obtained if the reduction ratios of the primary cold rolling and the secondary cold rolling are set to 70 to 90% and 20 to 80%, respectively. It exhibits magnetic properties of 1.85 T or more, and particularly, the reduction rates of primary cold rolling and secondary cold rolling are 75 to 95% and 20 to 20%, respectively.
It was confirmed that at 50%, excellent properties of 1.88 T or more were exhibited. [Example 2] The same hot-rolled sheet as in Example 1 was used, and this steel sheet was pickled and then subjected to 75% nitrogen +25 at a reduction rate shown in Table 3.
Primary cold rolling and secondary cold rolling were performed by sandwiching primary annealing (intermediate annealing) at 800 ° C. for 2 minutes in hydrogen. After this,
Secondary annealing was performed under the same conditions as the primary annealing. Then, these steel plates are subjected to tertiary cold rolling to 0.08 mm,
Further, in a 100% hydrogen atmosphere, 1200 ° C. × 0 minutes, 3 minutes,
5 minutes, 10 minutes, 20 minutes, 30 minutes tertiary annealing (final annealing)
(Samples A and B).

【0042】[0042]

【表3】 [Table 3]

【0043】図7は累積焼鈍時間に対するこれら鋼板の
Goss粒の平均粒径を示し、図8は累積焼鈍時間に対する
これら鋼板のGoss粒の表面占有率を示す。これらの図に
示すように、一次冷間圧延率を80%と高くした試料A
は短時間でGoss粒が試料表面を覆っているのに対し、一
次冷間圧延率を40%と低く設定した試料Bでは(11
0)粒以外に、(100)粒、(111)粒も存在して
いた。これらの試料について直流磁気測定装置を用いて
8 を測定した結果、Goss粒が100%試料表面を覆っ
た試料Aについては1.91Tと極めて高い値を示した
のに対し、試料Bについては1.62Tと若干低い値と
なった。また、各焼鈍時間における結晶粒を観察した結
果、試料BはGoss粒の成長速度が遅いことが確認され
た。このように、最終組織に対して一次冷間圧延の圧下
率が重要な影響を及ぼすことが確認された。 [実施例3]表4に示す化学成分を有する鋼(Si:
6.58%)を溶製し、仕上温度820℃、巻取温度6
40℃、仕上板厚2.5mmの条件で熱間圧延を行っ
た。
FIG. 7 shows the cumulative annealing time of these steel sheets.
The average grain size of the Goss grains is shown, and FIG. 8 shows the surface occupancy of the Goss grains of these steel sheets with respect to the cumulative annealing time. As shown in these figures, sample A having a high primary cold rolling rate of 80%
Indicates that the Goss grains cover the surface of the sample in a short time, whereas in sample B in which the primary cold rolling rate was set as low as 40%, (11
In addition to 0 grains, (100) grains and (111) grains were also present. As a result of measuring B 8 of these samples using a DC magnetometer, Sample A in which Goss grains covered 100% of the sample surface showed an extremely high value of 1.91T, whereas Sample B showed It was a slightly low value of 1.62T. Further, as a result of observing the crystal grains at each annealing time, it was confirmed that Sample B had a slow Goss grain growth rate. Thus, it was confirmed that the rolling reduction of primary cold rolling has an important effect on the final structure. Example 3 Steel having the chemical composition shown in Table 4 (Si:
6.58%), the finishing temperature is 820 ° C., the winding temperature is 6
Hot rolling was performed under the conditions of 40 ° C. and finished plate thickness of 2.5 mm.

【0044】[0044]

【表4】 [Table 4]

【0045】このようにして作製された熱延板を表面酸
化膜除去のため酸洗した後、表5に示す圧下率で3回の
温間圧延を300℃にて行い、最終板厚を0.1mmと
した。これら温間圧延の間には、100%窒素雰囲気中
において800℃で2分間の一次及び二次焼鈍処理を施
した。三次冷間圧延の後、これらの鋼板に対して0.5
Pa以下の真空中1200℃の温度で10分間の三次焼
鈍(最終焼鈍)を施した(試料C,D,E)。
The hot-rolled sheet thus produced was pickled to remove the surface oxide film, and then warm-rolled three times at 300 ° C. at a rolling reduction shown in Table 5 to give a final sheet thickness of 0. It was set to 0.1 mm. Between these warm rollings, primary and secondary annealing treatments were performed at 800 ° C. for 2 minutes in a 100% nitrogen atmosphere. After tertiary cold rolling, 0.5 for these steel sheets
Third annealing (final annealing) was performed at a temperature of 1200 ° C. in a vacuum of Pa or less for 10 minutes (Samples C, D, and E).

【0046】[0046]

【表5】 このようにして作製した試料の磁気特性及び試料表面に
おけるGoss粒占有面積率を表6に示す。
[Table 5] Table 6 shows the magnetic properties of the sample thus produced and the Goss grain occupied area ratio on the sample surface.

【0047】[0047]

【表6】 [Table 6]

【0048】この表から明らかなように、6.5%Si
鋼においても、一次冷間圧延の際の圧下率が70%以上
の場合にGoss粒が形成されやすく、B8 も1.62Tと
6.5%Siとしては高い値となり、優れた軟磁気特性
が得られることが確認された。
As is clear from this table, 6.5% Si
Also in steel, Goss grains are likely to be formed when the rolling reduction during primary cold rolling is 70% or more, and B 8 also has a high value as 1.62T and 6.5% Si, and has excellent soft magnetic properties. It was confirmed that

【0049】[0049]

【発明の効果】この発明によれば、Goss方位に集積した
結晶方位を有する優れた磁気特性の方向性珪素鋼板を、
30分間以内の短時間の焼鈍処理で安定して製造するこ
とができる方法が提供される。
EFFECTS OF THE INVENTION According to the present invention, a grain-oriented silicon steel sheet having excellent magnetic characteristics having a crystal orientation integrated in the Goss orientation,
A method that can be stably manufactured by a short-time annealing treatment within 30 minutes is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次冷間圧延の圧下率とX線回折における各ピ
ークのP値との関係を示す図。
FIG. 1 is a diagram showing the relationship between the rolling reduction of primary cold rolling and the P value of each peak in X-ray diffraction.

【図2】一次冷間圧延の圧下率と最終焼鈍後のB8 の値
との関係を示す図。
FIG. 2 is a diagram showing the relationship between the reduction rate of primary cold rolling and the value of B 8 after final annealing.

【図3】1200℃で3〜10分間の最終焼鈍を施した
際の一次圧延圧下率とB8 の値及びそのばらつきとの関
係を示す図。
FIG. 3 is a diagram showing a relationship between a primary rolling reduction ratio, a value of B 8 and its variation when the final annealing is performed at 1200 ° C. for 3 to 10 minutes.

【図4】一次、二次冷間圧延の圧下率を種々変化させた
場合における1200℃×10分の最終焼鈍後のB8
値を示す図。
FIG. 4 is a diagram showing the value of B 8 after final annealing at 1200 ° C. for 10 minutes when various reduction ratios of primary and secondary cold rolling were changed.

【図5】一次、二次冷間圧延の圧下率を種々変化させた
場合における1200℃×30分の最終焼鈍後のB8
値を示す図。
FIG. 5 is a diagram showing the value of B 8 after final annealing at 1200 ° C. for 30 minutes when various reduction ratios of primary and secondary cold rolling were variously changed.

【図6】一次、二次冷間圧延の圧下率を種々変化させた
場合における1200℃×60分の最終焼鈍後のB8
値を示す図。
FIG. 6 is a diagram showing the value of B 8 after final annealing at 1200 ° C. for 60 minutes when various reduction ratios of primary and secondary cold rolling were changed.

【図7】本発明の条件で一次冷間圧延を行った試料、及
びその範囲から外れる条件で一次冷間圧延を行った試料
の30分間焼鈍後の表面組織を示す図。
FIG. 7 is a diagram showing a surface structure after annealing for 30 minutes of a sample cold-rolled under the conditions of the present invention and a sample cold-rolled under conditions outside the range.

【図8】最終焼鈍時間とGoss粒の粒径平均値との関係を
示す図。
FIG. 8 is a diagram showing the relationship between the final annealing time and the average particle size of Goss grains.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 正好 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 日裏 昭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 浪川 操 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayoshi Oikawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Steel Pipe Co., Ltd. (72) Inventor Akira Hiroso 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd. (72) Inventor Yasushi Tanaka 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd. (72) Inventor Misao Namikawa 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Inside Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01wt%以下、Si:2.5
〜7wt%、Cu:0.01wt%以下、S:0.01
wt%以下、Al:0.01wt%以下、N:0.01
wt%以下を含む鋼材を準備し、この鋼材を1000℃
以上に保持した後、仕上温度が700〜950℃になる
ような熱間圧延を施し、次いで、圧下率70〜90%の
一次冷間圧延又は温間圧延を施した後、2回の中間焼鈍
を介して二次及び三次の冷間圧延又は温間圧延を行い、
その後還元性雰囲気若しくは酸素分圧が0.5Pa以下
の非酸化性雰囲気、又は酸素分圧が0.5Pa以下の真
空中において1000〜1300℃の温度で焼鈍するこ
とを特徴とするGoss方位に集積した結晶方位を有する方
向性珪素鋼板の製造方法。
1. C: 0.01 wt% or less, Si: 2.5
~ 7 wt%, Cu: 0.01 wt% or less, S: 0.01
wt% or less, Al: 0.01 wt% or less, N: 0.01
Prepare a steel material containing less than wt% and heat this steel material at 1000 ° C.
After the above holding, hot rolling is performed so that the finishing temperature becomes 700 to 950 ° C., then primary cold rolling or warm rolling is performed at a rolling reduction of 70 to 90%, and then two intermediate annealings are performed. Through the secondary and tertiary cold rolling or warm rolling,
Thereafter, it is annealed at a temperature of 1000 to 1300 ° C. in a reducing atmosphere or a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less, or in a vacuum having an oxygen partial pressure of 0.5 Pa or less, and integrated in the Goss orientation. Of manufacturing a grain-oriented silicon steel sheet having the above crystal orientation.
JP5161161A 1993-06-30 1993-06-30 Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation Pending JPH0776731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161161A JPH0776731A (en) 1993-06-30 1993-06-30 Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161161A JPH0776731A (en) 1993-06-30 1993-06-30 Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation

Publications (1)

Publication Number Publication Date
JPH0776731A true JPH0776731A (en) 1995-03-20

Family

ID=15729760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161161A Pending JPH0776731A (en) 1993-06-30 1993-06-30 Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation

Country Status (1)

Country Link
JP (1) JPH0776731A (en)

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
US5354389A (en) Method of manufacturing silicon steel sheet having grains precisely arranged in Goss orientation
US5346559A (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JP2871308B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0776731A (en) Production of grain-oriented silicon steel sheet having crystal orientation accumulated in goss orientation
JP2750238B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPH0533056A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property