JPH10134806A - Hydrogen storage alloy electrode and nickel-hydrogen storage battery - Google Patents

Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Info

Publication number
JPH10134806A
JPH10134806A JP8290295A JP29029596A JPH10134806A JP H10134806 A JPH10134806 A JP H10134806A JP 8290295 A JP8290295 A JP 8290295A JP 29029596 A JP29029596 A JP 29029596A JP H10134806 A JPH10134806 A JP H10134806A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
negative electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8290295A
Other languages
Japanese (ja)
Inventor
Katsunori Komori
克典 児守
Hiromu Matsuda
宏夢 松田
Yoshinori Toyoguchi
▲吉▼徳 豊口
Shinichi Yuasa
真一 湯淺
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8290295A priority Critical patent/JPH10134806A/en
Publication of JPH10134806A publication Critical patent/JPH10134806A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the life characteristic particularly under a high temperature atmosphere by containing a metal fluoride such as CaF2 or the like in an electrode. SOLUTION: The surface of a hydrogen storage alloy is corroded when it makes contact with an alkali aqueous solution which is an electrolyte and covered with an oxide or hydroxide of alloy constituting element such as rare earth metal. Under a high temperature atmosphere, particularly, this corroding speed is extremely increased. When a metal fluoride is added, the dissolving speed of the constituting element of the hydrogen storage alloy into alkali and the generating speed of the oxide/hydroxide can be suppressed. As the metal fluoride used herein, at least one selected from the group consisting of CaF2 , YF3 , AlF3 , MnF2 , CuF2 FeF3 , LaF3 , CoF2 and NiF2 is preferably used. Its content ratio is preferably 0.1 part by weight or more and 10 parts by weight or less to 100 parts by weight of the hydrogen storage alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金電
極、および同電極を負極に用いたニッケル・水素蓄電池
等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode and a nickel-hydrogen storage battery using the electrode as a negative electrode.

【0002】[0002]

【従来の技術】近年、可逆的に水素を吸蔵・放出する水
素吸蔵合金粉末を負極に用いたニッケル・水素蓄電池
は、エネルギー密度が高く、サイクル寿命も長い二次電
池として注目されている。近年の二次電池を使用するポ
ータブル機器は、高性能化および多様化が進んでおり、
従来から使用されているニッケル・カドミウム蓄電池な
どの二次電池に比べてエネルギー密度やサイクル寿命が
優れるニッケル・水素蓄電池の生産量はさらに増大する
と予想されている。サイクル寿命の長いニッケル・水素
蓄電池を作製するために、負極の水素吸蔵合金の長寿命
化技術として、各種の提案がなされている。例えば、水
素吸蔵合金の組成や組織を制御する方法、水素吸蔵合金
粉末を表面処理する方法、合金の腐食抑制のために負極
または電解液へ添加剤を加える方法、水素吸蔵合金の鋳
造法として急冷法を用いるものなどである。
2. Description of the Related Art In recent years, a nickel-hydrogen storage battery using a hydrogen storage alloy powder for reversibly storing and releasing hydrogen for a negative electrode has attracted attention as a secondary battery having a high energy density and a long cycle life. In recent years, portable devices using secondary batteries have been improved in performance and diversification,
It is expected that the production of nickel-metal hydride storage batteries, which have better energy density and cycle life than conventional secondary batteries such as nickel-cadmium storage batteries, will further increase. In order to manufacture a nickel-hydrogen storage battery having a long cycle life, various proposals have been made as technologies for extending the life of the hydrogen storage alloy of the negative electrode. For example, a method of controlling the composition and structure of a hydrogen storage alloy, a method of surface treating a hydrogen storage alloy powder, a method of adding an additive to a negative electrode or an electrolytic solution to suppress corrosion of the alloy, and a method of rapidly cooling as a casting method of a hydrogen storage alloy. And the like.

【0003】水素吸蔵合金には、主に希土類元素/ニッ
ケル(Ni)などからなるAB5タイプと、ジルコニウ
ム(Zr)/マンガン(Mn)などからなるAB2タイ
プなどがある。現在ポータブル機器用等の電源として
は、主にAB5タイプの水素吸蔵合金が使われている。
AB5タイプ水素吸蔵合金は、従来より、合金中へのC
o元素添加により合金の微粉化を抑えることができるの
で、ニッケル・水素蓄電池のサイクル寿命が向上するこ
とが知られており、AB5タイプの長寿命ニッケル・水
素蓄電池用としてCoを含む水素吸蔵合金が数多く提案
されている(特公平5−86029号公報、特開昭61
−91863号公報など)。また、2相以上の金属組織
から成る水素吸蔵合金を用いることにより長寿命化を達
成した例もある(例えば、特開平7−286225号公
報)。負極中の水素吸蔵合金粉末をCuなどでメッキし
てマイクロカプセル化することにより、合金に耐食性を
持たせて長寿命化する技術(特開昭61−168866
号公報)や、負極内にイットリウムを含有させることに
より負極の酸化を抑制する技術(特開平6−21576
5号公報)も提案されている。水素吸蔵合金粉末表面を
フッ化処理して表面被毒性を有する物質に対して非活性
化する技術も提案されている(特開平5−213601
号公報) さらに、水素吸蔵合金の鋳造法として、ガスアトマイズ
法やロール急冷法などの超急冷法を採用することによ
り、長寿命の水素吸蔵合金を作製することも提案されて
いる(特開平6−163042号公報など)。
[0003] hydrogen storage alloy, mainly the like and AB 5 type made of a rare earth element / nickel (Ni), zirconium (Zr) / manganese (Mn) and the like AB 2 type. The power source current such portable equipment, mainly AB 5 type hydrogen storage alloy is used.
AB 5 type hydrogen storage alloy has been
it is possible by o-doped suppressing pulverization of alloys, are known to improve the cycle life of the nickel-hydrogen storage batteries, hydrogen-absorbing alloy containing Co as a AB 5 type long-life nickel-metal hydride battery (Japanese Patent Publication No. 5-86029, Japanese Unexamined Patent Publication No. Sho 61)
-91863). In addition, there is an example in which a long life is achieved by using a hydrogen storage alloy having a metal structure of two or more phases (for example, Japanese Patent Application Laid-Open No. 7-286225). A technique for extending the life by imparting corrosion resistance to the alloy by plating the hydrogen storage alloy powder in the negative electrode with Cu or the like and encapsulating the alloy (Japanese Patent Application Laid-Open No. 61-168866).
Japanese Patent Application Laid-Open No. 6-21576) and a technique for suppressing the oxidation of the negative electrode by incorporating yttrium in the negative electrode.
No. 5) has also been proposed. A technique has been proposed in which the surface of a hydrogen storage alloy powder is fluorinated to deactivate substances having surface poisoning (Japanese Patent Laid-Open No. 5-213601).
In addition, it has been proposed to produce a long-life hydrogen storage alloy by employing a super quenching method such as a gas atomizing method or a roll quenching method as a casting method of the hydrogen storage alloy (Japanese Patent Laid-Open No. 6-205). No. 163042).

【0004】上記のように従来からニッケル・水素蓄電
池の長寿命化の取り組みはなされているが、市場ではさ
らに長寿命の電池が熱望されている。特に、従来のポー
タブル機器の用途の他に、ニッケル・水素蓄電池を搭載
した電気自動車用途が開発されると、約10年間充放電
サイクルを繰り返せる長寿命の電池が要求される。した
がって、従来のニッケル・水素蓄電池では寿命が不十分
である。さらに、最近では、高温雰囲気下での使用に耐
える長寿命電池が望まれているが、上記のCo含有技
術、急冷法技術、金属組織の制御技術などは、水素吸蔵
合金の微粉化を抑制することを主な目的とした技術であ
り、特に高温での合金腐食に対応した技術とはいえな
い。
[0004] As described above, efforts have been made to extend the life of nickel-metal hydride storage batteries, but batteries having a longer life are eagerly awaited in the market. In particular, when an electric vehicle application equipped with a nickel-metal hydride storage battery is developed in addition to a conventional portable device application, a long-life battery capable of repeating a charge / discharge cycle for about 10 years is required. Therefore, the life of the conventional nickel-metal hydride storage battery is insufficient. Furthermore, recently, a long-life battery that can withstand use in a high-temperature atmosphere is desired. However, the Co-containing technology, the quenching method, and the metal structure control technology described above suppress the pulverization of the hydrogen storage alloy. It is a technology mainly intended for this purpose, and cannot be said to be a technology particularly suitable for alloy corrosion at high temperatures.

【0005】また、長寿命な合金組成を持つ水素吸蔵合
金が他の電池特性にも優れているとは限らない。例え
ば、Coを多く含有する合金は、サイクル寿命特性は良
いが、高率放電特性がCoを含有しない合金に比べて劣
っているという問題を有している。また、水素吸蔵合金
粉末のマイクロカプセル化は、負極板の容量密度が低く
なり、コスト高になる上大量生産に向かない方法であ
る。水素吸蔵合金粉末のフッ化処理は、製造工程が複雑
で、廃液処理等のコストもかかる。また、ガスアトマイ
ズ等の超急冷法を用いる技術は、実験レベルではかなり
発展しているが、現在のところ大量生産が非常に困難で
ある。
Further, a hydrogen storage alloy having a long life alloy composition is not always excellent in other battery characteristics. For example, an alloy containing a large amount of Co has a good cycle life characteristic, but has a problem that the high-rate discharge characteristic is inferior to an alloy containing no Co. In addition, microencapsulation of the hydrogen storage alloy powder is a method that lowers the capacity density of the negative electrode plate, increases the cost, and is not suitable for mass production. The fluorination treatment of the hydrogen-absorbing alloy powder requires a complicated manufacturing process and costs for waste liquid treatment. Further, a technique using a super quenching method such as gas atomization has been considerably developed at an experimental level, but mass production is very difficult at present.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、従来のニッケル・水素蓄電池に比べて長寿命で、特
に高温雰囲気下での使用に対して寿命特性に優れ、複雑
な製造工程を要せず安価に製造できるニッケル・水素蓄
電池を与える水素吸蔵合金電極を提供することを目的と
する。
SUMMARY OF THE INVENTION In view of the above, the present invention has a longer life than conventional nickel-metal hydride storage batteries, and has an excellent life characteristic especially when used in a high-temperature atmosphere. It is an object of the present invention to provide a hydrogen storage alloy electrode that provides a nickel-metal hydride storage battery that can be manufactured at low cost without the need.

【0007】[0007]

【課題を解決するための手段】この課題を解決するた
め、本発明は水素吸蔵合金電極中に金属フッ化物を含有
させるものである。ここで、金属フッ化物としては、C
aF2、YF3、AlF3、MnF2、CuF2、FeF3
LaF3、CoF2、およびNiF2からなる群より選択
された少なくとも一種であることが望ましい。
Means for Solving the Problems To solve this problem, the present invention includes a metal fluoride in a hydrogen storage alloy electrode. Here, as the metal fluoride, C
aF 2 , YF 3 , AlF 3 , MnF 2 , CuF 2 , FeF 3 ,
Desirably, it is at least one selected from the group consisting of LaF 3 , CoF 2 , and NiF 2 .

【0008】[0008]

【発明の実施の形態】ニッケル・水素蓄電池のサイクル
寿命劣化の主な原因の一つは、水素吸蔵合金の腐食酸化
である。ニッケル・水素蓄電池の水素吸蔵合金は、電解
液であるアルカリ水溶液に接触するとその表面が腐食
し、希土類等の合金構成元素の酸化物や水酸化物で覆わ
れる。特に、高温雰囲気下ではこの腐食速度が非常に大
きくなる。この水素吸蔵合金電極に金属フッ化物を添加
すると、水素吸蔵合金の構成元素のアルカリ中への溶解
速度および酸化物/水酸化物の生成速度を抑えることが
できる。これによってニッケル・水素蓄電池の寿命特性
が向上する。特に、その効果は高温雰囲気下で著しい。
ここに用いる金属フッ化物は、上記に挙げたものが好ま
しく、それらの含有割合は、水素吸蔵合金100重量部
に対して0.1重量部以上10重量部以下であることが
好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the main causes of deterioration of the cycle life of a nickel-metal hydride storage battery is corrosion oxidation of a hydrogen storage alloy. The surface of a hydrogen storage alloy of a nickel-metal hydride storage battery is corroded when it comes into contact with an alkaline aqueous solution as an electrolytic solution, and is covered with oxides or hydroxides of alloy constituent elements such as rare earth elements. In particular, under a high-temperature atmosphere, the corrosion rate becomes extremely high. When a metal fluoride is added to the hydrogen storage alloy electrode, the dissolution rate of the constituent elements of the hydrogen storage alloy in alkali and the generation rate of oxides / hydroxides can be suppressed. This improves the life characteristics of the nickel-metal hydride storage battery. In particular, the effect is remarkable under a high temperature atmosphere.
The metal fluorides used here are preferably those listed above, and their content is preferably from 0.1 to 10 parts by weight per 100 parts by weight of the hydrogen storage alloy.

【0009】[0009]

【実施例】以下に、実施例により本発明の水素吸蔵合金
電極およびニッケル・水素蓄電池について詳しく説明す
る。 《実施例1》以下のようにして、容量が正極で規制され
た密閉式のニッケル・水素蓄電池を作製した。水酸化ニ
ッケル、金属コバルト、水酸化コバルト、および酸化亜
鉛の各粉末を重量比で100:7:5:2.5の割合で
良く混合した後、混合粉末20gに水を添加しペースト
状にした。縦81mm×横60mm、重量3.1gの発
泡ニッケル中に、このペーストを充填し乾燥後、厚み
1.74mmに圧縮し正極板とした。正極板の角にリー
ドとしてのニッケル板をスポット溶接した。上記混合物
中金属コバルトは放電リザーブの確保に寄与し、水酸化
コバルトは充電効率の改良に寄与する。この正極板1枚
の理論容量は5.05Ahである。試験用電池にはこの
正極板を5枚用いた。
EXAMPLES Hereinafter, the hydrogen storage alloy electrode and the nickel-hydrogen storage battery of the present invention will be described in detail with reference to examples. Example 1 A sealed nickel-metal hydride battery whose capacity was regulated by the positive electrode was manufactured as follows. After each powder of nickel hydroxide, metallic cobalt, cobalt hydroxide, and zinc oxide was mixed well at a weight ratio of 100: 7: 5: 2.5, water was added to 20 g of the mixed powder to form a paste. . This paste was filled in a foamed nickel foam of 81 mm long × 60 mm wide and 3.1 g in weight, dried, and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to a corner of the positive electrode plate. The metal cobalt in the mixture contributes to securing a discharge reserve, and the cobalt hydroxide contributes to improvement in charging efficiency. The theoretical capacity of one positive electrode plate is 5.05 Ah. Five positive electrodes were used for a test battery.

【0010】一方、負極は次のようにして作製した。す
なわち、Mm(La、Ce、Nd、Prから成る合
金)、Ni、Mn、Al、Coの各成分元素を所定の割
合で混合し、高周波溶解炉で組成MmNi3.9Mn0.4
0.3Co0.75の水素吸蔵合金のインゴットを作製し
た。この合金をAr雰囲気下、1000℃で10時間熱
処理した。このインゴットを粉砕して平均粒径30μm
の合金粉末を得た。この合金粉末19.4gにCMC
(カルボキシメチルセルロース)とSBR(スチレンブ
タジエン共重合体)と表1に示した添加剤と水を重量比
で100:0.5:1:1:20の割合で混合して練合
しペーストとした。縦81mm×横60mm、重量2.
1gのパンチングメタルに、このペーストを塗着し乾燥
後、厚み1.20mmまでロールプレスして負極板とし
た。負極板の角にリードとしてのニッケル板をスポット
溶接した。この負極板1枚の理論容量は5.63Ahで
ある。試験用電池にはこの負極板を6枚用いた。
On the other hand, the negative electrode was manufactured as follows. That is, Mm (an alloy composed of La, Ce, Nd, and Pr), Ni, Mn, Al, and Co are mixed at a predetermined ratio, and the composition is MmNi 3.9 Mn 0.4 A in a high frequency melting furnace.
An ingot of l 0.3 Co 0.75 hydrogen storage alloy was produced. This alloy was heat-treated at 1000 ° C. for 10 hours in an Ar atmosphere. This ingot is pulverized to an average particle size of 30 μm.
Was obtained. CMC was added to 19.4 g of this alloy powder.
(Carboxymethylcellulose), SBR (styrene butadiene copolymer), the additives shown in Table 1, and water were mixed at a weight ratio of 100: 0.5: 1: 1: 20 and kneaded to form a paste. . 81 mm long x 60 mm wide, weight 2.
This paste was applied to 1 g of punching metal, dried, and then roll-pressed to a thickness of 1.20 mm to obtain a negative electrode plate. A nickel plate as a lead was spot-welded to a corner of the negative electrode plate. The theoretical capacity of one negative electrode plate is 5.63 Ah. Six negative electrodes were used for a test battery.

【0011】図1のようにスルホン化処理をしポリプロ
ピレン不織布からなるセパレータ1を介して、負極2と
正極3を交互に積層し、外側に負極がくるように配置し
た。負極のリードをニッケル製負極端子4に、正極のリ
ードをニッケル製正極端子(図示しない)にそれぞれス
ポット溶接した。これらの極板群を厚み5mmのアクリ
ロニトリルースチレン樹脂からなる縦108mm×横6
9mm×幅18mmのケース5に収納した。水酸化カリ
ウムを主体とした比重1.3のアルカリ水溶液からなる
電解液を54cc注入した後、ケース5の開口部にアク
リロニトリルースチレン樹脂からなる封口板7をエポキ
シ樹脂で接着して封口した。封口板7には、3気圧で作
動する安全弁6が取り付けてある。また、負極端子4
は、ナット9で締め付けることによりOリング8を介し
て封口板7に圧接固定してある。正極端子も同様にして
封口板に気密かつ液密に取り付けられている。こうして
密閉電池を作製した。
As shown in FIG. 1, a negative electrode 2 and a positive electrode 3 were alternately laminated via a separator 1 made of a sulfonated polypropylene non-woven fabric and arranged so that the negative electrode was located outside. The negative electrode lead was spot-welded to the nickel negative electrode terminal 4, and the positive electrode lead was spot-welded to the nickel positive electrode terminal (not shown). These electrode plates were made of acrylonitrile styrene resin having a thickness of 5 mm and a length of 108 mm and a width of 6 mm.
It was housed in a case 5 of 9 mm × 18 mm width. After injecting 54 cc of an electrolytic solution composed of an alkaline aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.3, a sealing plate 7 made of acrylonitrile styrene resin was adhered to the opening of the case 5 with an epoxy resin and sealed. A safety valve 6 operating at 3 atm is attached to the sealing plate 7. Also, the negative electrode terminal 4
Are pressed and fixed to the sealing plate 7 via an O-ring 8 by tightening with a nut 9. The positive electrode terminal is similarly air-tightly and liquid-tightly attached to the sealing plate. Thus, a sealed battery was produced.

【0012】《比較例》添加剤を加えない負極のペース
トを用いた他は実施例と同様にして電池を作製した。
Comparative Example A battery was manufactured in the same manner as in Example except that a paste of a negative electrode to which no additive was added was used.

【0013】以上の実施例および比較例の電池につい
て、20℃および45℃の雰囲気下において充放電試験
をしてサイクル寿命を調べた。充放電試験は、3時間率
(8.43A)で1時間充電し、同じく3時間率で端子
電圧が1Vになるまで放電する充放電を繰り返した。そ
して、50サイクル毎に、放電容量を測定し、放電容量
が初期容量(5サイクル目)の90%に劣化するまでの
サイクル数をもって寿命とした。なお、放電容量は、室
温において、10時間率(2.53A)で12時間充電
した後、5時間率(5.06A)で端子間電圧が1Vに
なるまでの放電時間から求めた。表1は各種負極添加剤
を用いた実施例および負極添加剤を用いない比較例のニ
ッケル・水素蓄電池の20℃および45℃におけるサイ
クル寿命特性をまとめたものである。
The batteries of the above Examples and Comparative Examples were subjected to a charge / discharge test in an atmosphere at 20 ° C. and 45 ° C. to examine the cycle life. In the charge / discharge test, charge / discharge in which the battery was charged at a 3-hour rate (8.43 A) for 1 hour and then discharged until the terminal voltage became 1 V at a 3-hour rate was repeated. The discharge capacity was measured every 50 cycles, and the number of cycles until the discharge capacity was reduced to 90% of the initial capacity (fifth cycle) was defined as the life. The discharge capacity was determined from the discharge time until the inter-terminal voltage became 1 V at a 5-hour rate (5.06 A) after charging at room temperature for 12 hours at a 10-hour rate (2.53 A). Table 1 summarizes the cycle life characteristics at 20 ° C. and 45 ° C. of the nickel-metal hydride storage batteries of Examples using various negative electrode additives and Comparative Examples not using the negative electrode additives.

【0014】[0014]

【表1】 [Table 1]

【0015】表1からわかるように、負極に金属フッ化
物を添加した実施例の電池は、比較例に比べて著しくサ
イクル寿命が向上している。特に、45℃の寿命では効
果が顕著であるから、高温で特に進行しやすい水素吸蔵
合金の腐食を添加剤の金属フッ化物で抑制していると考
えられる。No.1および5のサイクル寿命が特に長い
ことから、添加物としてCaF2およびYF3が優れてい
る。なお、表1に示した以外の金属フッ化物、例えばN
dF3、CeF3、SrF2、CrF3、MgF2を負極に
添加した電池についても同様の効果が得られた。
As can be seen from Table 1, the cycle life of the battery of the embodiment in which the metal fluoride was added to the negative electrode was remarkably improved as compared with the comparative example. In particular, since the effect is remarkable at a life of 45 ° C., it is considered that the corrosion of the hydrogen storage alloy, which easily progresses at a high temperature, is suppressed by the metal fluoride as an additive. No. Since the cycle life of 1 and 5 is particularly long, CaF 2 and YF 3 are excellent as additives. Note that metal fluorides other than those shown in Table 1, such as N
Similar effects were obtained for batteries in which dF 3 , CeF 3 , SrF 2 , CrF 3 , and MgF 2 were added to the negative electrode.

【0016】《実施例2》負極添加剤の添加割合を変え
た他は実施例1と同様にしてニッケル・水素蓄電池を作
製し、45℃におけるサイクル寿命を調べた。その結果
を図2に示す。図2から明らかなように、負極添加剤に
より多少の差はあるが、負極添加剤の添加割合が水素吸
蔵合金100重量部に対しほぼ0.1重量部程度からサ
イクル寿命向上の効果が現れはじめる。添加量が多いほ
どサイクル寿命改善の効果は大きくなる傾向にあるが、
水素吸蔵合金100重量部に対し10重量部を超えると
差がなくなる。さらにこれより多量に添加剤を負極中に
加えると、水素吸蔵合金に対する添加剤の割合が多すぎ
て負極容量密度が減少する。従って、添加割合は、実用
上水素吸蔵合金100重量部に対し10重量部以下が好
ましい。なお、ここでは代表例としてYF3、Ca
2、、AlF3について説明したが、実施例1で用いた
他の金属フッ化物を負極に含有させた場合も添加量と寿
命の関係は同様であった。
Example 2 A nickel-metal hydride storage battery was fabricated in the same manner as in Example 1 except that the addition ratio of the negative electrode additive was changed, and the cycle life at 45 ° C. was examined. The result is shown in FIG. As is clear from FIG. 2, although there is a slight difference depending on the negative electrode additive, the effect of improving the cycle life starts to appear when the addition ratio of the negative electrode additive is about 0.1 part by weight with respect to 100 parts by weight of the hydrogen storage alloy. . The effect of improving cycle life tends to increase as the amount of addition increases,
If the amount exceeds 10 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy, there is no difference. Further, when the additive is added to the negative electrode in a larger amount, the ratio of the additive to the hydrogen storage alloy is too large, and the negative electrode capacity density decreases. Therefore, the addition ratio is preferably 10 parts by weight or less for 100 parts by weight of the hydrogen storage alloy in practical use. Here, as typical examples, YF 3 , Ca
F 2, AlF 3 have been described, but when the other metal fluoride used in Example 1 is contained in the negative electrode, the relationship between the added amount and the life is the same.

【0017】[0017]

【発明の効果】以上のように本発明によれば、負極の水
素吸蔵合金の腐食を抑制でき、その結果特に高温雰囲気
での使用においても長寿命なニッケル・水素蓄電池を提
供することができる。
As described above, according to the present invention, it is possible to suppress the corrosion of the hydrogen storage alloy of the negative electrode, and as a result, it is possible to provide a nickel-metal hydride storage battery having a long life especially in use in a high-temperature atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の密閉式ニッケル・水素蓄電池
の概略構成を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a sealed nickel-metal hydride battery according to an embodiment of the present invention.

【図2】負極添加剤の添加割合と45℃における電池の
サイクル寿命の関係を示した図である。
FIG. 2 is a graph showing the relationship between the addition ratio of a negative electrode additive and the cycle life of a battery at 45 ° C.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 4 負極端子 5 ケース 6 安全弁 7 封口板 8 Oリング 9 ナット DESCRIPTION OF SYMBOLS 1 Separator 2 Negative electrode 3 Positive electrode 4 Negative terminal 5 Case 6 Safety valve 7 Sealing plate 8 O-ring 9 Nut

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯淺 真一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shinichi Yuasa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属フッ化物を含有することを特徴とす
る水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising a metal fluoride.
【請求項2】 金属フッ化物がCaF2、YF3、AlF
3、MnF2、CuF2、FeF3、LaF3、CoF2、お
よびNiF2からなる群より選択された少なくとも一種
である請求項1記載の水素吸蔵合金電極。
2. The method according to claim 1, wherein the metal fluoride is CaF 2 , YF 3 or AlF.
3, MnF 2, CuF 2, FeF 3, LaF 3, CoF 2, and the hydrogen storage alloy electrode according to claim 1, wherein from the group consisting of NiF 2 is at least one selected.
【請求項3】 金属フッ化物の含有割合が水素吸蔵合金
100重量部に対して0.1重量部以上10重量部以下
である請求項1または2記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the content of the metal fluoride is 0.1 to 10 parts by weight based on 100 parts by weight of the hydrogen storage alloy.
【請求項4】 ニッケル酸化物またはニッケル水酸化物
を含む正極、水素吸蔵合金を含む負極、前記正極と負極
との間に挿入されたセパレータ、およびアルカリ水溶液
からからなる電解液を具備し、前記負極が金属フッ化物
を含有することを特徴とするニッケル・水素蓄電池。
4. An electrolyte comprising a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, a separator inserted between the positive electrode and the negative electrode, and an aqueous alkaline solution, A nickel-metal hydride storage battery, wherein the negative electrode contains a metal fluoride.
JP8290295A 1996-10-31 1996-10-31 Hydrogen storage alloy electrode and nickel-hydrogen storage battery Pending JPH10134806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290295A JPH10134806A (en) 1996-10-31 1996-10-31 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8290295A JPH10134806A (en) 1996-10-31 1996-10-31 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH10134806A true JPH10134806A (en) 1998-05-22

Family

ID=17754295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290295A Pending JPH10134806A (en) 1996-10-31 1996-10-31 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH10134806A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle
US6322925B1 (en) * 1997-08-28 2001-11-27 Sanyo Electric Co., Ltd. Metal hydride alkaline storage cell
CN103794797A (en) * 2012-10-30 2014-05-14 Fdktwicell株式会社 Nickel hydride secondary battery
JP2014207086A (en) * 2013-04-11 2014-10-30 Fdkトワイセル株式会社 Negative electrode for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery using the same
JP2016149299A (en) * 2015-02-13 2016-08-18 Fdk株式会社 Nickel hydrogen secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322925B1 (en) * 1997-08-28 2001-11-27 Sanyo Electric Co., Ltd. Metal hydride alkaline storage cell
US6852447B2 (en) 1997-08-28 2005-02-08 Sanyo Electric Co., Ltd. Metal hydride alkaline storage cell and manufacturing method thereof
US6902588B2 (en) 1997-08-28 2005-06-07 Sanyo Electric Co., Ltd Manufacturing method of metal hydride alkaline storage cell
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle
CN103794797A (en) * 2012-10-30 2014-05-14 Fdktwicell株式会社 Nickel hydride secondary battery
JP2014089879A (en) * 2012-10-30 2014-05-15 Fdk Twicell Co Ltd Nickel hydrogen secondary battery
CN103794797B (en) * 2012-10-30 2017-08-29 Fdk株式会社 Nickel-hydrogen chargeable cell
JP2014207086A (en) * 2013-04-11 2014-10-30 Fdkトワイセル株式会社 Negative electrode for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery using the same
JP2016149299A (en) * 2015-02-13 2016-08-18 Fdk株式会社 Nickel hydrogen secondary battery

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3923157B2 (en) Alkaline storage battery
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP4010630B2 (en) Hydrogen storage alloy electrode
JPH10134806A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH01102855A (en) Hydrogen storing alloy electrode
JP4420767B2 (en) Nickel / hydrogen storage battery
JP3579273B2 (en) Hydrogen storage alloy electrode
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP3653710B2 (en) Hydrogen storage electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPH05121073A (en) Nickel-metal hydride storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP4024728B2 (en) Method for producing hydrogen storage alloy electrode
JPH08148179A (en) Nickel-hydrogen storage battery
JP3330088B2 (en) Negative electrode for secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2679441B2 (en) Nickel-metal hydride battery
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH08315852A (en) Nickel hydrogen storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3221040B2 (en) Alkaline storage battery