JPS6342720A - Wet flue gas desulfurization method - Google Patents

Wet flue gas desulfurization method

Info

Publication number
JPS6342720A
JPS6342720A JP61184278A JP18427886A JPS6342720A JP S6342720 A JPS6342720 A JP S6342720A JP 61184278 A JP61184278 A JP 61184278A JP 18427886 A JP18427886 A JP 18427886A JP S6342720 A JPS6342720 A JP S6342720A
Authority
JP
Japan
Prior art keywords
absorption tower
liquid
liq
line
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61184278A
Other languages
Japanese (ja)
Other versions
JPH0773657B2 (en
Inventor
Fumio Kadota
文男 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61184278A priority Critical patent/JPH0773657B2/en
Publication of JPS6342720A publication Critical patent/JPS6342720A/en
Publication of JPH0773657B2 publication Critical patent/JPH0773657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent cavitation by introducing a part of the circulating soln. contg. an absorbent into an air suction-type ejector to separate steam by gas-liq. contact, and then injecting the liq. layer part into the lower liq. chamber of an absorption tower. CONSTITUTION:Exhaust gas 1 is sent into the absorption tower 6 through a cooling tower 4, gas-liq. contact is carried out in the packed bed 7 wetted with the circulating soln. sprayed from a spray nozzle 8, and SOX is absorbed. The circulating soln. is transiently accumulated in the liq. chamber 10 at the lower part of the absorption tower 6, and then circulated to spray nozzles 5 and 8 through a circulating pump 12. A part of the circulating soln. is introduced into an ejector 20 through a line 21, brought into contact with air to oxidize the sulfite ion, then introduced into a steam separator 23 to separate steam, and finally injected into the liq. chamber 10 through a line 24 to agitate the inside of the liq. chamber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は湿式排煙脱硫方法の改良に関し、特に水酸化マ
グネシウム、カセイソーダ、消石灰または石灰などアル
カリ性化合物を吸収剤として用いる湿式排煙脱硫方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a wet flue gas desulfurization method, and particularly to a wet flue gas desulfurization method using an alkaline compound such as magnesium hydroxide, caustic soda, slaked lime, or lime as an absorbent. .

〔従来の技術〕[Conventional technology]

現在、排煙脱硫方法の主流をなしているものに水酸化マ
グネシウム、炭酸カルシウムなどのアルカリ性化合物を
吸収剤として含む吸収液を用いて排煙と気液接触させ排
煙中の硫黄分を硫酸塩として回収する、いわゆる湿式排
煙脱硫方法がある。
Currently, the mainstream flue gas desulfurization method uses an absorption liquid containing an alkaline compound such as magnesium hydroxide or calcium carbonate as an absorbent to bring the flue gas into gas-liquid contact, converting the sulfur content in the flue gas into sulfate. There is a so-called wet flue gas desulfurization method that recovers as

たとえば、水酸化マグネシウム(Mp(o)■)z) 
k吸収剤とする湿式排煙脱硫装置における冷却塔、吸収
塔では一般的に示すと次の化学反応が起る。
For example, magnesium hydroxide (Mp(o)■)z)
Generally speaking, the following chemical reactions occur in a cooling tower or an absorption tower in a wet flue gas desulfurization device using a k-absorbent.

80z+H30→Hs80.          (1
)H1SO3+Mf 80S−+Mf (H80s )
S      i2JMP(H8O3)1+Mf(OH
)s→2Mf80s−)2H,0(3)Mt80s+2
0雪→Mf30.         +41ここで各反
応式の説明をすると、(1)式は排ガス中の亜硫酸ガス
を循環液へ吸収させる反応、12)式は(1)式で生成
した亜硫酸(H,8os )と循環液中の亜硫酸マグネ
シウム(MfSOs)の反応、(3)式は循環液へ水酸
化マグネシウム(ur(oH)t)を注入した際の反応
、そして(4)式は循環液中の亜硫酸マグネシウムが酸
素で酸化される反応を示す。
80z+H30→Hs80. (1
)H1SO3+Mf 80S-+Mf (H80s)
S i2JMP(H8O3)1+Mf(OH
)s→2Mf80s-)2H,0(3)Mt80s+2
0 snow → Mf30. +41 Here, to explain each reaction formula, formula (1) is a reaction in which sulfur dioxide gas in exhaust gas is absorbed into the circulating fluid, and formula 12) is a reaction in which sulfur dioxide (H, 8os) produced in formula (1) is absorbed into the circulating fluid. reaction of magnesium sulfite (MfSOs), equation (3) is the reaction when magnesium hydroxide (ur(oH)t) is injected into the circulating fluid, and equation (4) is the reaction when magnesium sulfite in the circulating fluid is oxidized by oxygen. shows the reaction that occurs.

上記一連の反応を連続的に行わぜるために重要なことは
次の二点にある。
The following two points are important in order to carry out the above series of reactions continuously.

(1)  まず難溶性の亜硫酸マグネシウムを発生させ
ないことである。もしこの結晶が析出すると冷却塔、吸
収塔内でのスケーリングの発生、配管、パルプ等の閉塞
などトラブルが生じるおそれがある。なお、硫酸マグネ
シウム、ニチオン酸マグネシウム(Mr(Hsns)、
)はf#解度が大きいため結晶析出によるトラブル発生
のおそれはない。
(1) First, hardly soluble magnesium sulfite should not be generated. If these crystals precipitate, problems such as scaling in cooling towers and absorption towers and clogging of pipes, pulp, etc. may occur. In addition, magnesium sulfate, magnesium nitionate (Mr (Hsns),
) has a large f# solubility, so there is no risk of trouble occurring due to crystal precipitation.

12)  次に、重要なことは一上記12)式および(
3)式の反応を円滑に進行させるために亜硫酸マグネシ
ウムとニチオン酸マグネシウムとがそれぞれ適綾循環液
中に存在することである。
12) Next, the important thing is the above equation 12) and (
3) Magnesium sulfite and magnesium nitionate are each appropriately present in the circulating fluid in order to allow the reaction in formula to proceed smoothly.

一般に、循環液 pH(水素イオン衾度)が6近辺の場
合亜硫酸マグネシウムとニチオン酸マグネシウムの濃度
は亜硫酸イオン換算で[103〜α1モル/lが良いと
されている。ここで、水酸化マグネシウムを吸収剤とす
る湿式排煙脱硫装置の冷却塔、吸収塔まわ快の従来のプ
ロセスフローの例を第2図に基づいて説明する。
Generally, when the circulating fluid pH (hydrogen ion concentration) is around 6, it is said that the concentration of magnesium sulfite and magnesium nitionate is [103 to α1 mol/l] in terms of sulfite ions. Here, an example of a conventional process flow for cooling tower and absorption tower circulation in a wet flue gas desulfurization system using magnesium hydroxide as an absorbent will be described with reference to FIG.

排ガス101は吸収塔106に付属して設けられた冷却
塔104へ導入されスプレーノズル105から噴霧され
る循環液により冷却される。
The exhaust gas 101 is introduced into a cooling tower 104 attached to the absorption tower 106 and cooled by circulating liquid sprayed from a spray nozzle 105.

このとき排ガスは、通常100〜200℃から50〜7
0℃に冷却される。冷却塔104では冷却と同時に排ガ
ス中のばいじんの捕集及び亜硫酸ガスの一部が吸収され
る。冷却された排ガス102は吸収塔106の中間部に
導入され、吸収塔上部にあるスプレーノズル108から
散布された循環液で濡らされている吸収塔中央部に充填
された充填層107の内部を通過上昇する。この過程で
気液接触が行なわれ、排ガス中の亜硫酸ガスが循環液に
吸収される。充填層107を通過l−だ排ガスは吸収塔
上部の排出口近傍にあるデミスタ109でキャリオーバ
ミストが除去され処理ガス103として排出される。
At this time, the exhaust gas usually ranges from 100 to 200℃ to 50 to 7℃.
Cooled to 0°C. In the cooling tower 104, at the same time as cooling, soot and dust in the exhaust gas is collected and a portion of sulfur dioxide gas is absorbed. The cooled exhaust gas 102 is introduced into the middle part of the absorption tower 106, and passes through a packed bed 107 packed in the middle part of the absorption tower, which is wetted with circulating liquid sprayed from a spray nozzle 108 at the top of the absorption tower. Rise. During this process, gas-liquid contact occurs, and sulfur dioxide gas in the exhaust gas is absorbed into the circulating fluid. The exhaust gas that has passed through the packed bed 107 has carryover mist removed by a demister 109 near the exhaust port at the top of the absorption tower, and is discharged as a treated gas 103.

一方、冷却塔104及び吸収塔106内を流下する循環
液は吸収塔106の下部の液室110に一社集積される
。液室110側壁と循環ポンプ112を結ぶライン11
1および循環ポンプ112とスプレーノズル108とを
結ぶライン113およびライン115とで吸収液循環系
が形成されており、液室110内の循環液がこの循環系
を流れ乙。さらにライン113より分岐したライン11
4を経由して冷却塔104のスプレーノズル105へも
一部吸収液が循環されている。
On the other hand, the circulating liquid flowing down in the cooling tower 104 and the absorption tower 106 is collected in a liquid chamber 110 at the bottom of the absorption tower 106. A line 11 connecting the side wall of the liquid chamber 110 and the circulation pump 112
1, a line 113 and a line 115 connecting the circulation pump 112 and the spray nozzle 108 form an absorption liquid circulation system, and the circulation liquid in the liquid chamber 110 flows through this circulation system. Line 11 further branches from line 113
A portion of the absorption liquid is also circulated to the spray nozzle 105 of the cooling tower 104 via the cooling tower 104 .

この循環系で必要な水は吸収塔1061111壁にある
ライン116より通常は、液室110のレベルを一定範
囲に保つ様に供給される。
Water necessary for this circulation system is normally supplied from a line 116 on the wall of the absorption tower 1061111 so as to maintain the level of the liquid chamber 110 within a certain range.

また必要な水酸化マグネシウムは吸収塔106側壁のラ
イン117より供給される。その供給倉は通常は循環液
の pHが所定値になる様に調整される。なお水酸化マ
グネシウムは通常、5〜50%濃度のスラリーで供給さ
れる。
Further, necessary magnesium hydroxide is supplied from a line 117 on the side wall of the absorption tower 106. The supply tank is normally adjusted so that the pH of the circulating fluid is at a predetermined value. Note that magnesium hydroxide is usually supplied as a slurry with a concentration of 5 to 50%.

なお、この循環系内に蓄積するばいじん及び反応生成物
はライン113よ抄分岐したライン11Bよりブローし
て図示していない排水処理装置へ送られる。
Incidentally, the dust and reaction products accumulated in this circulation system are blown through a line 11B branched from the line 113 and sent to a wastewater treatment device (not shown).

前記(4)式での酸化反応は冷却塔104及び吸収塔1
06の中で排ガス中に含腫れる酸素によって進行するが
、排ガス中の酸素濃度は通常1〜6%(ボイラ排ガスの
場合)と低いだめ、反応lft十分には進まない。そこ
で空気取入口をもつライン119から取入れた空気をブ
ロワ120で加圧した後吸収塔106の液室内にちるば
つ気管122と結ぶライン121を介[7て、液室11
0に供給し、前記(4)式の酸化反応を行なわさせる。
The oxidation reaction in the above formula (4) is carried out in the cooling tower 104 and the absorption tower 1.
The reaction progresses due to the oxygen contained in the exhaust gas in the 06, but since the oxygen concentration in the exhaust gas is usually as low as 1 to 6% (in the case of boiler exhaust gas), the reaction lft does not proceed sufficiently. Therefore, air is taken in from a line 119 having an air intake port, and after being pressurized by a blower 120, it is passed into the liquid chamber of the absorption tower 106 through a line 121 connected to a tracheal pipe 122.
0 to carry out the oxidation reaction of formula (4).

このばつ気により液室110内の循環液は攪拌され、ば
いじんの堆積が防止出来ると共に、ライン117から供
給される水酸化マグネシウムの循環液への混合と脱硫反
応の促進がなされる。
The circulating fluid in the liquid chamber 110 is agitated by this air flow, which prevents the accumulation of soot and dust, and also promotes the mixing of magnesium hydroxide supplied from the line 117 into the circulating fluid and the desulfurization reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来技術には以下のような欠点がある。 The above-mentioned conventional technology has the following drawbacks.

(1)吸収塔下部液室内へ多数の空気を供給すると循環
ポンプは空気吸込みを起し、キャビテーション等の問題
を起す。
(1) If a large amount of air is supplied into the liquid chamber at the bottom of the absorption tower, the circulation pump will suck in air, causing problems such as cavitation.

(2)  ブロワの故障等で吸収塔下部液室への空気の
供給を停止した場合にけばつ気管の詰妙を起【2やすく
、詰りか生じると空気の供給を再開[7ても、正常なば
つ気が出来なくなる。
(2) If air supply to the lower liquid chamber of the absorption tower is stopped due to blower failure, etc., clogging of the fuzzy trachea may occur. I don't feel like relaxing.

(3)吸収液循環液線通常 pH6付近にコントロール
されておねそこへMf (OH)、を供給するため反応
性が悪い。
(3) Absorbent circulation liquid line Normally, the pH is controlled around 6 and Mf (OH) is supplied to the absorption liquid, so the reactivity is poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解消することを目的としてお9
、硫黄化合物を含む排ガスをアルカリ性吸収液と吸収塔
において接触させる湿式排煙脱硫方法において、吸収塔
循環液の一部を大気吸引式のエジェクタに導き、気液接
触させ、脱硫反応で生成した亜硫酸塩を酸化させた後ア
ルカリ性吸収液を補給して、気水分離する。気水分離後
pHの低い液層部分を吸収塔液室に導き、吸収液の攪拌
を行わせるものである。
The present invention aims to solve the above-mentioned problems.
In a wet flue gas desulfurization method in which flue gas containing sulfur compounds is brought into contact with an alkaline absorption liquid in an absorption tower, a part of the absorption tower circulation liquid is guided to an atmospheric suction type ejector, brought into gas-liquid contact, and sulfurous acid produced by the desulfurization reaction is removed. After oxidizing the salt, an alkaline absorption liquid is replenished and water is separated. After steam and water separation, the liquid layer portion with a low pH is introduced into the absorption tower liquid chamber, and the absorption liquid is stirred.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

排ガス4は吸収塔6に付属した冷却塔4へ導入され、該
冷却塔4内の排ガス流路部分にあるスプレーノズル5か
ら噴霧される水酸化マグネシウム吸収剤を含む循環液に
より冷却さ札ろ。
The exhaust gas 4 is introduced into a cooling tower 4 attached to the absorption tower 6, and is cooled by a circulating liquid containing a magnesium hydroxide absorbent that is sprayed from a spray nozzle 5 located in the exhaust gas passage in the cooling tower 4.

このとき排ガスは通常100〜200℃から50〜70
℃へ冷却される。冷却塔4では冷却と同時に排ガス中の
ばいじんの捕集及び亜硫酸ガスの一部が吸収される。
At this time, the exhaust gas usually ranges from 100 to 200℃ to 50 to 70℃.
cooled to ℃. In the cooling tower 4, at the same time as cooling, soot and dust in the exhaust gas is collected and a part of sulfur dioxide gas is absorbed.

冷却された排ガス2は吸収塔6の中間部に導入され、吸
収塔上部にあるスプレーノズル8から散布された循環液
で濡らされている吸収塔中央部の充填層7の内部を通過
上昇する。この過程で気液接触が行なわれ、排ガス中の
亜硫酸ガスが循環液に吸収される。充填層7全通過した
排ガスは吸収塔上部の排出口近傍のデばスタ9でキャリ
オーバミストを除去され処理ガス6として排出される。
The cooled exhaust gas 2 is introduced into the middle part of the absorption tower 6, passes through the inside of the packed bed 7 in the central part of the absorption tower, which is wetted with the circulating liquid sprayed from the spray nozzle 8 in the upper part of the absorption tower, and rises. During this process, gas-liquid contact occurs, and sulfur dioxide gas in the exhaust gas is absorbed into the circulating fluid. The exhaust gas that has completely passed through the packed bed 7 has carryover mist removed by a deburster 9 near the exhaust port at the top of the absorption tower, and is discharged as a treated gas 6.

一方、冷却塔4及び吸収塔6内を流下する循環液は吸収
塔6の下部の液室10に一旦集積される。液室10側壁
と循環ポンプ12′fK:結ぶライン11および循環ポ
ンプ12とスプレーノズル8とを結ぶライン15および
ライン15とで吸収液循環系が形成されてお妙、液室1
0内の循環液がこの循環系を流れる。さらにライン15
よ怜分離したライン14を経由して冷却塔4のスプレー
ノズル5へも一部吸収液が循環される。
On the other hand, the circulating liquid flowing down in the cooling tower 4 and the absorption tower 6 is once accumulated in the liquid chamber 10 at the lower part of the absorption tower 6. An absorption liquid circulation system is formed by the line 11 connecting the liquid chamber 10 side wall and the circulation pump 12'fK, and the line 15 connecting the circulation pump 12 and the spray nozzle 8.
The circulating fluid in 0 flows through this circulation system. Furthermore, line 15
A portion of the absorption liquid is also circulated to the spray nozzle 5 of the cooling tower 4 via the well-separated line 14.

この循環系で必要な水は吸収塔6側壁にあるライン16
より通常は、液室10のレベルを一定範囲に保つ様に供
給される。
The water required in this circulation system is supplied through the line 16 on the side wall of the absorption tower 6.
More usually, the liquid is supplied so as to maintain the level in the liquid chamber 10 within a certain range.

また必要な水酸化マグネシウムは吸収塔6側壁のライン
17より供給される。その供給量は通常循環液のpHが
所定値になる様に調整される。
Further, the necessary magnesium hydroxide is supplied from a line 17 on the side wall of the absorption tower 6. The supply amount is usually adjusted so that the pH of the circulating fluid becomes a predetermined value.

なお、水酸化マグネシウムは通常5〜50%濃度のスラ
リーで供給される。
Note that magnesium hydroxide is usually supplied as a slurry with a concentration of 5 to 50%.

なお、この循環系内に蓄積するばいじん及び反応生成物
は、ライン13よ抄分岐したライン18よ抄ブローして
図示していない排水処理装置へ送られる。
The dust and reaction products accumulated in this circulation system are blown through a line 18 branched from the line 13 and sent to a wastewater treatment device (not shown).

前記(4)式での酸化反応は冷却塔4及び吸収塔6の中
で排ガス中のに含まれる酸素によって進行するが、排ガ
ス中の酸素濃度(d通常1〜6%(ボイラ排ガスの場合
)と低いため、反応は十分にし穐マない。そこでライン
15より分岐したライン21を経由して循環液の一部を
エジェクタ20に導入する構成を採る。エジェクタ20
には空気吸引用のライン19が付設されている。
The oxidation reaction in equation (4) proceeds in the cooling tower 4 and absorption tower 6 using oxygen contained in the exhaust gas, but the oxygen concentration in the exhaust gas (d usually 1 to 6% (in the case of boiler exhaust gas)) Therefore, a part of the circulating fluid is introduced into the ejector 20 via a line 21 branched from the line 15.Ejector 20
is attached with a line 19 for air suction.

また、このエジェクタ20と気水分離器23はライン2
2で結ばれており、エジェクタ20及びライン22の内
部でライン1?から流入する空気と循環液の気液接触が
なされ、脱硫反応で生成した亜硫酸イオンの酸化反応が
行われる。
Moreover, this ejector 20 and the steam/water separator 23 are connected to the line 2
2, and the line 1? is connected inside the ejector 20 and line 22. Gas-liquid contact is made between the air flowing in from the circulating fluid and the circulating fluid, and an oxidation reaction of sulfite ions generated in the desulfurization reaction takes place.

そして気水分離器25内部に導入された空気と循環流は
ここで分離される。気水分離器25内の循環液は次の化
学反応が行われるため、通常p)I が低い。
The air introduced into the steam separator 25 and the circulating flow are separated here. Since the circulating liquid in the steam/water separator 25 undergoes the following chemical reaction, p)I is usually low.

Mf(H80s)z+ox→MY8(”)4 + H2
804(5)そこで気水分離25に連結するライン17
よ給水酸化マグネシウムを供給することで第2図に示し
た従来の吸収塔液室110へ供給する場合に比べ反応性
が良くなる。
Mf(H80s)z+ox→MY8(”)4+H2
804(5) Line 17 there connected to air/water separation 25
By supplying magnesium oxide hydrate, the reactivity is improved compared to the case where it is supplied to the conventional absorption tower liquid chamber 110 shown in FIG.

次に、気水分離器25の下部に分離した循環液は循環液
戻しライン24を介して吸収塔液室10へ噴出し、液室
内部を攪拌する。
Next, the circulating liquid separated in the lower part of the steam-water separator 25 is ejected to the absorption tower liquid chamber 10 via the circulating liquid return line 24, and the inside of the liquid chamber is agitated.

気水分離器25上部に分離した空気は、空気送りライン
25を介して吸収塔液室10の−h部へ入れる。
The air separated above the steam/water separator 25 is introduced into the -h section of the absorption tower liquid chamber 10 via the air feed line 25.

上述の実施例ではアルカリ吸収剤として水酸化マグネシ
ウムを用いる場合を説明[またが力七イソーダ、消石灰
あるいは石灰石などのアルカリ性剤を用いる場合で亜硫
酸イオンの酸化が必要な場合に適用可能なことは当然で
ある。
The above example describes the case where magnesium hydroxide is used as the alkaline absorbent; however, it is of course applicable to cases where oxidation of sulfite ions is required when using an alkaline agent such as isoda, slaked lime, or limestone. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によると亜硫酸イオン酸化
用の空気をエジェクタで行い、気水分離された後の液体
部分のみを吸収塔液溜めに噴出供給するため、吸収塔循
環系の循環ポンプへの空気の吸込みがなくな轢、キャビ
テーションなどが防げる。
As explained above, according to the present invention, air for oxidizing sulfite ions is supplied by an ejector, and only the liquid portion after steam and water separation is ejected and supplied to the absorption tower liquid reservoir, so that it is sent to the circulation pump of the absorption tower circulation system. This eliminates air suction and prevents running over and cavitation.

同時に上記の構成を採用することにより、プロア等の故
障の原因とな9やすい駆動部をもつ空気供給装置を設け
る必要がなく、また吸収塔液室内にばつ気管を設けるこ
とも必要なくなりげつ気管の目詰りによる循環液の攪拌
が不能となるおそれもない。
At the same time, by adopting the above configuration, there is no need to install an air supply device with a drive part that is likely to cause failure of the proa, etc., and there is no need to provide an air trachea in the liquid chamber of the absorption tower. There is no risk that stirring of the circulating fluid will become impossible due to clogging.

また、気水分離後の液体部分は吸収塔液室に戻されるの
で循環液の攪拌でげい塵が液室に堆積することを防止で
きる。
Furthermore, since the liquid portion after steam and water separation is returned to the liquid chamber of the absorption tower, it is possible to prevent dust from accumulating in the liquid chamber due to stirring of the circulating liquid.

さらに、亜硫酸イオンを酸化した直後の nHの低い気
水分離器にアルカリ吸収液を補給できるので反応性が向
上する効果もある。
Furthermore, since the alkaline absorption liquid can be supplied to the low nH steam/water separator immediately after oxidizing sulfite ions, reactivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の湿式排煙脱硫装置の構成図、第2図は
従来の湿式排煙脱硫装置の構成図である。 復代理人  内 LLj    明 復代理人  萩 原 ・九 − 復代理人  安 西 鵜 夫
FIG. 1 is a block diagram of a wet type flue gas desulfurization apparatus of the present invention, and FIG. 2 is a block diagram of a conventional wet type flue gas desulfurization apparatus. Sub-Agent: LLj Meifuku Agent: Hagiwara Nine - Sub-Agent: Anzai Uo

Claims (1)

【特許請求の範囲】[Claims] (1)アルカリ性化合物を吸収剤として含む吸収液を吸
収塔に循環させながら、硫黄化合物を含む排ガスと接触
させる湿式排煙脱硫方法において、上記吸収剤含有循環
液の一部を空気吸引式のエジェクタに導き気液接触させ
、脱硫反応で生成した亜硫酸イオンを硫酸イオンに酸化
させた後、気水分離を行ない、気水分離後の液層部分を
上記吸収塔の下部液室に噴出させることを特徴とする湿
式排煙脱硫方法。
(1) In a wet flue gas desulfurization method in which an absorption liquid containing an alkaline compound as an absorbent is circulated through an absorption tower and brought into contact with exhaust gas containing sulfur compounds, a part of the circulating liquid containing the absorbent is transferred to an air suction type ejector. After the sulfite ions generated by the desulfurization reaction are oxidized to sulfate ions by bringing them into gas-liquid contact, steam-water separation is performed, and the liquid layer after the steam-water separation is spouted into the lower liquid chamber of the absorption tower. Characteristic wet flue gas desulfurization method.
JP61184278A 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method Expired - Lifetime JPH0773657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184278A JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184278A JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Publications (2)

Publication Number Publication Date
JPS6342720A true JPS6342720A (en) 1988-02-23
JPH0773657B2 JPH0773657B2 (en) 1995-08-09

Family

ID=16150516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184278A Expired - Lifetime JPH0773657B2 (en) 1986-08-07 1986-08-07 Wet Flue Gas Desulfurization Method

Country Status (1)

Country Link
JP (1) JPH0773657B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259521A1 (en) * 2008-11-07 2011-10-27 Tokyo Electron Limited Substrate treatment apparatus
JPWO2014021068A1 (en) * 2012-07-30 2016-07-21 三菱日立パワーシステムズ株式会社 Wet flue gas desulfurization equipment
JP2018030090A (en) * 2016-08-24 2018-03-01 三菱日立パワーシステムズ環境ソリューション株式会社 Particle removal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100621A (en) * 1980-01-11 1981-08-12 Hitachi Ltd Improvement of performance of stack gas desulfurization apparatus
JPS5939328A (en) * 1982-08-27 1984-03-03 Babcock Hitachi Kk Desulfurization of exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100621A (en) * 1980-01-11 1981-08-12 Hitachi Ltd Improvement of performance of stack gas desulfurization apparatus
JPS5939328A (en) * 1982-08-27 1984-03-03 Babcock Hitachi Kk Desulfurization of exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259521A1 (en) * 2008-11-07 2011-10-27 Tokyo Electron Limited Substrate treatment apparatus
US8882961B2 (en) * 2008-11-07 2014-11-11 Tokyo Electron Limited Substrate treatment apparatus
JPWO2014021068A1 (en) * 2012-07-30 2016-07-21 三菱日立パワーシステムズ株式会社 Wet flue gas desulfurization equipment
JP2018030090A (en) * 2016-08-24 2018-03-01 三菱日立パワーシステムズ環境ソリューション株式会社 Particle removal device

Also Published As

Publication number Publication date
JPH0773657B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US9115895B2 (en) Flue gas desulfurization
US5039499A (en) Process for desulfurization of sulfur dioxide-containing gas streams
US5779999A (en) Method for scrubbing flue gases
JPS62183835A (en) Method and device for desulfurizing gas containing hydrogen sulfide
US3987149A (en) Method for removing sulfur dioxide from exhaust gas
US5770164A (en) Clear liquor organic acid flue gas desulfurization system
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
US3989464A (en) Sulfur dioxide scrubbing system
JPS6342720A (en) Wet flue gas desulfurization method
JP3337382B2 (en) Exhaust gas treatment method
JPH09865A (en) Process and device for treatment of exhaust gas
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
JPH1066826A (en) Flue gas desulfurization method and apparatus therefor
JPH1121567A (en) Method for regenerating wet-process desulfurization absorbent
JPH042289B2 (en)
JP3068371B2 (en) Method and apparatus for desulfurizing gas containing high concentration sulfurous acid gas
JPH1190170A (en) Flue gas desulfurizer and its method
JPS5888023A (en) Desulfurization of waste gas producing gypsum as byproduct
JPS61259730A (en) Wet exhaust gas desulfurization apparatus
JPH09866A (en) Process and device for treatment of exhaust gas
JPH07284632A (en) Method for removing low-concentration sulfur dioxide and device therefor
JP3523708B2 (en) Exhaust gas treatment method and exhaust gas treatment device for coal-fired exhaust gas
JPH07155538A (en) Desulfurizing method of waste gas
JPS6115933Y2 (en)
JPH0248022Y2 (en)