JPH0769773A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH0769773A
JPH0769773A JP23876893A JP23876893A JPH0769773A JP H0769773 A JPH0769773 A JP H0769773A JP 23876893 A JP23876893 A JP 23876893A JP 23876893 A JP23876893 A JP 23876893A JP H0769773 A JPH0769773 A JP H0769773A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crucible
melt
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23876893A
Other languages
Japanese (ja)
Inventor
Koichi Onodera
晃一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP23876893A priority Critical patent/JPH0769773A/en
Publication of JPH0769773A publication Critical patent/JPH0769773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable efficient growth of a Cd1-X-YMnXHgYTe, Cd1-X-Y-ZMnXHgYZnZTe and Cd1-X-YMnXHgYTe1-ZSeZ single crystals having high optical quality and free from twin crystal. CONSTITUTION:Metallic Cd, metallic Mn, metallic Te, metallic Zn, metallic Se, metallic Hg or an HgTe compound are used as starting raw materials and a sintered rod 6 having the target composition is produced from the raw materials as an intermediate crystal raw material. A molten liquid 4 charged with Te and Se somewhat excess to the target composition is prepared by the control of the temperature distribution and the movement of a quartz crucible 3 in a furnace and a single crystal 5 is crystallized from the molten liquid. The liquid corresponding to the crystallized material is continuously replenished from the above sintered rod 6 to the molten liquid 4 to keep the composition of the molten liquid to a definite state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光増幅器用励起光源
(0.98〜1.02μm)およびLD励起SHG光源
(0.83〜0.86μm)用の光アイソレータ用の磁
気光学素子である組成がCd1-X-YMnXHgYTe、C
1-X-Y-ZMnXHgYZnZTeあるいはCd1-X-YMnX
HgYTe1-ZSeZで示される単結晶の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical element for an optical isolator for an optical amplifier pumping light source (0.98 to 1.02 .mu.m) and an LD pumping SHG light source (0.83 to 0.86 .mu.m). Is Cd 1-XY Mn X Hg Y Te, C
d 1-XYZ Mn X Hg Y Zn Z Te or Cd 1-XY Mn X
The present invention relates to a method for producing a single crystal represented by Hg Y Te 1-Z Se Z.

【0002】[0002]

【従来の技術】従来、上述のCd1-X-YMnXHgY
e、Cd1-X-Y-ZMnXHgYZnZTeあるいはCd
1-X-YMnXHgYTe1-ZSeZ単結晶の製造方法はC
d、Mn、Te、Se等の金属固体結晶原料を組成比に
応じて透明石英管のアンプル状のるつぼに真空封入す
る。そのるつぼと、そのるつぼ内の金属固体結晶原料を
融液にするための加熱装置とを用い、該加熱装置及び前
記るつぼの相対的位置関係を連続的に所定の速度で変え
ることによって、該るつぼ内の前記結晶原料の融液を下
方から凝固させて単結晶を作製する方法(以下、従来の
製造方法Aと記す)や、例えばクェンチ法(高圧溶融急
冷法)により作製した目標組成に対応した組成を持つ多
結晶原料のロッドをアンプル状のるつぼに真空封入し、
そのるつぼを加熱装置により融点より低い温度にて保持
することで固相成長させることにより、単結晶を作製す
る方法(以下、従来の製造方法Bと記す)がある。
2. Description of the Related Art Conventionally, the above-mentioned Cd 1-XY Mn X Hg Y T
e, Cd 1-XYZ Mn X Hg Y Zn Z Te or Cd
The manufacturing method of 1-XY Mn X Hg Y Te 1-Z Se Z single crystal is C
A metal solid crystal raw material such as d, Mn, Te, or Se is vacuum-sealed in an ampoule-shaped crucible of a transparent quartz tube according to the composition ratio. By using the crucible and a heating device for converting the metal solid crystal raw material in the crucible into a melt, the relative positional relationship between the heating device and the crucible is continuously changed at a predetermined speed, thereby the crucible. The method corresponds to a method of solidifying a melt of the above-mentioned crystal raw material in the inside from below to produce a single crystal (hereinafter referred to as a conventional production method A), or a target composition produced by, for example, the quench method (high-pressure melting and quenching method). A polycrystalline raw material rod with a composition is vacuum sealed in an ampoule-shaped crucible,
There is a method for producing a single crystal by holding the crucible at a temperature lower than the melting point with a heating device to perform solid phase growth (hereinafter referred to as a conventional production method B).

【0003】[0003]

【発明が解決しようとする課題】従来の製造方法Aを用
いて上記単結晶を製造する場合には、高温高圧(温度:
1100℃、圧力:20atm)条件が設定可能な高価
な製造設備が必要になる。また、相変態点以上の融点で
溶融するために、結晶化過程で必ず相変態点を通過する
ので双晶が発生しやすい問題点があった。双晶が存在す
る場合には、光アイソレータの実用特性を達成するため
には、特定の結晶面を使用する必要があるので、歩留り
等を考えると効率的でない。さらに、この製法を用いる
と、結晶化の進行とともに組成偏析が大きくなり、必要
とする組成の単結晶がわずかしかとれない問題があっ
た。また一方、従来の製造方法Bを用いて上記単結晶を
製造した場合には、単結晶化率がきわめて低く、大口径
化が困難であった。したがって、いずれの製法とも工業
的生産には最適な方法とはいえなかった。本発明の課題
は、上記単結晶を高品質でかつ量産するに適した製造方
法を提供することにある。
When the above-mentioned single crystal is manufactured using the conventional manufacturing method A, high temperature and high pressure (temperature:
1100 ° C., pressure: 20 atm) Expensive manufacturing equipment capable of setting conditions is required. In addition, since it melts at a melting point equal to or higher than the phase transformation point, it always passes through the phase transformation point in the crystallization process, so that there is a problem that twinning is likely to occur. When twins are present, it is necessary to use a specific crystal plane in order to achieve the practical characteristics of the optical isolator, which is not efficient in terms of yield and the like. Furthermore, when this manufacturing method is used, composition segregation increases with the progress of crystallization, and there is a problem that only a small amount of single crystal having a required composition can be obtained. On the other hand, when the above-mentioned single crystal was manufactured using the conventional manufacturing method B, the single crystallization rate was extremely low, and it was difficult to increase the diameter. Therefore, none of the manufacturing methods can be said to be the most suitable method for industrial production. An object of the present invention is to provide a manufacturing method suitable for mass-producing the above single crystal with high quality.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の欠点を
解消し、高品質の単結晶を量産する方法を提供するた
め、連続式Travelling Heater Method(以下、THM法
と略す)による単結晶の製造方法であって、金属Cd、
金属Mn、金属Te、金属Zn、金属Se、金属Hgも
しくはHgTe化合物のいずれか、を出発原料とし、該
出発原料で目標組成の焼結体を作り中間結晶原料とし、
TeもしくはSeを目標組成比より多めに含有する融液
を作製して、この融液に徐々に溶かしながら上記単結晶
を晶出させ、その晶出分に相当する成分原料を融液に補
給することで融液内組成を常に一定にし、また、追加供
給原料が融液内に熱的変化を与えないようにるつぼの回
転方向を反転させながら結晶を作製する方法である。即
ち、本発明は連続式THM法を用いてCd1-X-YMnX
YTe、Cd1-X-Y-ZMnXHgYZnZTeあるいはC
1-X-YMnXHgYTe1-ZSeZ単結晶を作製する製造
方法において、目的組成に対応した割合に準備された金
属Cd、金属Mn、金属Se、金属Zn、金属Te、金
属Hgもしくは金属HgTeのいずれか、の出発原料を
予め溶解、反応凝固させ、多結晶体の中間原料を作製
し、前記るつぼ内の上部に固定された該中間結晶原料と
るつぼ内の下部で単結晶を育成する融液の中間に、Te
が溶剤として満たされており、炉内の温度分布とるつぼ
の移動により、前記多結晶体の中間原料を溶解し、目標
組成よりTeが多い組成の融液をつくり、該融液から単
結晶として晶出する分に相当する成分原料量を連続的に
追加補充し、融液の組成を所定の範囲に保ちながら単結
晶を育成することを特徴とする単結晶の製造方法であ
る。
The present invention solves the above-mentioned drawbacks and provides a method for mass-producing a high-quality single crystal. Therefore, a single crystal by a continuous traveling heater method (hereinafter abbreviated as THM method) is used. And a metal Cd,
A metal Mn, a metal Te, a metal Zn, a metal Se, a metal Hg, or a HgTe compound is used as a starting material, and a sintered body having a target composition is made from the starting material to be an intermediate crystal material.
A melt containing Te or Se in a larger amount than the target composition ratio is prepared, the single crystal is crystallized while gradually dissolving in the melt, and the component raw material corresponding to the crystallized portion is supplied to the melt. Thus, the composition in the melt is always kept constant, and the crystal is produced while reversing the rotation direction of the crucible so that the additional feed material does not cause a thermal change in the melt. That is, the present invention uses the continuous THM method to produce Cd 1 -XY Mn X H
g Y Te, Cd 1-XYZ Mn X Hg Y Zn Z Te or C
In the method of making a d 1-XY Mn X Hg Y Te 1-Z Se Z monocrystalline, metal Cd, metal Mn, which is prepared in proportions corresponding to the target composition, the metal Se, metal Zn, a metal Te, metal Hg Alternatively, a starting material of either metal HgTe is previously melted and reaction-solidified to prepare an intermediate raw material of a polycrystalline body, and the intermediate crystal raw material fixed to the upper part in the crucible and a single crystal is formed in the lower part in the crucible. In the middle of the melt to grow, Te
Is filled with a solvent, the temperature distribution in the furnace and the movement of the crucible melts the intermediate raw material of the polycrystalline body to form a melt having a composition in which Te is larger than the target composition, and a single crystal is formed from the melt. The method for producing a single crystal is characterized in that a single crystal is grown while continuously replenishing the component raw material amounts corresponding to the crystallized amount and keeping the composition of the melt within a predetermined range.

【0005】[0005]

【作用】上記単結晶を従来のブリッジマン法を用いて作
製する従来の製造方法Aの場合には、融点が相変態点以
上にあるので凝固する際に必ずウルツ鉱型結晶構造から
せん亜鉛鉱型結晶構造に変化する相変態点を通過する。
その際に生ずる歪が双晶の要因であると考えられてい
る。即ち、相変態点より高い温度で凝固させるので双晶
を回避するのは困難であった。そのために、光アイソレ
ータの実用特性を達成するためには、特定の面を使用す
る必要があるので、歩留まり等を考えると効率的でな
い。さらに、この製法を用いると組成偏析が大きくなる
ために必要とする組成のものがわずかしかとれない問題
があった。又一方、従来の製造方法Bを用いて上記単結
晶を製造した場合には、単結晶化率がきわめて低く、大
口径化が困難であった。いずれの製法とも工業的生産に
は最適な方法とはいえなかった。
In the case of the conventional production method A in which the above-mentioned single crystal is produced by the conventional Bridgman method, the melting point is higher than the phase transformation point, so that when the solidification occurs, the wurtzite-type crystal structure is used to form sphalerite. It passes through the phase transformation point where it changes into a crystal structure.
The strain generated at that time is considered to be a factor of twinning. That is, since it solidifies at a temperature higher than the phase transformation point, it is difficult to avoid twinning. Therefore, in order to achieve the practical characteristics of the optical isolator, it is necessary to use a specific surface, which is not efficient in consideration of yield and the like. Furthermore, when this manufacturing method is used, the composition segregation becomes large, so that there is a problem that only a small amount of the necessary composition can be taken. On the other hand, when the above-mentioned single crystal was manufactured by the conventional manufacturing method B, the single crystallization rate was extremely low, and it was difficult to increase the diameter. None of the manufacturing methods was the optimum method for industrial production.

【0006】そこで、本発明においては、相変態点以下
の温度での結晶成長を可能とする工夫を施すことにより
結晶性の問題を解決した。又、原料の追加供給を連続的
に行う方法を採用することにより組成偏析をなくし、し
かも、このときの融液の熱的変化を極力小さくするため
に、るつぼの回転方向を反転させながら結晶成長をおこ
なう。種結晶およびV底るつぼを用いるのは、特定の方
位で結晶成長する確率を高めて結晶歩留まりの向上をは
かるためである。Teを過剰に含む溶融ゾーンを、育成
しようとする結晶径以下にするのは、溶融ゾーンの対流
を結晶化しやすい形態にするため、上に凸の面内温度分
布を形成するためである。
Therefore, in the present invention, the problem of crystallinity has been solved by devising a device that enables crystal growth at a temperature below the phase transformation point. Also, by adopting a method of continuously supplying additional raw materials, composition segregation is eliminated, and in order to minimize the thermal change of the melt at this time, crystal growth is performed while reversing the rotation direction of the crucible. Perform. The seed crystal and the V-bottomed crucible are used to increase the probability of crystal growth in a specific orientation and improve the crystal yield. The reason why the melting zone containing excess Te is made equal to or smaller than the crystal diameter to be grown is to form an upward convex in-plane temperature distribution in order to make convection in the melting zone easy to crystallize.

【0007】以下本発明を実施例により説明する。The present invention will be described below with reference to examples.

【0008】[0008]

【実施例】本発明の実施例を図1に示す構造の製造装置
を用いてCd0.72Mn0.15Hg0. 13Teの半磁性半導体
の単結晶の育成を例に取って説明する。高純度Cd、M
n、HgTe、Teを目標組成に秤量し、石英るつぼ3
に装填して真空封止した後に高圧ブリッジマン炉の電気
炉1にて溶融(融点:約1050℃ 圧力:約20at
m)後、急冷して多結晶の焼結棒6を作製する。その多
結晶の焼結棒6と初期充填材料及びTe溶剤を石英るつ
ぼ3に装填して真空封止した後に、石英るつぼ3を、電
気炉1に設置し、石英るつぼ3を1〜5mm/日の速さ
で降下させて、石英るつぼ3の下端より順次結晶成長を
行なわせる。結晶は、融点(約800℃)では相変態点
(約950℃)以下なのでせん亜鉛鉱型結晶構造とな
り、結晶成長過程で相変態点を通過することがないので
双晶は発生しなかった。
The development of Cd 0.72 Mn 0.15 Hg 0. 13 semimagnetic semiconductor single crystals of Te will be described by way of example with reference to apparatus for producing the structure shown in FIG. 1 an embodiment of the embodiment of the present invention. High purity Cd, M
n, HgTe, Te are weighed to the target composition, and the quartz crucible 3
Melted in the electric furnace 1 of the high-pressure Bridgman furnace (melting point: about 1050 ° C, pressure: about 20 at)
After m), it is rapidly cooled to produce a polycrystalline sintered rod 6. After loading the polycrystalline sintered rod 6, the initial filling material, and the Te solvent into the quartz crucible 3 and vacuum-sealing, the quartz crucible 3 is installed in the electric furnace 1 and the quartz crucible 3 is set to 1 to 5 mm / day. The quartz crucible 3 is lowered at a speed of 1 to cause the crystal growth to be sequentially performed from the lower end of the quartz crucible 3. At the melting point (about 800 ° C.), the crystal is below the phase transformation point (about 950 ° C.), so that it has a sphalerite type crystal structure, and since it does not pass through the phase transformation point during the crystal growth process, twin crystals did not occur.

【0009】又、融液中で下方より凝固してCd0.72
0.15Hg0.13Te単結晶を晶出する分に相当する原料
を連続的に追加供給することにより融液内組成を絶えず
一定にし、しかも追加供給原料が熱的変化を与えないよ
うにするために石英るつぼ3の回転方向を定期的に反転
できる装置により十分な攪拌を施す。種結晶およびV底
るつぼを用いるのは、特定の方位で結晶成長する確立を
高めることで結晶歩留まりの向上をはかるためである。
溶融ゾーンHを育成する結晶径以下にするのは、溶融ゾ
ーンの対流を結晶化しやすい形態にするため上に凸の面
内温度分布をつくるためである。このような工夫をして
単結晶を育成した。その結果として、本実施例により作
製した単結晶はすべて双晶が発生せず、90%以上の歩
留まりで単結晶化した育成体が得られた。
Cd 0.72 M is obtained by solidifying from below in the melt.
n 0.15 Hg 0.13 Te In order to constantly keep the composition in the melt constant by additionally supplying the raw material corresponding to the amount of crystallizing the single crystal, and to prevent the additional feed material from undergoing a thermal change. Sufficient stirring is performed by a device that can periodically reverse the rotation direction of the quartz crucible 3. The seed crystal and the V-bottom crucible are used to improve the crystal yield by increasing the probability of crystal growth in a specific orientation.
The reason why the melting zone H is grown to a crystal diameter or less is to form an upward convex in-plane temperature distribution so that the convection in the melting zone can be easily crystallized. A single crystal was grown by such a device. As a result, twin crystals did not occur in all the single crystals produced in this example, and a single crystal grown body was obtained at a yield of 90% or more.

【0010】(従来例1)図2は従来の製造方法Aに用
いる製造装置の概略の断面を示す説明図である。石英る
つぼ3の中にあらかじめ装填してある結晶原料を電気炉
の温度分布を利用して溶解し融液4とし、その後、石英
るつぼ3を3ないし7mm/hrの速度で降下させて、
石英るつぼ3の下端より順次結晶成長を行なわせ、その
後、徐冷することで単結晶を得る。図2の中で符号H
は、溶融ゾーンを示している。
(Conventional Example 1) FIG. 2 is an explanatory view showing a schematic cross section of a manufacturing apparatus used in a conventional manufacturing method A. The crystal raw material preloaded in the quartz crucible 3 is melted by using the temperature distribution of the electric furnace to form a melt 4, and then the quartz crucible 3 is lowered at a speed of 3 to 7 mm / hr,
A single crystal is obtained by sequentially growing crystals from the lower end of the quartz crucible 3 and then gradually cooling. Reference numeral H in FIG.
Indicates the melting zone.

【0011】実際には組成として、Cd0.72Mn0.15
0.13Teの単結晶を育成した。金属Cd、金属Mn、
金属HgTe、金属Teを目標組成となる割合で真空封
止した石英るつぼ3を高圧ブリッジマン炉の電気炉1に
て溶融(融点:約1050℃圧力:約20atm)して
融液4とした後に、石英るつぼ3を3ないし7mm/h
rの速さで降下させて、石英るつぼ3の下端より順次結
晶成長を行わせる。結晶は、融点(約1050℃)から
相変態点(約950℃)までは結晶構造がウルツ鉱型構
造となり、相変態点(約950℃)以下の温度では結晶
構造がせん亜鉛鉱型構造となり、この製造方法を採用す
ると必ず双晶が発生し、得られた単結晶は光学デバイス
用材料として特定面しか使えず、結晶歩留まりが悪くな
る。
In practice, the composition is Cd 0.72 Mn 0.15 H
A single crystal of g 0.13 Te was grown. Metal Cd, metal Mn,
After melting metal HgTe and a quartz crucible 3 in which metal Te is vacuum-sealed at a target composition ratio in an electric furnace 1 of a high-pressure Bridgman furnace (melting point: about 1050 ° C. pressure: about 20 atm) to form a melt 4. , Quartz crucible 3 3 to 7 mm / h
The quartz crucible 3 is lowered at a speed of r to sequentially grow crystals from the lower end of the quartz crucible 3. The crystal structure of the crystal becomes a wurtzite structure from the melting point (about 1050 ° C) to the phase transformation point (about 950 ° C), and becomes a sphalerite structure at a temperature below the phase transformation point (about 950 ° C). However, when this manufacturing method is adopted, twin crystals are always generated, and the obtained single crystal can be used only on a specific surface as a material for an optical device, resulting in poor crystal yield.

【0012】(従来例2)次に、従来の製造方法Bを用
いてCd0.72Mn0.15Hg0.13Te単結晶を育成した場
合について図3を用いて説明する。図3において真空封
止した石英るつぼ3をいったん高圧ブリッジマン炉の電
気炉1にて溶融(融点:約1050℃ 圧力:約20a
tm)後、急冷して多結晶の焼結棒を作製する。その後
電気炉1にて融点より約120℃低い温度にて固相反応
をおこなうことで結晶成長をおこなう。結晶の固相反応
温度(約930℃)は相変態点(約950℃)以下なの
でせん亜鉛鉱型構造となる。従ってこの場合は結晶成長
過程で相変態点を通過することがないので双晶が発生す
ることが殆どなかった。しかしながら固相反応という手
段を使うため結晶全体を単結晶化するのは困難であっ
た。また、結晶の大口径化が難しかった。
(Conventional Example 2) Next, a case of growing a Cd 0.72 Mn 0.15 Hg 0.13 Te single crystal using the conventional manufacturing method B will be described with reference to FIG. In FIG. 3, the vacuum-sealed quartz crucible 3 was once melted in the electric furnace 1 of the high-pressure Bridgman furnace (melting point: about 1050 ° C. pressure: about 20a
After tm), it is rapidly cooled to produce a polycrystalline sintered rod. Then, in the electric furnace 1, a solid phase reaction is performed at a temperature lower than the melting point by about 120 ° C. to grow crystals. Since the solid phase reaction temperature (about 930 ° C.) of the crystal is below the phase transformation point (about 950 ° C.), it has a sphalerite structure. Therefore, in this case, since the crystal does not pass through the phase transformation point in the course of crystal growth, twins are hardly generated. However, it was difficult to form the entire crystal into a single crystal because the solid phase reaction was used. Moreover, it was difficult to increase the diameter of the crystal.

【0013】従来方法と本発明の製造方法による育成条
件と育成結果を纏めて表1に示した。
Table 1 shows the growth conditions and the growth results according to the conventional method and the manufacturing method of the present invention.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上説明したように、本発明は光増幅器
用励起光源(0.98〜1.02μm)およびLD励起
SHG光源(0.83〜0.86μm)用の光アイソレ
ータとして用いられる磁気光学素子であるCd1-X-Y
XHgYTe、Cd1-X-Y-ZMnXHgYZnZTeおよび
Cd1-X-YMnXHgYTe1-ZSeZの双晶のない高い光
学品質を持つ単結晶を効率よく育成できる単結晶の製造
方法を提供できた。
As described above, the present invention is used as an optical isolator for an optical amplifier pumping light source (0.98 to 1.02 μm) and an LD pumping SHG light source (0.83 to 0.86 μm). Optical element Cd 1-XY M
A single crystal capable of efficiently growing a twin-free high optical quality single crystal of n x Hg Y Te, Cd 1-XYZ Mn x Hg Y Zn Z Te, and Cd 1-XY Mn x Hg Y Te 1-Z Se Z. A method for producing crystals could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた結晶製造装置の概略断面を示し
た説明図。
FIG. 1 is an explanatory view showing a schematic cross section of a crystal manufacturing apparatus used in the present invention.

【図2】従来の製造方法Aで用いる結晶製造装置の概略
断面を示した説明図。
FIG. 2 is an explanatory view showing a schematic cross section of a crystal manufacturing apparatus used in a conventional manufacturing method A.

【図3】従来の製造方法Bで用いる結晶製造装置の概略
断面を示した説明図。
FIG. 3 is an explanatory view showing a schematic cross section of a crystal manufacturing apparatus used in a conventional manufacturing method B.

【図4】結晶の状態を示す図で、図4(a)は従来の製
造方法Aによって得られた結晶を示す図、図4(b)は
従来の製造方法Bによって得られた結晶を示す図、図4
(c)は本発明の製造方法によって得られた結晶を示す
図。
FIG. 4 is a diagram showing a state of a crystal, FIG. 4 (a) is a diagram showing a crystal obtained by a conventional production method A, and FIG. 4 (b) is a diagram showing a crystal obtained by a conventional production method B. Figure, Figure 4
(C) is a figure which shows the crystal obtained by the manufacturing method of this invention.

【符号の説明】[Explanation of symbols]

1 電気炉 2 るつぼ昇降機構 3 石英るつぼ 4 融液 5 単結晶 6 焼結棒 8 るつぼ反転機構 9 双晶面 10 結晶粒 H 溶融ゾーン 1 Electric Furnace 2 Crucible Lifting Mechanism 3 Quartz Crucible 4 Melt 5 Single Crystal 6 Sintering Rod 8 Crucible Inversion Mechanism 9 Twinning Surface 10 Crystal Grain H Melting Zone

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 るつぼと、該るつぼ内の結晶原料を融液
とするための加熱装置を用いて、前記るつぼを所定の速
度で前記加熱装置内を下方へ移動させることで、前記る
つぼ内の前記結晶原料の融液を下方より凝固させて、組
成がCd1-X- YMnXHgYTe、Cd1-X-Y-ZMnXHgY
ZnZTeあるいはCd1-X-YMnXHgYTe1-ZSeZ
示される単結晶を育成する単結晶の製造方法において、
目標組成に対応した割合に調整した金属Cd,金属M
n,金属Te、および金属Hgもしくは金属HgTe化
合物のいずれか、からなる出発原料を、あらかじめ溶
解、反応凝固させて多結晶体の中間原料を作製し、前記
るつぼ内の上部に該中間原料を固定し、前記るつぼ内の
下部に充填した融液との間に、溶剤としてのTeの層を
形成して、前記加熱装置の温度分布と前記るつぼの移動
との組合せにより、前記多結晶体の中間原料を前記Te
の層に溶解し、目標組成よりTeが多い組成の融液をつ
くり、該融液から目標組成の単結晶を晶出させて育成
し、前記融液に対して、単結晶として晶出する分に相当
する成分原料を連続的に補給し、前記融液の組成を所定
の範囲に保ちながら単結晶を育成することを特徴とする
単結晶の製造方法。
1. A crucible and a heating device for converting a crystal raw material in the crucible into a melt, by moving the crucible downward in the heating device at a predetermined speed, The melt of the crystal raw material is solidified from below, and the composition is Cd 1-X- Y Mn X Hg Y Te, Cd 1-XYZ Mn X Hg Y
In the method for manufacturing a single crystal to grow a single crystal represented by Zn Z Te or Cd 1-XY Mn X Hg Y Te 1-Z Se Z,
Metal Cd and metal M adjusted to the ratio corresponding to the target composition
A starting material consisting of n, metal Te, and either metal Hg or a metal HgTe compound is previously dissolved and reactively solidified to prepare an intermediate raw material of a polycrystalline body, and the intermediate raw material is fixed to the upper part in the crucible. Then, a layer of Te as a solvent is formed between the crucible and the melt filled in the lower part of the crucible, and by combining the temperature distribution of the heating device and the movement of the crucible, an intermediate of the polycrystalline body is formed. The raw material is Te
Of the target composition to form a melt, and crystallize and grow a single crystal of the target composition from the melt, and crystallize as a single crystal with respect to the melt. 1. A method for producing a single crystal, which comprises continuously replenishing a component raw material corresponding to, and growing the single crystal while maintaining the composition of the melt within a predetermined range.
【請求項2】 請求項1記載の単結晶の製造方法におい
て、育成する結晶と同組成の単結晶を種結晶として用い
ることを特徴とする単結晶の製造方法。
2. The method for producing a single crystal according to claim 1, wherein a single crystal having the same composition as the crystal to be grown is used as a seed crystal.
【請求項3】 請求項1記載の単結晶の製造方法におい
て、育成する単結晶と同組成の混合物をV底るつぼの底
部に充填することを特徴とする単結晶の製造方法。
3. The method for producing a single crystal according to claim 1, wherein the bottom of the V-bottomed crucible is filled with a mixture having the same composition as the single crystal to be grown.
【請求項4】 請求項1,2または3記載の単結晶の製
造方法において、結晶育成中に、るつぼ回転方向を特定
の時間間隔で反転させることを特徴とする単結晶の製造
方法。
4. The method for producing a single crystal according to claim 1, 2, or 3, wherein the rotation direction of the crucible is reversed at a specific time interval during crystal growth.
【請求項5】 請求項1,2,3または4記載の単結晶
の製造方法において、前記Teの層の厚さを育成する結
晶径以下にすることを特徴とする単結晶の製造方法。
5. The method for producing a single crystal according to claim 1, 2, 3 or 4, wherein the thickness of the Te layer is set to be equal to or smaller than a growing crystal diameter.
JP23876893A 1993-08-30 1993-08-30 Production of single crystal Pending JPH0769773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23876893A JPH0769773A (en) 1993-08-30 1993-08-30 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23876893A JPH0769773A (en) 1993-08-30 1993-08-30 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH0769773A true JPH0769773A (en) 1995-03-14

Family

ID=17034984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23876893A Pending JPH0769773A (en) 1993-08-30 1993-08-30 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH0769773A (en)

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
US4303465A (en) Method of growing monocrystals of corundum from a melt
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP2010143782A (en) Melt composition control unidirectional solidification crystal growth apparatus and crystal growth method
JPH0769773A (en) Production of single crystal
JPH07206597A (en) Method for producing znse bulk single crystal
EP0355833A2 (en) Method of producing compound semiconductor single crystal
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JP4576571B2 (en) Method for producing solid solution
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JPH0341432B2 (en)
JP2000178095A (en) Crystal growth process
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPH10297999A (en) Production of gallium-rsenic single crystal
JP3660604B2 (en) Single crystal manufacturing method
JPH01138199A (en) Lead-tin-tellurium based semiconductor single crystal
JP2001267259A (en) Method for growing bulk crystal of compound semiconductor, and method for manufacturing compound semiconductor device
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH09110576A (en) Growth of crystal
JPS62138392A (en) Preparation of semiconductor single crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPH05139884A (en) Production of single crystal
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JP2000327496A (en) Production of inp single crystal
JP2003238287A (en) Method of manufacturing solid solution single crystal