JPH0773902A - Activating method for secondary battery - Google Patents

Activating method for secondary battery

Info

Publication number
JPH0773902A
JPH0773902A JP24063493A JP24063493A JPH0773902A JP H0773902 A JPH0773902 A JP H0773902A JP 24063493 A JP24063493 A JP 24063493A JP 24063493 A JP24063493 A JP 24063493A JP H0773902 A JPH0773902 A JP H0773902A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
nickel
hours
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24063493A
Other languages
Japanese (ja)
Inventor
Masanobu Kizu
正信 木津
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP24063493A priority Critical patent/JPH0773902A/en
Publication of JPH0773902A publication Critical patent/JPH0773902A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve a discharge characteristic under the control of the activation condition of a battery such as high-current discharging or low-temperature discharging by sufficiently activating a secondary battery in a short time through storing the secondary battery for a fixed period at high temperature after the secondary battery is charged. CONSTITUTION:A secondary battery is charged, and then is stored for 7-240 hours (in particular, the degree of 15-72 hours is preferable) at 40-80 deg.C (in particular, 40-70 deg.C are preferable). A nickel-cadmium battery and a nickel-zinc battery, etc., are cited as an applicable secondary battery, and they are suitable, in particular, to activate a nickel-hydrogen battery. Various hydrogen storage alloys can be used as the negative electrode active material, and, in particular, when TiNi alloy containing AB2 Fe is used, this is suitable as negative electrode active material. At that time, a positive electrode, e.g. manufactured by a paste formula by using Ni (OH)2 is used as positive electrode active material, and the hydroxide aqueous solution of alkaline metal such as potassium hydroxide is used as an electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池の活性化方法
に係わり、さらに詳しくは、短時間で充分に活性化し得
る二次電池の活性化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating a secondary battery, and more particularly to a method for activating a secondary battery which can be sufficiently activated in a short time.

【0002】[0002]

【従来の技術】従来の二次電池の活性化方法としては、
0.1C程度の充電電流で150%充電し、0.2C程
度の放電電流で約0.9Vまで放電する充放電を数回繰
り返し行ったり〔たとえば、電気化学、57、No.6
(1989)、p.48〕、組立後の電池を充電せずに
高温で貯蔵して電池の活性化を行っていた(たとえば、
米国特許第4716088号明細書)が、充分な放電特
性(特に、大電流放電特性や低温放電特性)を得ること
はできなかった。
2. Description of the Related Art As a conventional method for activating a secondary battery,
The charging / discharging of 150% charging with a charging current of about 0.1 C and discharging to about 0.9 V with a discharging current of about 0.2 C may be repeated several times [eg, electrochemical, 57 , No. 57] . 6
(1989), p. 48], the assembled battery was stored at a high temperature without being charged to activate the battery (for example,
U.S. Pat. No. 4,716,088) was unable to obtain sufficient discharge characteristics (in particular, large current discharge characteristics and low temperature discharge characteristics).

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の二次電池の活性化方法における問題点を解決
し、短時間で充分な活性化を行うことができる二次電池
の活性化方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems in the conventional method for activating a secondary battery as described above, and makes it possible to perform sufficient activation in a short time. The purpose is to provide a method of conversion.

【0004】[0004]

【課題を解決するための手段】本発明は、二次電池を充
電した後、高温で一定期間貯蔵することにより、短時間
で充分に活性化できるようにしたものである。
According to the present invention, a secondary battery is charged and then stored at a high temperature for a certain period so that it can be sufficiently activated in a short time.

【0005】そして、その結果、大電流での放電や低温
下での放電など、電池の活性化状態に大きく左右される
放電特性を向上させることができるようになったのであ
る。
As a result, it has become possible to improve discharge characteristics, such as discharge with a large current and discharge at a low temperature, which largely depend on the activated state of the battery.

【0006】本発明において、貯蔵時の温度としては、
40〜80℃、特に40〜70℃が好ましい。すなわ
ち、貯蔵時の温度が40℃より低い場合は充分な活性化
が行われず、また80℃より高くなると活性化に相当す
る合金の溶解反応が進行しすぎたり、セパレータ材料や
封止部の有機物材料の分解反応が生じて好ましくない。
In the present invention, the temperature during storage is
40-80 degreeC, especially 40-70 degreeC are preferable. That is, when the temperature during storage is lower than 40 ° C., sufficient activation is not performed, and when the temperature is higher than 80 ° C., the melting reaction of the alloy corresponding to the activation proceeds too much, the separator material and the organic material of the sealing part It is not preferable because a decomposition reaction of the material occurs.

【0007】上記貯蔵温度からも明らかなように、本発
明において貯蔵時における高温とは電池が使用可能な範
囲内での高温を意味しており、電池が使用できないよう
な高温を意味するものではない。
As is clear from the above storage temperature, in the present invention, the high temperature during storage means a high temperature within a usable range of the battery, and does not mean a high temperature at which the battery cannot be used. Absent.

【0008】貯蔵時間は、貯蔵温度によるが、通常7〜
240時間程度であり、特に15〜72時間程度が好ま
しい。すなわち、貯蔵時間が7時間より短い場合は充分
な活性化を行うことができず、また貯蔵時間が240時
間より長くなると電池製造工程での滞留時間が長くなっ
て非効率になるからである。
The storage time depends on the storage temperature, but is usually 7 to
It is about 240 hours, and particularly preferably about 15 to 72 hours. That is, when the storage time is shorter than 7 hours, sufficient activation cannot be performed, and when the storage time is longer than 240 hours, the residence time in the battery manufacturing process becomes long, resulting in inefficiency.

【0009】本発明は種々の二次電池の活性化に適用で
きるが、そのような適用可能な二次電池の代表的なもの
を例示すると、たとえばニッケル・水素電池、ニッケル
・カドミウム電池、ニッケル・亜鉛電池などであり、本
発明は特にニッケル・水素電池の活性化にあたって好適
に適用できる。
The present invention can be applied to activation of various secondary batteries. Typical examples of applicable secondary batteries are, for example, a nickel-hydrogen battery, a nickel-cadmium battery, and a nickel-hydrogen battery. The present invention is preferably applicable to activation of nickel-hydrogen batteries, such as zinc batteries.

【0010】上記ニッケル・水素電池の負極活物質とし
ては、たとえばAB2 系、AB5 系、AB系、A2 B系
などの水素貯蔵合金を用い得るが、本発明は特にAB2
系水素吸蔵合金〔AはTi、Zr、(Mn)、(V)な
どであり、BはV、Ni、Cr、Co、Fe、Mnなど
である〕を負極活物質として用いる二次電池の活性化に
あたって好適に使用できる。
As the negative electrode active material of the nickel-hydrogen battery, hydrogen storage alloys such as AB 2 type, AB 5 type, AB type and A 2 B type can be used, but the present invention is particularly limited to AB 2 type.
Of a secondary battery using a system hydrogen storage alloy [A is Ti, Zr, (Mn), (V), etc., B is V, Ni, Cr, Co, Fe, Mn, etc.] as a negative electrode active material It can be suitably used for conversion.

【0011】上記AB2 系水素吸蔵合金としては、たと
えばTi16Zr1622Ni39Cr7、Ti16Zr1622
Ni32Cr7 CO7 、Ti15Zr1520.6Ni30Cr
6.6 Co6.6 Mn3.6 Al2.7 、Ti15Zr1521Ni
31Cr6 Co6 Fe6 、Ti15Zr2115Ni31Cr6
Co6 Fe6 などが挙げられるが、本発明は、たとえば
Ti15Zr1521Ni31Cr6 Co6 Fe6 、Ti15
2115Ni31Cr6 Co6 Fe6 などのFeを含むT
iNi系水素吸蔵合金を用いる場合に特に適している。
Examples of the AB 2 type hydrogen storage alloy include Ti 16 Zr 16 V 22 Ni 39 Cr 7 and Ti 16 Zr 16 V 22.
Ni 32 Cr 7 CO 7 , Ti 15 Zr 15 V 20.6 Ni 30 Cr
6.6 Co 6.6 Mn 3.6 Al 2.7 , Ti 15 Zr 15 V 21 Ni
31 Cr 6 Co 6 Fe 6 , Ti 15 Zr 21 V 15 Ni 31 Cr 6
Although Co 6 Fe 6 and the like can be mentioned, the present invention is applicable to, for example, Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6 and Ti 15 Z.
T containing Fe such as r 21 V 15 Ni 31 Cr 6 Co 6 Fe 6
It is particularly suitable when an iNi-based hydrogen storage alloy is used.

【0012】上記ニッケル・水素電池の正極には、たと
えば一酸化ニッケル(NiO)、二酸化ニッケル(Ni
2 )などのニッケル酸化物、たとえば水酸化ニッケル
〔Ni(OH)2 〕などのニッケル水酸化物を正極活物
質として用い、焼結式、ペースト式のいずれで作製した
ものも用いることができる。ただし、上記ニッケル酸化
物やニッケル水酸化物は、正極が放電状態にある場合で
あり、正極が充電状態にある場合にはそれらは別の化合
物として存在する。
For the positive electrode of the nickel-hydrogen battery, for example, nickel monoxide (NiO), nickel dioxide (NiO) is used.
A nickel oxide such as O 2 ), for example, a nickel hydroxide such as nickel hydroxide [Ni (OH) 2 ] is used as a positive electrode active material, and either a sintering method or a paste method can be used. . However, the above nickel oxide and nickel hydroxide exist when the positive electrode is in a discharged state, and when the positive electrode is in a charged state, they exist as another compound.

【0013】また、上記ニッケル・水素電池の電解液と
してはアルカリ水溶液が使用されるが、そのアルカリ水
溶液としては、たとえば水酸化ナトリウム、水酸化カリ
ウム、水酸化リチウムなどのアルカリ金属の水酸化物の
水溶液が用いられる。
An alkaline aqueous solution is used as the electrolytic solution of the nickel-hydrogen battery, and examples of the alkaline aqueous solution include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide. An aqueous solution is used.

【0014】[0014]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only those examples.

【0015】実施例1 負極活物質としてAB2 系のTiNi系水素吸蔵合金に
属するTi15Zr2115Ni31Cr6 Co6 Fe6 を用
い、焼結式で作製した負極と、正極活物質としてNi
(OH)2 を用い、ペースト式で作製した正極を有し、
電解液として濃度30重量部%の水酸化カリウム水溶液
に水酸化リチウムを7g/l添加した水溶液を用いた公
称容量1100mAhのニッケル・水素電池を0.1C
レートで15時間充電した後、70℃の環境下で72時
間貯蔵した。
Example 1 A negative electrode produced by a sintering method using Ti 15 Zr 21 V 15 Ni 31 Cr 6 Co 6 Fe 6 belonging to the AB 2 type TiNi type hydrogen storage alloy as a negative electrode active material, and a positive electrode active material. As Ni
Having a positive electrode prepared by a paste method using (OH) 2 ,
A nickel-hydrogen battery having a nominal capacity of 1100 mAh, which is an aqueous solution prepared by adding 7 g / l of lithium hydroxide to an aqueous solution of potassium hydroxide having a concentration of 30 parts by weight, is used as an electrolytic solution of 0.1 C.
After charging at a rate of 15 hours, it was stored in an environment of 70 ° C. for 72 hours.

【0016】この電池10個をそれぞれ0.2Cレート
で1.0Vまで放電して標準容量を測定し、続いて0.
1Cレートで15時間充電した後、1Cレートで放電
し、放電容量を測定した。
Each of the 10 batteries was discharged at a rate of 0.2 C to 1.0 V and the standard capacity was measured.
After charging for 15 hours at the 1C rate, the battery was discharged at the 1C rate and the discharge capacity was measured.

【0017】その結果を後記の表1に大電流放電特性と
して示す。この表1には上記放電容量と共に、得られた
放電容量の標準容量に対する利用率を実効率として示
す。
The results are shown in Table 1 below as large current discharge characteristics. In Table 1, the discharge capacity and the utilization rate of the obtained discharge capacity with respect to the standard capacity are shown as the actual efficiency.

【0018】つぎに、上記電池10個をそれぞれ0.1
Cで15時間充電した後、0℃の環境下で24時間放置
し、0℃、0.5Cレートの電流で1.0Vまで放電
し、放電容量を測定した。
Next, 0.1 of each of the 10 batteries is used.
After being charged with C for 15 hours, it was left in an environment of 0 ° C. for 24 hours, discharged at 0 ° C. and a current of 0.5 C rate to 1.0 V, and the discharge capacity was measured.

【0019】その結果を表2に低温放電特性として示
す。また、この表2においても、上記放電容量と共に、
得られた放電容量の標準容量に対する利用率を実効率と
して示す。
The results are shown in Table 2 as low temperature discharge characteristics. In addition, in Table 2 as well as the discharge capacity,
The utilization rate of the obtained discharge capacity with respect to the standard capacity is shown as the actual efficiency.

【0020】比較例1 負極活物質として実施例1と同様にTi15Zr2115
31Cr6 Co6 Fe6 を用い、実施例1と同様にして
公称容量1100mAhのニッケル・水素電池を作製
し、この電池を充電することなく、70℃の環境下で2
4時間貯蔵した。つまり、この比較例1は従来法により
活性化をはかろうとしたものである。
Comparative Example 1 As a negative electrode active material, Ti 15 Zr 21 V 15 N was used as in Example 1.
Using i 31 Cr 6 Co 6 Fe 6 , a nickel-hydrogen battery having a nominal capacity of 1100 mAh was produced in the same manner as in Example 1, and the battery was charged in an environment of 70 ° C. without charging the battery.
Stored for 4 hours. That is, Comparative Example 1 is intended to be activated by the conventional method.

【0021】この電池を実施例1と同様に0.2Cレー
トで1.0Vまで放電して標準容量を測定した後、再び
0.1Cレートで15時間充電を行い、実施例1と同様
に1Cレートでの大電流放電特性を測定し、続いて0.
1Cで15時間充電した後、0℃の環境下で24時間放
置し、実施例1と同様に0℃、0.5Cレートの電流で
1.0Vまで放電し、低温放電特性を測定した。それぞ
れの結果を表1と表2に示す。
This battery was discharged to 1.0 V at a rate of 0.2 C in the same manner as in Example 1, the standard capacity was measured, and then the battery was charged again at a rate of 0.1 C for 15 hours to give 1 C as in Example 1. The high current discharge characteristics at rate were measured, followed by 0.
After charging at 1C for 15 hours, it was left in an environment of 0 ° C for 24 hours, and discharged at a temperature of 0 ° C at a rate of 0.5C to 1.0V as in Example 1, and the low temperature discharge characteristics were measured. The respective results are shown in Tables 1 and 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1に示すように、従来法により活性化を
はかろうとした比較例1では、大電流放電において標準
容量に対し66.3〜72.8%の放電容量しか得られ
なかったのに対し、本発明の実施例1では標準容量に対
して87.4〜95.4%の放電容量が得られ、大電流
放電特性が優れていた。
As shown in Table 1, in Comparative Example 1 in which activation was attempted by the conventional method, only 66.3 to 72.8% of the discharge capacity was obtained with respect to the standard capacity in high current discharge. On the other hand, in Example 1 of the present invention, a discharge capacity of 87.4 to 95.4% was obtained with respect to the standard capacity, and the large current discharge characteristics were excellent.

【0025】また、表2に示すように、従来法により活
性化をはかろうとした比較例1では、低温放電において
標準容量に対し2.3〜6.8%の放電容量しか得られ
なかったのに対し、本発明の実施例1では標準容量に対
して53.0〜67.2%の放電容量が得られ、低温放
電特性が優れていた。
Further, as shown in Table 2, in Comparative Example 1 in which activation was attempted by the conventional method, only a discharge capacity of 2.3 to 6.8% of the standard capacity was obtained at low temperature discharge. On the other hand, in Example 1 of the present invention, the discharge capacity of 53.0 to 67.2% was obtained with respect to the standard capacity, and the low temperature discharge characteristics were excellent.

【0026】実施例2 実施例1と同様に作製したニッケル・水素電池を0.1
Cレートで15時間充電した後、45℃で240時間貯
蔵した。
Example 2 A nickel-metal hydride battery manufactured in the same manner as in Example 1 was used.
After charging at C rate for 15 hours, it was stored at 45 ° C. for 240 hours.

【0027】この電池を実施例1と同様に1Cレートの
大電流放電特性を測定し、また0℃での低温放電特性を
測定したところ、実施例1と同等の性能が得られた。
This battery was measured for high current discharge characteristics at a 1C rate in the same manner as in Example 1 and also for low temperature discharge characteristics at 0 ° C. As a result, performance equivalent to that of Example 1 was obtained.

【0028】実施例3 実施例1と同様に作製したニッケル・水素電池を0.1
Cレートで15時間充電した後、60℃で120時間貯
蔵した。
Example 3 A nickel-hydrogen battery produced in the same manner as in Example 1 was replaced with 0.1
After charging at C rate for 15 hours, it was stored at 60 ° C. for 120 hours.

【0029】この電池を実施例1と同様に1Cレートの
大電流放電特性を測定し、また0℃での低温放電特性を
測定したところ、実施例1と同等の性能が得られた。
This battery was measured for high current discharge characteristics at a 1C rate in the same manner as in Example 1 and also for low temperature discharge characteristics at 0 ° C. As a result, performance equivalent to that of Example 1 was obtained.

【0030】[0030]

【発明の効果】以上説明したように、本発明では、二次
電池を充電した後、高温で一定時間貯蔵することによ
り、短時間で充分な活性化を行うことができるようにな
った。そして、その結果、大電流放電特性や低温放電特
性など、電池の活性化状態に影響を受ける放電特性を向
上させることができるようになった。
As described above, according to the present invention, after the secondary battery is charged, the secondary battery is stored at a high temperature for a certain period of time, whereby sufficient activation can be performed in a short time. As a result, it has become possible to improve discharge characteristics such as large current discharge characteristics and low temperature discharge characteristics that are affected by the activation state of the battery.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充電状態の二次電池を高温貯蔵して、短
時間で活性化を行うことを特徴とする二次電池の活性化
方法。
1. A method of activating a secondary battery, which comprises storing a charged secondary battery at a high temperature to activate the secondary battery in a short time.
【請求項2】 二次電池が、ニッケル・水素電池である
ことを特徴とする請求項1記載の二次電池の活性化方
法。
2. The method for activating a secondary battery according to claim 1, wherein the secondary battery is a nickel-hydrogen battery.
【請求項3】 負極活物質が、AB2 系水素吸蔵合金で
あることを特徴とする請求項1または2記載の二次電池
の活性化方法。
3. The method for activating a secondary battery according to claim 1, wherein the negative electrode active material is an AB 2 type hydrogen storage alloy.
【請求項4】 負極活物質のAB2 系水素吸蔵合金が、
Feを含むTiNi系合金であることを特徴とする請求
項3記載の二次電池の活性化方法。
4. The AB 2 type hydrogen storage alloy of the negative electrode active material comprises:
The method for activating a secondary battery according to claim 3, wherein the TiNi-based alloy contains Fe.
【請求項5】 貯蔵温度が、40〜70℃であることを
特徴とする請求項1、2、3または4記載の二次電池の
活性化方法。
5. The method for activating a secondary battery according to claim 1, wherein the storage temperature is 40 to 70 ° C.
【請求項6】 貯蔵時間が、15〜72時間であること
を特徴とする請求項1、2、3、4または5記載の二次
電池の活性化方法。
6. The method for activating a secondary battery according to claim 1, wherein the storage time is 15 to 72 hours.
JP24063493A 1993-08-31 1993-08-31 Activating method for secondary battery Withdrawn JPH0773902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24063493A JPH0773902A (en) 1993-08-31 1993-08-31 Activating method for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24063493A JPH0773902A (en) 1993-08-31 1993-08-31 Activating method for secondary battery

Publications (1)

Publication Number Publication Date
JPH0773902A true JPH0773902A (en) 1995-03-17

Family

ID=17062420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24063493A Withdrawn JPH0773902A (en) 1993-08-31 1993-08-31 Activating method for secondary battery

Country Status (1)

Country Link
JP (1) JPH0773902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110131A (en) * 2012-11-30 2014-06-12 Sony Corp Control device, control method, control system, and electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110131A (en) * 2012-11-30 2014-06-12 Sony Corp Control device, control method, control system, and electric vehicle

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS62287568A (en) Manufacture of alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPH01102855A (en) Hydrogen storing alloy electrode
JP3079303B2 (en) Activation method of alkaline secondary battery
JPH0773902A (en) Activating method for secondary battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3113891B2 (en) Metal hydride storage battery
JPH10134806A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JPH11162460A (en) Nickel-hydrogen secondary battery
JP3057737B2 (en) Sealed alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2975755B2 (en) Activation method of metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH03289059A (en) Metal-hydrogen alkaline battery
JPS62184765A (en) Hydrogen absorbing electrode
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP3176387B2 (en) Method for producing hydride secondary battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP2003017116A (en) Alkali storage battery and manufacturing method of the same
JP3070081B2 (en) Sealed alkaline storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031