JPH0773657B2 - Wet Flue Gas Desulfurization Method - Google Patents

Wet Flue Gas Desulfurization Method

Info

Publication number
JPH0773657B2
JPH0773657B2 JP61184278A JP18427886A JPH0773657B2 JP H0773657 B2 JPH0773657 B2 JP H0773657B2 JP 61184278 A JP61184278 A JP 61184278A JP 18427886 A JP18427886 A JP 18427886A JP H0773657 B2 JPH0773657 B2 JP H0773657B2
Authority
JP
Japan
Prior art keywords
liquid
absorption tower
absorbent
flue gas
wet flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61184278A
Other languages
Japanese (ja)
Other versions
JPS6342720A (en
Inventor
文男 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61184278A priority Critical patent/JPH0773657B2/en
Publication of JPS6342720A publication Critical patent/JPS6342720A/en
Publication of JPH0773657B2 publication Critical patent/JPH0773657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は湿式排煙脱硫方法の改良に関し、特に水酸化マ
グネシウム、カセイソーダ、消石灰または石灰などアル
カリ性化合物を吸収剤として用いる湿式排煙脱硫方法に
関する。
TECHNICAL FIELD The present invention relates to an improvement in a wet flue gas desulfurization method, and particularly to a wet flue gas desulfurization method using an alkaline compound such as magnesium hydroxide, caustic soda, slaked lime or lime as an absorbent. .

〔従来の技術〕[Conventional technology]

現在、排煙脱硫方法の主流をなしているものに水酸化マ
グネシウム、炭酸カルシウムなどのアルカリ性化合物を
吸収剤として含む吸収液を用いて排煙と気液接触させ排
煙中の硫黄分を硫酸塩として回収する、いわゆる湿式排
煙脱硫方法がある。
At present, the flue gas desulfurization method is mainly used, and an absorbing solution containing an alkaline compound such as magnesium hydroxide or calcium carbonate as an absorbent is used to bring the flue gas into gas-liquid contact with the sulfur content of the flue gas to form a sulfate salt. There is a so-called wet flue gas desulfurization method.

たとえば、水酸化マグネシウム〔Mg(OH)2〕を吸収剤と
する湿式排煙脱硫装置における冷却塔、吸収塔では一般
的に示すと次の化学反応が起る。
For example, the following chemical reactions generally occur in a cooling tower and an absorption tower in a wet flue gas desulfurization apparatus using magnesium hydroxide [Mg (OH) 2 ] as an absorbent.

ここで各反応式の説明をすると、(1)式は排ガス中の亜
硫酸ガスを循環液へ吸収させる反応、(2)式は(1)式で生
成した亜硫酸(H2SO3)と循環液中の亜硫酸マグネシウ
ム(MgSO3)の反応、(3)式は循環液へ水酸化マグネシウ
ム(Mg(OH)2)を注入した際の反応、そして(4)式は循環
液中の亜硫酸マグネシウムが酸素で酸化される反応を示
す。
Explaining each reaction formula here, Eq. (1) is a reaction that absorbs sulfur dioxide in exhaust gas into the circulating fluid, and Eq. (2) is sulfur dioxide (H 2 SO 3 ) generated in Eq. (1) and circulating fluid. The reaction of magnesium sulfite (MgSO 3 ) in the solution, the formula (3) is the reaction when magnesium hydroxide (Mg (OH) 2 ) is injected into the circulating fluid, and the formula (4) is that the magnesium sulfite in the circulating fluid is oxygen. Shows the reaction of being oxidized by.

上記一連の反応を連続的に行わせるために重要なことは
次の二点にある。
The following two points are important in order to carry out the above series of reactions continuously.

(1) まず難溶性の亜硫酸マグネシウムを発生させない
ことである。もしこの結晶が析出すると、冷却塔、吸収
塔内でのスケーリングの発生、配管、バルブ等の閉塞な
どトラブルが生じるおそれがある。なお、硫酸マグネシ
ウム、二チオン酸マグネシウム(Mg(HSO3)2)は溶解度
が大きいため結晶析出によるトラブル発生のおそれはな
い。
(1) First, it is necessary to prevent the generation of hardly soluble magnesium sulfite. If this crystal is deposited, there is a possibility that troubles such as scaling in the cooling tower and absorption tower and blockage of pipes and valves may occur. Since magnesium sulfate and magnesium dithionate (Mg (HSO 3 ) 2 ) have high solubility, there is no risk of trouble due to crystal precipitation.

(2) 次に、重要なことは上記(2)式および(3)式の反応
を円滑に進行させるために亜硫酸マグネシウムと二チオ
ン酸マグネシウムとがそれぞれ適量循環液中に存在する
ことである。
(2) Next, it is important that magnesium sulfite and magnesium dithionite are present in appropriate amounts in the circulating liquid in order to smoothly proceed the reactions of the above formulas (2) and (3).

一般に、循環液pH(水素イオン濃度)が6近辺の場合亜
硫酸マグネシウムと亜硫酸水素マグネシウムの濃度は亜
硫酸イオン換算で0.03〜0.1モル/が良いとされてい
る。ここで、水酸化マグネシウムを吸収剤とする湿式排
煙脱硫装置の冷却塔、吸収塔まわりの従来のプロセスフ
ローの例を第2図に基づいて説明する。
Generally, when the pH of the circulating fluid (hydrogen ion concentration) is around 6, the concentration of magnesium sulfite and magnesium hydrogen sulfite is considered to be 0.03 to 0.1 mol / liter in terms of sulfite ion. Here, an example of a conventional process flow around a cooling tower and an absorption tower of a wet flue gas desulfurization apparatus using magnesium hydroxide as an absorbent will be described with reference to FIG.

排ガス101は吸収塔106に付属して設けられた冷却塔104
へ導入されスプレーノズル105から噴霧される循環液に
より冷却される。このとき排ガスは、通常100〜200℃か
ら50〜70℃に冷却される。冷却塔104では冷却と同時に
排ガス中のばいじんの捕集及び亜硫酸ガスの一部が吸収
される。冷却された排ガス102は吸収塔106の中間部に導
入され、吸収塔上部にあるスプレーノズル108から散布
された循環液で濡らされている吸収塔中央部に充填され
た充填層107の内部を通過上昇する。この過程で気液接
触が行なわれ、排ガス中の亜硫酸ガスが循環液に吸収さ
れる。充填層107を通過した排ガスは吸収塔上部の排出
口近傍にあるデミスタ109でキヤリオーバミストが除去
され処理ガス103として排出される。
The exhaust gas 101 is a cooling tower 104 attached to the absorption tower 106.
It is cooled by the circulating liquid that is introduced into the spray nozzle 105 and sprayed from the spray nozzle 105. At this time, the exhaust gas is usually cooled from 100 to 200 ° C to 50 to 70 ° C. Simultaneously with cooling, the cooling tower 104 collects soot and dust in the exhaust gas and absorbs part of the sulfurous acid gas. The cooled exhaust gas 102 is introduced into the intermediate portion of the absorption tower 106 and passes through the inside of the packed bed 107 filled in the central portion of the absorption tower that is wetted by the circulating liquid sprayed from the spray nozzle 108 at the upper part of the absorption tower. To rise. Gas-liquid contact is performed in this process, and the sulfurous acid gas in the exhaust gas is absorbed by the circulating liquid. Exhaust gas that has passed through the packed bed 107 has its carrier overmist removed by a demister 109 near the discharge port in the upper part of the absorption tower and is discharged as a processing gas 103.

一方、冷却塔104及び吸収塔106内を流下する循環液は吸
収塔106の下部の液室110に一旦集積される。液室110側
壁と循環ポンプ112を結ぶライン111および循環ポンプ11
2とスプレーノズル108とを結ぶライン113およびライン1
15とで吸収液循環系が形成されており、液室110内の循
環液がこの循環系を流れる。さらにライン113より分岐
したライン114を経由して冷却塔104のスプレーノズル10
5へも一部吸収液が循環されている。
On the other hand, the circulating liquid flowing down through the cooling tower 104 and the absorption tower 106 is temporarily accumulated in the liquid chamber 110 below the absorption tower 106. A line 111 connecting the side wall of the liquid chamber 110 and the circulation pump 112 and the circulation pump 11
Line 113 and line 1 connecting 2 to the spray nozzle 108
An absorbing liquid circulation system is formed by 15 and the circulating liquid in the liquid chamber 110 flows through this circulation system. Further, via a line 114 branched from the line 113, the spray nozzle 10 of the cooling tower 104
Part of the absorption liquid is circulated to 5.

ごの循環系で必要な水は吸収塔106側壁にあるライン116
より通常は、液室110のレベルを一定範囲に保つ様に供
給される。
The water required for the circulatory system is the line 116 on the side wall of the absorption tower 106.
More usually, it is supplied so as to keep the level of the liquid chamber 110 within a certain range.

また必要な水酸化マグネシウムは吸収塔106側壁のライ
ン117より供給される。その供給量は通常は循環液のpH
が所定値になる様に調整される。なお水酸化マグネシウ
ムは通常、5〜30%濃度のスラリーで供給される。
Further, necessary magnesium hydroxide is supplied from a line 117 on the side wall of the absorption tower 106. The supply amount is usually the pH of the circulating fluid.
Is adjusted to a predetermined value. The magnesium hydroxide is usually supplied as a slurry having a concentration of 5 to 30%.

なお、この循環系内に蓄積するばいじん及び反応生成物
はライン113より分岐したライン118よりブローして図示
していない排水処理装置へ送られる。
The dust and reaction products accumulated in the circulation system are blown from a line 118 branched from the line 113 and sent to a wastewater treatment device (not shown).

前記(4)式での酸化反応は冷却塔104及び吸収塔106の中
で排ガス中に含まれる酸素によつて進行するが、排ガス
中の酸素濃度は通常1〜6%(ボイラ排ガスの場合)と
低いため、反応は十分には進まない。そこで空気取入口
をもつライン119から取入れた空気をブロワ120で加圧し
た後吸収塔106の液室内にあるばつ気管122と結ぶライン
121を介して、液室110に供給し、前記(4)式の酸化反応
を行なわせる。このばつ気により液室110内の循環液は
攪拌され、ばいじんの堆積が防止出来ると共に、ライン
117から供給される水酸化マグネシウムの循環液への混
合と脱硫反応の促進がなされる。
The oxidation reaction in the equation (4) proceeds by oxygen contained in the exhaust gas in the cooling tower 104 and the absorption tower 106, but the oxygen concentration in the exhaust gas is usually 1 to 6% (in the case of boiler exhaust gas). Since it is low, the reaction does not proceed sufficiently. Therefore, the air taken in from the line 119 having the air intake is pressurized by the blower 120 and then connected to the trachea 122 in the liquid chamber of the absorption tower 106.
It is supplied to the liquid chamber 110 via 121 to cause the oxidation reaction of the above formula (4). Due to this aeration, the circulating liquid in the liquid chamber 110 is agitated to prevent the accumulation of soot and dust, and
The mixing of magnesium hydroxide supplied from 117 into the circulating liquid and the promotion of the desulfurization reaction are promoted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上気した従来技術には以下のような欠点がある。 The known prior art has the following drawbacks.

(1) 吸収塔下部液室内へ多量の空気を供給すると循環
ポンプは空気吸込みを起こし、キヤビテーシヨン等の問
題を起す。
(1) When a large amount of air is supplied into the liquid chamber in the lower part of the absorption tower, the circulation pump sucks in air, causing problems such as cavitation.

(2) ブロワの故障等で吸収塔下部液室への空気の供給
を停止した場合にはばつ気管の詰りを起こしやすく、詰
りが生じると空気の供給を再開しても、正常なばつ気が
出来なくなる。
(2) If the air supply to the liquid chamber in the lower part of the absorption tower is stopped due to a blower failure, etc., the trachea is likely to become clogged, and if clogging occurs, the normal aeration will not occur even if the air supply is restarted. I can't.

(3) 吸収塔循環液は通常pH6付近にコントロールされて
おりそこへMg(OH)2を供給するため反応性が悪い。
(3) Since the circulating liquid in the absorption tower is usually controlled to around pH 6 and Mg (OH) 2 is supplied to it, the reactivity is poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、(1)アルカリ性化合物を吸収剤として含む
吸収液を吸収塔に循環させながら、硫黄化合物を含む排
ガスと接触させる湿式排煙脱硫方法において、上記吸収
剤含有循環液の一部をエジェクタに供給して空気を吸引
し、脱硫反応で生成した亜硫酸イオンを硫酸イオンに酸
化した後、気液分離器に移し、そこで分離された液体を
上記吸収塔の下部液室の循環液中に噴出させることを特
徴とする湿式排煙脱硫方法、及び、(2)水酸化マグネ
シウムを吸収剤として含む吸収液を吸収塔に循環させな
がら、硫黄化合物を含む排ガスと接触させる湿式排煙脱
硫方法において、上記吸収剤含有循環液の一部をエジェ
クタに供給して空気を吸引し、脱硫反応で生成した亜硫
酸イオンを硫酸イオンに酸化した後、気液分離器に移
し、そこで分離された液体に水酸化マグネシウムを補給
して上記吸収塔の下部液室の循環液中に噴出させること
により、吸収塔を循環する吸収液中の亜硫酸マグネシウ
ム及び亜硫酸水素マグネシウムの濃度並びにpHを調整す
ることを特徴とする湿式排煙脱硫方法である。
The present invention relates to (1) a wet flue gas desulfurization method in which an absorbent containing an alkaline compound as an absorbent is circulated in an absorption tower while being contacted with an exhaust gas containing a sulfur compound, and a part of the absorbent-containing circulating liquid is ejected. Air is sucked in and the sulfite ions generated in the desulfurization reaction are oxidized to sulfate ions, then transferred to a gas-liquid separator, where the separated liquid is jetted into the circulating liquid in the lower liquid chamber of the absorption tower. A wet flue gas desulfurization method, and (2) a wet flue gas desulfurization method in which an absorbent containing magnesium hydroxide as an absorbent is circulated in an absorption tower and brought into contact with exhaust gas containing a sulfur compound, A part of the absorbent-containing circulating liquid is supplied to the ejector to suck air, oxidize sulfite ions generated by the desulfurization reaction to sulfate ions, and then transfer them to a gas-liquid separator where they are separated. By replenishing the liquid with magnesium hydroxide and jetting it into the circulating liquid in the lower liquid chamber of the absorption tower, it is possible to adjust the concentration and pH of magnesium sulfite and magnesium hydrogen sulfite in the absorbing liquid circulating in the absorption tower. It is a characteristic wet flue gas desulfurization method.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によつて説明する。 An embodiment of the present invention will be described below with reference to FIG.

排ガス4は吸収塔6に付属した冷却塔4へ導入され、該
冷却塔4内の排ガス流路部分にあるスプレーノズル5か
ら噴霧される水酸化マグネシウム吸収剤を含む循環液に
より冷却される。このとき排ガスは通常100〜200℃から
50〜70℃へ冷却される。冷却塔4では冷却と同時に排ガ
ス中のはいじんの捕集及び亜硫酸ガスの一部が吸収され
る。
The exhaust gas 4 is introduced into a cooling tower 4 attached to the absorption tower 6, and is cooled by a circulating liquid containing a magnesium hydroxide absorbent sprayed from a spray nozzle 5 in an exhaust gas flow passage portion in the cooling tower 4. At this time, the exhaust gas is usually from 100 to 200 ° C
Cooled to 50-70 ° C. Simultaneously with cooling, the cooling tower 4 collects dust and particles in the exhaust gas and absorbs part of the sulfurous acid gas.

冷却された排ガス2は吸収塔6の中間部に導入され、吸
収塔上部にあるスプレーノズル8から散布された循環液
で濡らされている吸収塔中央部の充填層7の内部を通過
上昇する。この過程で気液接触が行なわれ、排ガス中の
亜硫酸ガスが循環液に吸収される。充填層7を通過した
排ガスは吸収塔上部の排出口近傍のデミスタ9でキヤリ
オーバミストを除去され処理ガス3として排出される。
The cooled exhaust gas 2 is introduced into the middle part of the absorption tower 6 and rises up through the inside of the packed bed 7 in the central part of the absorption tower, which is wetted by the circulating liquid sprayed from the spray nozzle 8 in the upper part of the absorption tower 6. Gas-liquid contact is performed in this process, and the sulfurous acid gas in the exhaust gas is absorbed by the circulating liquid. The exhaust gas that has passed through the packed bed 7 has its carrier mist removed by a demister 9 near the discharge port in the upper part of the absorption tower and is discharged as the processing gas 3.

一方、冷却塔4及び吸収塔6内を流下する循環液は吸収
塔6の下部の液室10に一旦集積される。液室10側壁と循
環ポンプ12を結ぶライン11および循環ポンプ12とスプレ
ーノズル8とを結ぶライン13およびライン15とで吸収液
循環系が形成されており、液室10内の循環液がこの循環
系を流れる。さらにライン13より分離したライン14を経
由して冷却塔4のスプレーノズル5へも一部吸収液が循
環される。
On the other hand, the circulating liquid flowing down through the cooling tower 4 and the absorption tower 6 is temporarily accumulated in the liquid chamber 10 below the absorption tower 6. A line 11 that connects the side wall of the liquid chamber 10 and the circulation pump 12 and a line 13 and line 15 that connects the circulation pump 12 and the spray nozzle 8 form an absorption liquid circulation system, and the circulation liquid in the liquid chamber 10 is circulated. Flowing through the system. Further, the absorption liquid is partially circulated to the spray nozzle 5 of the cooling tower 4 via the line 14 separated from the line 13.

この循環系で必要な水は吸収塔6側壁にあるライン16よ
り通常は、液室10のレベルを一定範囲に保つ様に供給さ
れる。
The water required in this circulation system is normally supplied from a line 16 on the side wall of the absorption tower 6 so as to keep the level of the liquid chamber 10 within a certain range.

また必要な水酸化マグネシウムは吸収塔6側壁のライン
17より供給される。その供給量は通常循環液のpHが所定
値になる様に調整される。なお、水酸化マグネシウムは
通常5〜30%濃度のスラリーで供給される。
The required magnesium hydroxide is the line on the side wall of the absorption tower 6.
Supplied from 17. The supply amount is usually adjusted so that the pH of the circulating liquid becomes a predetermined value. The magnesium hydroxide is usually supplied as a slurry having a concentration of 5 to 30%.

なお、この循環系内に蓄積するばいじん及び反応生成物
は、ライン13より分岐したライン18よりブローして図示
していない排水処理装置へ送られる。
The dust and reaction products accumulated in the circulation system are blown from a line 18 branched from the line 13 and sent to a wastewater treatment device (not shown).

前記(4)式での酸化反応は冷却塔4及び吸収塔6の中で
排ガス中のに含まれる酸素によつて進行するが、排ガス
中の酸素濃度は通常1〜6%(ボイラ排ガスの場合)と
低いため、反応は十分には進まない。そこでライン13よ
り分岐したライン21を経由して循環液の一部をエジエク
タ20に導入する構成を採る。エジエクタ20には空気吸引
用のライン19が付設させている。また、このエジエクタ
20と気液分離器23はライン22で結ばれており、エジエク
タ20及びライン22の内部でライン19から流入する空気と
循環液の気液接触がなされ、脱硫反応で生成した亜硫酸
イオンの酸化反応が行われる。そして気液分離器23内部
に導入された空気と循環流はここで分離される。気液分
離器23内の循環液は次の化学反応が行なわれるため、通
常pHが低い。
The oxidation reaction in the equation (4) proceeds by oxygen contained in the exhaust gas in the cooling tower 4 and the absorption tower 6, but the oxygen concentration in the exhaust gas is usually 1 to 6% (in the case of boiler exhaust gas, ) Is low, the reaction does not proceed sufficiently. Therefore, a configuration is adopted in which a part of the circulating liquid is introduced into the ejector 20 via the line 21 branched from the line 13. A line 19 for sucking air is attached to the edger 20. Also, this editor
The gas 20 is connected to the gas-liquid separator 23 by a line 22, and the air flowing from the line 19 and the circulating liquid are in gas-liquid contact with each other inside the ejector 20 and the line 22, and the oxidation reaction of the sulfite ion generated by the desulfurization reaction is performed. Is done. Then, the air introduced into the gas-liquid separator 23 and the circulating flow are separated here. Since the circulating liquid in the gas-liquid separator 23 undergoes the following chemical reaction, it usually has a low pH.

Mg(HSO3)2+O2→MgSO4+H2SO4 (5) そこで気液分離23に連結するライン26より水酸化マグネ
シウムを供給することで第2図に示した従来の吸収塔液
室110へ供給する場合に比べ反応性が良くなる。
Mg (HSO 3 ) 2 + O 2 → MgSO 4 + H 2 SO 4 (5) Then, magnesium hydroxide is supplied from the line 26 connected to the gas-liquid separation 23, so that the conventional absorption tower liquid chamber 110 shown in FIG. The reactivity is better than that in the case of supplying to.

次に、気液分離器23の下部に分離した循環液は循環液戻
しライン24を介して吸収塔液室10へ噴出し、液室内部を
攪拌する。
Next, the circulating liquid separated in the lower part of the gas-liquid separator 23 is jetted into the absorption tower liquid chamber 10 through the circulating liquid return line 24 to stir the inside of the liquid chamber.

気液分離器23上部に分離した空気は、空気送りライン25
を介して吸収塔液室10の上部へ入れる。
The air separated at the top of the gas-liquid separator 23 is
Through the upper part of the absorption tower liquid chamber 10.

上述の実施例ではアルカリ吸収剤として水酸化マグネシ
ウムを用いる場合を説明したがカセイソーダ、消石灰あ
るいは石灰石などのアルカリ性剤を用いる場合で亜硫酸
イオンの酸化が必要な場合に適用可能なことは当然であ
る。
In the above-mentioned embodiment, the case where magnesium hydroxide is used as the alkali absorbent has been described, but it is natural that it can be applied when the alkaline agent such as caustic soda, slaked lime or limestone is used and the oxidation of sulfite ion is necessary.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によると亜硫酸イオン酸化
用の空気をエジエクタで行い、気水分離された後の液体
部分のみを吸収塔液溜めに噴出供給するため、吸収塔循
環系の循環ポンプへの空気の吸込みがなくなり、キヤビ
テーシヨンなどが防げる。
As described above, according to the present invention, the air for sulfite ion oxidation is carried out by an ejector, and only the liquid part after the gas-water separation is jetted and supplied to the absorption tower liquid reservoir, so to the circulation pump of the absorption tower circulation system. The air will not be sucked in and the cavitation can be prevented.

同時に上記の構成を採用することにより、ブロア等の故
障の原因となりやすい駆動部をもつ空気供給装置を設け
る必要がなく、また吸収塔液室内にばつ気管を設けるこ
とも必要なくなりばつ気管の目詰りによる循環液の攪拌
が不能となるおそれもない。
At the same time, by adopting the above configuration, it is not necessary to install an air supply device having a drive unit that is likely to cause a failure such as a blower, and it is not necessary to install a trachea in the absorption tower liquid chamber. There is no fear that the circulation liquid cannot be agitated by.

また、気水分離後の気体部分は吸収塔液室に戻されるの
で循環液の攪拌でばい塵が液室に堆積することを防止で
きる。
Further, since the gas portion after gas-water separation is returned to the absorption tower liquid chamber, it is possible to prevent soot dust from accumulating in the liquid chamber by stirring the circulating liquid.

さらに、亜硫酸イオンを酸化した直後のpHの低い気水分
離器にアルカリ吸収液を補給できるので反応性が向上す
る効果もある。
Further, since the alkaline absorbent can be replenished to the steam-water separator having a low pH immediately after oxidizing the sulfite ion, there is an effect that the reactivity is improved.

【図面の簡単な説明】 第1図は本発明の湿式排煙脱硫装置の構成図、第2図は
従来の湿式排煙脱硫装置の構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a wet flue gas desulfurization apparatus of the present invention, and FIG. 2 is a block diagram of a conventional wet flue gas desulfurization apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルカリ性化合物を吸収剤として含む吸収
液を吸収塔に循環させながら、硫黄化合物を含む排ガス
と接触させる湿式排煙脱硫方法において、上記吸収剤含
有循環液の一部をエジェクタに供給して空気を吸引し、
脱硫反応で生成した亜硫酸イオンを硫酸イオンに酸化し
た後、気液分離器に移し、そこで分離された液体を上記
吸収塔の下部液室の循環液中に噴出させることを特徴と
する湿式排煙脱硫方法。
1. A wet flue gas desulfurization method in which an absorbent containing an alkaline compound as an absorbent is circulated in an absorption tower while being brought into contact with exhaust gas containing a sulfur compound, and a part of the absorbent-containing circulating liquid is supplied to an ejector. To suck air,
Wet flue gas, characterized in that after sulfite ions produced in the desulfurization reaction are oxidized to sulfate ions, they are transferred to a gas-liquid separator and the liquid separated there is jetted into the circulating liquid in the lower liquid chamber of the absorption tower. Desulfurization method.
【請求項2】水酸化マグネシウムを吸収剤として含む吸
収液を吸収塔に循環させながら、硫黄化合物を含む排ガ
スと接触させる湿式排煙脱硫方法において、上記吸収剤
含有循環液の一部をエジェクタに供給して空気を吸引
し、脱硫反応で生成した亜硫酸イオンを硫酸イオンに酸
化した後、気液分離器に移し、そこで分離された液体に
水酸化マグネシウムを補給して上記吸収塔の下部液室の
循環液中に噴出させることにより、吸収塔を循環する吸
収液中の亜硫酸マグネシウム及び亜硫酸水素マグネシウ
ムの濃度並びにpHを調整することを特徴とする湿式排煙
脱硫方法。
2. A wet flue gas desulfurization method in which an absorbent containing magnesium hydroxide as an absorbent is circulated in an absorption tower while being brought into contact with an exhaust gas containing a sulfur compound, and a part of the absorbent-containing circulating liquid is supplied to an ejector. After supplying and sucking air, sulfite ions generated in the desulfurization reaction are oxidized to sulfate ions and then transferred to a gas-liquid separator, where the separated liquid is supplemented with magnesium hydroxide to lower the liquid chamber of the absorption tower. A wet flue gas desulfurization method, characterized in that the concentration and the pH of magnesium sulfite and magnesium hydrogen sulfite in the absorption liquid circulating in the absorption tower are adjusted by injecting it into the circulation liquid.
JP61184278A 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method Expired - Lifetime JPH0773657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184278A JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184278A JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Publications (2)

Publication Number Publication Date
JPS6342720A JPS6342720A (en) 1988-02-23
JPH0773657B2 true JPH0773657B2 (en) 1995-08-09

Family

ID=16150516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184278A Expired - Lifetime JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Country Status (1)

Country Link
JP (1) JPH0773657B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063560B2 (en) * 2008-11-07 2012-10-31 東京エレクトロン株式会社 Substrate processing equipment
US9028762B2 (en) * 2012-07-30 2015-05-12 Mitsubishi Hitachi Power Systems, Ltd. Wet type exhaust gas desulfurization apparatus
JP6804233B2 (en) * 2016-08-24 2020-12-23 三菱パワー環境ソリューション株式会社 Particle remover

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100621A (en) * 1980-01-11 1981-08-12 Hitachi Ltd Improvement of performance of stack gas desulfurization apparatus
JPS5939328A (en) * 1982-08-27 1984-03-03 Babcock Hitachi Kk Desulfurization of exhaust gas

Also Published As

Publication number Publication date
JPS6342720A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
US5779999A (en) Method for scrubbing flue gases
KR100290751B1 (en) Wet flue gas desulfurization system and method using solid desulfurizer
JP3332678B2 (en) Wet flue gas desulfurization equipment
JPH0773657B2 (en) Wet Flue Gas Desulfurization Method
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
JP3337382B2 (en) Exhaust gas treatment method
JPH1094714A (en) Flue gas treatment
JP3337380B2 (en) Exhaust gas treatment method
JP3727086B2 (en) Wet flue gas desulfurization method and apparatus
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
JPH1121567A (en) Method for regenerating wet-process desulfurization absorbent
JP4000637B2 (en) Flue gas desulfurization apparatus and flue gas desulfurization method
JP3068371B2 (en) Method and apparatus for desulfurizing gas containing high concentration sulfurous acid gas
JPS61259730A (en) Wet exhaust gas desulfurization apparatus
JPS621440A (en) Wet waste gas desulfurization apparatus
JP3004531B2 (en) Method and apparatus for desulfurizing low-concentration sulfurous acid gas
JPH042289B2 (en)
JP3590856B2 (en) Exhaust gas desulfurization method
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JP3523708B2 (en) Exhaust gas treatment method and exhaust gas treatment device for coal-fired exhaust gas
GB2169888A (en) Wet desulfurization column for exhaust gases
JP3051458B2 (en) Wet flue gas desulfurization device having air supply means
JPH06175B2 (en) Flue gas desulfurization method
JPH09308815A (en) Wet flue gas desulfurization method