JP2003238287A - Method of manufacturing solid solution single crystal - Google Patents

Method of manufacturing solid solution single crystal

Info

Publication number
JP2003238287A
JP2003238287A JP2002350886A JP2002350886A JP2003238287A JP 2003238287 A JP2003238287 A JP 2003238287A JP 2002350886 A JP2002350886 A JP 2002350886A JP 2002350886 A JP2002350886 A JP 2002350886A JP 2003238287 A JP2003238287 A JP 2003238287A
Authority
JP
Japan
Prior art keywords
crystal
solid solution
raw material
single crystal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350886A
Other languages
Japanese (ja)
Other versions
JP4239065B2 (en
Inventor
Kyoichi Kinoshita
恭一 木下
Shinichi Yoda
真一 依田
Yasuhiro Hanaue
康宏 花上
Hirohiko Nakamura
裕彦 中村
Yasuyuki Ogata
康行 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP2002350886A priority Critical patent/JP4239065B2/en
Publication of JP2003238287A publication Critical patent/JP2003238287A/en
Application granted granted Critical
Publication of JP4239065B2 publication Critical patent/JP4239065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a solid solution (mixed crystal) single crystal having a long size and a uniform composition with good reproducibility. <P>SOLUTION: The figure of the cross section of a crystal growth vessel 11 in the stage before crystal growth is completed is shown. The melting zone 22 moves toward the direction of a residual raw material 23, that is, upward, with proceeding of transport of InAs to the solid raw material 23 side. The vessel 11 is moved downward (direction of 21) at a speed equal to the moving speed of the melting zone 22 so that the relative position of a crystal growth interface and a heater is always kept at a constant position. The temperature at the crystal growth interface, that is, the InAs concentration is kept constant by keeping the position of the interface by this movement, and an In<SB>0.3</SB>Ga<SB>0.7</SB>As single crystal having a uniform composition is grown. The optimum moving speed for growing the In<SB>0.3</SB>Ga<SB>0.7</SB>As single crystal in an In-Ga-As system is 0.4 to 0.5 mm/h when the temperature gradient is 20°C/cm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、長尺・均一組成の
固溶体(混晶)単結晶を再現性良く製造する方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing a solid solution (mixed crystal) single crystal having a long and uniform composition with good reproducibility.

【0002】[0002]

【従来の技術】2つ以上の成分が任意の割合で混ざり合
うことができる固溶体(混晶)の単結晶を育成しようと
する場合、その偏析のために均一な組成を維持しつつ結
晶成長を実現することは難しい。このような固溶体(混
晶)単結晶を製造する有力な方法の一つとして、結晶成
長の方向に予め濃度勾配を持たせた原料の一部のみを溶
融して溶融帯を形成し、結晶成長にともなって該溶融帯
を順次移動させて単結晶を製造する方法が提案されてい
る(特開平8−301686、特開2001-72487)。この特許文
献に開示されるような溶融帯を形成する方法は温度勾配
帯溶融法とよばれ、原理的には均一組成が得られるが、
実際には均一組成の固溶体単結晶を得るためには、その
制御が極めて難く、安定的に製品として均一組成固溶体
単結晶を得ることができないという問題があった。
2. Description of the Related Art When a single crystal of a solid solution (mixed crystal) in which two or more components are mixed at an arbitrary ratio is to be grown, crystal growth is performed while maintaining a uniform composition due to its segregation. It is difficult to realize. As one of the leading methods for producing such a solid solution (mixed crystal) single crystal, only a part of the raw material having a concentration gradient in advance in the direction of crystal growth is melted to form a melting zone to grow the crystal. Accordingly, a method for producing a single crystal by sequentially moving the melting zone has been proposed (JP-A-8-301686, JP-A-2001-72487). The method of forming a melting zone as disclosed in this patent document is called a temperature gradient zone melting method, and in principle, a uniform composition can be obtained.
Actually, there is a problem that in order to obtain a solid solution single crystal having a uniform composition, its control is extremely difficult, and a homogeneous composition solid solution single crystal cannot be stably obtained as a product.

【0003】すなわち、InxGa1-xAs(0≦X<1)の結
晶成長の場合を例にとれば、原料の移動や炉の温度変化
を伴わない温度勾配帯溶融法によってえられる結晶中の
InAs濃度分布は、結晶成長界面が高温側へ移動するため
平衡なInAsの濃度は低下し、結晶成長とともにInAs濃度
は低下する。そこで、結晶を均一な組成で成長させるた
めには、成長界面が常に一定温度になるように試料を移
動させなければならない。このように結晶を均一な組成
で成長を行わせるために混晶多結晶体を融帯の移動によ
り単結晶を製造する際に、融帯の移動の方向を、混晶多
結晶体製造時の固化終了側から固化開始側への方向とす
ることが特開2001-72487には示されている。しかし、こ
の公知文献には、その正確な条件の設定方法が明らかに
されていないため再現性よく均一組成単結晶を育成する
ことは現実的には困難であった。特に、濃度勾配を有す
る多結晶体の最初の結晶生成部分から均一組成の単結晶
への移行制御をどのように行うかについての具体的手法
が示されておらず、安定的に均一組成の単結晶を製造す
ることができないという問題があった。
That is, taking the case of In x Ga 1-x As (0 ≦ X <1) crystal growth as an example, crystals obtained by the temperature gradient zone melting method without movement of raw materials or temperature change of the furnace. In
In the InAs concentration distribution, the equilibrium InAs concentration decreases because the crystal growth interface moves to the high temperature side, and the InAs concentration decreases with crystal growth. Therefore, in order to grow crystals with a uniform composition, the sample must be moved so that the growth interface always has a constant temperature. In this way, when a single crystal is produced by moving the mixed crystal polycrystal to move the mixed crystal polycrystal in order to grow the crystal with a uniform composition, the direction of the movement of the melting zone is set to the direction of the mixed crystal polycrystal production. JP-A-2001-72487 discloses that the direction is from the solidification end side to the solidification start side. However, since the method of setting the exact conditions is not clarified in this known document, it is practically difficult to grow a single crystal of uniform composition with good reproducibility. In particular, there is no specific method for controlling the transition from the first crystal formation portion of a polycrystalline body having a concentration gradient to a single crystal having a uniform composition, and it is possible to obtain a stable single crystal composition with a uniform composition. There was a problem that crystals could not be produced.

【0004】従来のもう一つの問題は、組成的過冷却が
発生することによって多結晶化が生じ、単結晶化をスム
ーズに行うことに対する障害となっていた。結晶成長が
生じる場合、成長界面からの偏析係数の1より小さい成
分が溶融帯中に排出されるために、溶融帯中の融液濃度
分布は、融液中に対流が存在しない場合は、次のような
式で表される。
Another problem of the prior art is that polycrystallization occurs due to the occurrence of compositional supercooling, which has been an obstacle to smooth single crystallization. When crystal growth occurs, a component having a segregation coefficient smaller than 1 from the growth interface is discharged into the melt zone, and therefore the melt concentration distribution in the melt zone is as follows when convection does not exist in the melt. It is expressed by a formula such as.

【0005】ここで、結晶化側界面をA、未溶融固体原
料との界面をB、界面Aから界面Bへ向かっての軸方向距
離をZで表す。また、CLAは界面Aにおける溶融帯中のInA
s濃度、CSAは界面Aにおける結晶中のInAs濃度、Vは結晶
成長速度、DはInAsとGaAsの相互拡散係数を表す。線形
な溶質濃度分布が形成されるのが理想的であるが、(1)
式は現実の結晶成長においては溶質濃度分布は線形から
ずれていることを意味している。線形な溶質濃度分布と
(1)式で表される実際の溶質濃度分布との差をΔとする
と、Δは(2)式のように表される。
Here, the crystallization side interface is represented by A, the interface with the unmelted solid raw material is represented by B, and the axial distance from the interface A to the interface B is represented by Z. C LA is InA in the melting zone at interface A.
s concentration, C SA is the InAs concentration in the crystal at the interface A, V is the crystal growth rate, and D is the interdiffusion coefficient between InAs and GaAs. Ideally, a linear solute concentration distribution is formed, but (1)
The formula means that the solute concentration distribution deviates from the linear one in the actual crystal growth. Linear solute concentration distribution
Letting Δ be the difference from the actual solute concentration distribution expressed by equation (1), Δ is expressed by equation (2).

【0006】この式から結晶成長を伴う場合のInAs濃度
は飽和濃度よりも低い方へ、すなわち過飽和の方へずれ
ることが判明する。溶融帯の中心部で組成的過冷却領域
が形成されていることが判る。また、溶融帯幅が大きく
なる程過冷却の深度が大きくなることが判る。このよう
な過冷却域では、不可避的に含まれる不純物や、るつぼ
壁との作用などがきっかけとなって核発生を生じて多結
晶化を引き起こすことがあり、その発生確率は過冷却度
が大きいほど大きくなる。単結晶を再現性良く得るため
には、この組成的過冷却領域の発生を無くすか、あるい
は極力小さくする必要がある。
From this equation, it is found that the InAs concentration accompanied by crystal growth shifts to the lower side than the saturation concentration, that is, to the supersaturation. It can be seen that a compositional supercooling region is formed at the center of the melting zone. Further, it is understood that the larger the melting zone width, the larger the depth of supercooling. In such a supercooled region, nucleation may occur due to impurities inevitably contained or the action with the crucible wall, which may cause polycrystallization, and the probability of occurrence is that the degree of supercooling is large. The bigger it gets. In order to obtain a single crystal with good reproducibility, it is necessary to eliminate or minimize the occurrence of this compositional supercooling region.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記事情に
鑑みてなされたもので、長尺の均一組成の混晶単結晶を
安定性よく生成することが可能な単結晶製造方法を提供
せんとするものである。
The present invention has been made in view of the above circumstances, and does not provide a method for producing a single crystal capable of stably producing a mixed crystal single crystal having a long and uniform composition with good stability. It is what

【0008】[0008]

【課題を解決するための手段】本発明はの一つの特徴に
よれば、偏析を生じる複数の成分からなる固溶体単結晶
の製造方法において、固溶体原料を用意し、加熱炉に前
記固溶体原料を投入し、前記加熱炉内を前記原料の一端
から他端に向かう方向にそって所定の温度勾配になるよ
うに調整し、融点の低い前記一端側の領域を溶融して前
記温度勾配の方向に所定の幅の溶融帯を形成し、前記固
溶体原料を加熱炉内において温度勾配と物性値から特定
される所定の速度で一端側に移動させながら結晶を成長
させる段階を備えており、前記固溶体原料は、前記溶融
帯の前記他端側近傍領域において前記複数の成分の状態
図において固相線よりも下方に存在するような成分比率
を有していることを特徴とする固溶体単結晶の製造方法
が提供される。また、本発明の別の特徴によれば、偏析
を生じる複数の成分からなる固溶体単結晶の製造方法に
おいて、結晶成長の出発点となる一端から他端に向かっ
て融点が高くなるように成分比率が変化するように調整
された固溶体原料を用意し、加熱炉に前記固溶体原料を
投入し、前記加熱炉内を前記原料の一端から他端に向か
う方向にそって所定の温度勾配になるように調整し、融
点の低い前記一端側の領域を溶融して前記温度勾配の方
向に所定の幅の溶融帯を形成し、前記固溶体原料を加熱
炉内において温度勾配と物性値から特定される所定の速
度で一端側に移動させながら結晶を成長させる段階を備
えたことを特徴とする固溶体単結晶の製造方法が提供さ
れる。
According to one feature of the present invention, in a method for producing a solid solution single crystal composed of a plurality of components that cause segregation, a solid solution raw material is prepared and the solid solution raw material is charged into a heating furnace. Then, the inside of the heating furnace is adjusted to have a predetermined temperature gradient along the direction from one end of the raw material to the other end, and the region on the one end side having a low melting point is melted to a predetermined temperature gradient direction. The step of forming a melt zone having a width of, and growing the crystal while moving the solid solution raw material to one end side at a predetermined speed specified from the temperature gradient and the physical property value in the heating furnace, wherein the solid solution raw material is The method for producing a solid solution single crystal is characterized in that it has a component ratio such that it exists below a solidus line in a phase diagram of the plurality of components in a region near the other end side of the melting zone. Provided. According to another feature of the present invention, in the method for producing a solid solution single crystal composed of a plurality of components that cause segregation, the component ratio is set so that the melting point increases from one end, which is the starting point of crystal growth, to the other end. Prepare a solid solution raw material adjusted to change, put the solid solution raw material into the heating furnace, so that a predetermined temperature gradient along the direction from one end of the raw material to the other end in the heating furnace Adjust to form a melting zone having a predetermined width in the direction of the temperature gradient by melting the region on the one end side having a low melting point, and the solid solution raw material is heated in a heating furnace at a predetermined temperature specified by a physical property value and a temperature gradient. There is provided a method for producing a solid solution single crystal, which comprises a step of growing a crystal while moving it to one end side at a speed.

【0009】好ましくは、前記固溶体原料の移動速度
(R)は、以下の式、 (ここで、Vは結晶成長界面の移動速度、CSは溶質の結
晶中の濃度、CLはCSと平衡関係にある液相組成の溶質濃
度、Dは液相中での溶質と溶媒間の相互拡散係数、Gは結
晶成長界面における温度勾配、mは液相線の勾配であ
る。)で表される速度に制御されるべきである。すなわ
ち、前記溶融帯は、液相中での溶質と溶媒間の相互拡散
係数と温度勾配に比例した速度で高温側へ移動するの
で、固溶体原料をその移動速度Vと同じ速度で反対方向
へ移動させると、成長界面の温度が常に一定に保たれ、
したがって一定組成の結晶が成長してくることになる。
従来の方法では、このように界面の移動速度と温度勾配
との関係を正確に評価できず、制御が不安定になって、
結果的に生成される結晶の組成の安定性、および結晶の
品質が保証できないという問題が生じていたものであ
る。
Preferably, the moving speed (R) of the solid solution raw material is expressed by the following equation: (Where V is the moving speed of the crystal growth interface, C S is the concentration of solute in the crystal, C L is the solute concentration of the liquid phase composition in equilibrium with C S, and D is the solute and solvent in the liquid phase. The interdiffusion coefficient between them, G is the temperature gradient at the crystal growth interface, and m is the gradient of the liquidus. That is, since the melting zone moves to the high temperature side at a speed proportional to the mutual diffusion coefficient between the solute and the solvent in the liquid phase and the temperature gradient, the solid solution raw material moves at the same speed as the moving speed V in the opposite direction. By doing so, the temperature of the growth interface is always kept constant,
Therefore, a crystal with a constant composition grows.
In the conventional method, the relationship between the moving speed of the interface and the temperature gradient cannot be accurately evaluated in this way, and the control becomes unstable,
The problem is that the stability of the composition of the resulting crystals and the quality of the crystals cannot be guaranteed.

【0010】また別の好ましい態様では、前記原料の組
成は、最初に溶融帯を形成する原料領域においては目標
とする結晶組成と平衡する液相の組成よりも液相線上の
融点温度が低い成分を含んでおり、溶融帯の前記他端側
の境界部における未溶融固相部分では前記目標結晶組成
よりも固相線上の融点温度が高くなっていることを特徴
とする。
In another preferred embodiment, the composition of the raw material is a component having a lower melting point temperature on the liquidus line than the composition of the liquid phase in equilibrium with the target crystal composition in the raw material region which initially forms the melting zone. And the melting point temperature on the solidus line is higher than the target crystal composition in the unmelted solid phase portion at the boundary portion on the other end side of the melting zone.

【0011】好ましくは、前記溶融帯の幅dが次の式で
表される値以下である。 ここで、mは平衡状態図から求められる液相線の傾き、C
Sは偏析係数が1より小さい成分の結晶中の濃度、CLはC
Sと平衡関係にある液相線濃度、Gは結晶成長界面での温
度勾配である。この場合、固溶体単結晶の組成がInxGa
1-xAs(0≦X<1)であらわされるものである場合に
は、前記溶融帯の幅dが25 mm以下であることが望まし
い。
Preferably, the width d of the melting zone is not more than the value expressed by the following equation. Where m is the slope of the liquidus line obtained from the equilibrium diagram, C
S is the concentration in the crystal of the component whose segregation coefficient is less than 1, and C L is C
The liquidus concentration is in equilibrium with S, and G is the temperature gradient at the crystal growth interface. In this case, the composition of the solid solution single crystal is In x Ga
In the case of 1-x As (0 ≦ X <1), it is desirable that the width d of the melting zone is 25 mm or less.

【0012】本発明において、前記溶融帯内における温
度分布を、拡散律速定常状態結晶成長下での溶質濃度分
布から求められる以下の式 (ここで、結晶化界面をA、固体原料との界面をB、界面
Aから界面Bへ向かっての軸方向距離をZで表す。また、C
LAは界面Aにおける溶融帯中の溶質濃度、CSAは界面Aに
おける結晶中の溶質濃度、Vは結晶成長界面の移動速
度、Dは液相中での溶質と溶媒間の相互拡散係数を表
す。)で示される濃度分布が飽和濃度(リキダス)と一
致するとして平衡状態図から逆算して求められる温度分
布となるように調整するのが好ましい。
In the present invention, the temperature distribution in the melting zone is calculated by the following equation, which is obtained from the solute concentration distribution under the diffusion controlled steady state crystal growth. (Here, the crystallization interface is A, the interface with the solid raw material is B, and the interface is
The axial distance from A to interface B is represented by Z. Also, C
LA is the solute concentration in the melt zone at interface A, C SA is the solute concentration in the crystal at interface A, V is the migration velocity at the crystal growth interface, and D is the interdiffusion coefficient between the solute and solvent in the liquid phase. . It is preferable to adjust so that the concentration distribution shown by the above) agrees with the saturation concentration (liquidus) to obtain a temperature distribution obtained by back-calculating from the equilibrium diagram.

【0013】この場合において、固溶体単結晶の組成が
InxGa1-xAs(0≦X<1)であらわされるものである場
合には、前記溶融帯の温度分布を有する溶融帯の温度勾
配が前記一端から他端に向かう方向において、40℃/cm
以下であるのが好ましい。
In this case, the composition of the solid solution single crystal is
In the case of being represented by In x Ga 1-x As (0 ≦ X <1), the temperature gradient of the melting zone having the temperature distribution of the melting zone is 40 ° C. in the direction from the one end to the other end. /cm
The following is preferable.

【0014】上記したように本発明では溶融帯の高温側
への移動速度と同じ速度で原料を低温側へ移動させ、成
長界面での温度を常に一定に保つようにして均一組成の
単結晶をえるために、予め用意する原料の濃度分布およ
び温度勾配を規定することにより、定常成長を開始する
までの時間を短くするとともに溶融帯の幅を制限して高
安定を確保しながら均一組成成長を実現するための条件
を与える。本発明によれば、用意する固溶体原料は当該
原料成分にかかる状態図における固相線よりも下側に位
置するように成分比率であればよい。この理由は、溶融
帯の他端側すなわち種結晶とは反対側の溶融進行端側に
おいて、非溶融状態が適正に維持されるような成分組成
を有していればよい。理論的には、結晶成長の出発点と
なる一端から結晶生成の終点となる他端に向かって融点
が高くなるように連続的に変化するように成分比率を調
整すると、溶融帯が一端側から他端側に向けての連続的
な移動がスムーズに生じると考えられるが、実際には、
むしろ、溶融端の進行が速過ぎないように固体状態を確
実に維持できる組成を有するのが望ましいことが判明し
た。したがって、この条件が維持できるかぎり、上記一
端から他端にかけての固溶体原料の成分比率を一定とし
ても、逆に、一端から他端に向かって融点が低くなるよ
うに変化する成分比率に調整しても良い。また溶融帯幅
の制御および溶融帯の温度分布制御によって組成的過冷
却を抑制して単結晶を再現性よく得られる結晶成長方法
を提供する。
As described above, in the present invention, the raw material is moved to the low temperature side at the same speed as the moving speed of the melting zone to the high temperature side so that the temperature at the growth interface is always kept constant to form a single crystal having a uniform composition. In order to obtain a uniform composition growth while preserving high stability by shortening the time until the start of steady growth and limiting the width of the melting zone, by defining the concentration distribution and temperature gradient of the raw material prepared in advance. Giving the conditions for realization. According to the present invention, the solid solution raw material to be prepared may have a component ratio so as to be located below the solidus line in the phase diagram relating to the raw material component. The reason therefor is that the other end side of the melting zone, that is, the melt progressing end side opposite to the seed crystal, has a component composition such that the non-melted state is appropriately maintained. Theoretically, if the component ratios are adjusted so that the melting point increases continuously from one end, which is the starting point of crystal growth, to the other end, which is the end point of crystal formation, the melting zone changes from one end side. It is thought that continuous movement toward the other end will occur smoothly, but in reality,
Rather, it has been found desirable to have a composition that ensures that the solid state is maintained so that the melt edge does not progress too fast. Therefore, as long as this condition can be maintained, even if the component ratio of the solid solution raw material from the one end to the other end is constant, conversely, by adjusting to a component ratio that changes so that the melting point decreases from one end to the other end. Is also good. Also provided is a crystal growth method capable of obtaining a single crystal with good reproducibility by suppressing compositional supercooling by controlling the melting zone width and controlling the temperature distribution of the melting zone.

【0015】なお、本明細では成長界面での温度を一定
に保つ方法として、炉の設定を一定のままで、試料を移
動させる方法について記述したが、試料を固定して炉を
移動させる方法、あるいは試料と炉の両方を移動させる
方法、さらに炉の温度を一定速度で降下させる方法に関
しても適用できる。
In the present specification, as a method of keeping the temperature at the growth interface constant, a method of moving the sample while keeping the setting of the furnace constant was described. However, a method of fixing the sample and moving the furnace, Alternatively, it can be applied to a method of moving both the sample and the furnace, and a method of lowering the temperature of the furnace at a constant speed.

【0016】[0016]

【実施例の説明】以下、本発明を実施例に基づいて詳述
する。ここでは、InAsとGaAsの混晶であるIn0.3Ga0.7As
の結晶成長を例にとって説明する。この系は図1の相図
に示されるように全率固溶型平衡関係がある。図2を参
照すると、種結晶と原料との接点すなわち、一端側から
他端側にむけてInAsの濃度が所定の傾向で減少する原料
を使用する場合の軸方向の濃度分布が示されている。図
2の場合、種結晶と原料との接点おいて溶融帯が形成さ
れている場合を図示している。単結晶におけるInAsの濃
度は種結晶におけるInAsの濃度になるように種結晶と原
料との接合面における温度が所定の温度に調整されてい
る。この関係は、図1の相図から知ることができる。上
記の公知文献特開2001-72487にも記載されるように偏析
を伴う複数成分からなる均一組成の原料を用いて溶融結
晶成長法により結晶成長させた場合には、所定の濃度勾
配を有する多結晶体が形成される。この多結晶体を原料
として、かつ当該多結晶体の結晶生成終端側を始点にし
て同様に溶融結晶成長法により、結晶を育成すると理論
的には、当初の均一組成の結晶体が生成する。本発明は
基本的には、この手法にしたがって、均一組成の単結晶
を生成するものである。すなわち、図2に示すように原
料の軸方向すなわち結晶の成長方向にInAsの濃度勾配線
1を有する原料と種結晶を用いて結晶成長を行わせる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments. Here, In 0.3 Ga 0.7 As which is a mixed crystal of InAs and GaAs
The crystal growth will be described as an example. This system has a total solid-solution equilibrium relationship as shown in the phase diagram of FIG. Referring to FIG. 2, there is shown a contact concentration between the seed crystal and the raw material, that is, an axial concentration distribution when a raw material in which the concentration of InAs decreases from one end to the other end with a predetermined tendency is used. . In the case of FIG. 2, a melting zone is formed at the contact point between the seed crystal and the raw material. The temperature at the junction surface between the seed crystal and the raw material is adjusted to a predetermined temperature so that the concentration of InAs in the single crystal becomes the concentration of InAs in the seed crystal. This relationship can be known from the phase diagram of FIG. As described in the above-mentioned known document JP-A-2001-72487, when crystals are grown by a melt crystal growth method using a raw material of a uniform composition composed of a plurality of components accompanied by segregation, many crystals having a predetermined concentration gradient are obtained. Crystals are formed. When a crystal is grown using this polycrystal as a raw material and similarly by the melt crystal growth method starting from the crystal formation termination side of the polycrystal, the crystal having the initial uniform composition is theoretically produced. The present invention basically produces a single crystal having a uniform composition according to this method. That is, as shown in FIG. 2, crystal growth is performed using a raw material and a seed crystal having an InAs concentration gradient line 1 in the axial direction of the raw material, that is, the crystal growth direction.

【0017】この目的のために、図示の例では、原料の
一端(最初に溶融し、種結晶と接触して最初に結晶成長
の出発点となる)から他端に向かう方向すなわち軸方向
の温度分布が図2の破線で示される温度勾配線2(結晶
成長界面で約20℃/cm)となるように原料を加熱する。種
結晶との接触部は1020℃に加熱する。この温度分布に対
応する溶質(InAs)の飽和濃度は液相線3(リキダス)お
よび固相線4(ソリダス)で表すことができる。この図
2における液相線および固相線は、図1の平衡状態図か
ら求めることができる。図2において原料軸方向の種結
晶に近い部分において、領域5のInAs濃度は当該溶融温
度の飽和濃度を上回っているために溶融して、溶融帯を
形成する。この時、前記溶融帯が固体と接する2つの界
面、すなわち種結晶側とおよび未溶融の溶け残っている
原料側との界面において、溶融体は固体と接して平衡状
態に達しようとする。界面では短時間で平衡に達する
が、溶融帯全体が平衡状態に達するためには溶融帯中の
過剰なInAsが拡散により界面まで輸送される必要があ
る。InAs - GaAs相互拡散速度は約1×10-8m2/sである
(K. Kinoshita et al., J. Jpn. Soc. Microgravity A
ppl. vol. 17 (2000) pp.57-63)ので、溶融帯幅にもよ
るが20mm程度の溶融帯に対しては全体が平衡状態に達す
るまでに2〜3時間が必要である。
For this purpose, in the example shown, the temperature in the direction from one end of the raw material (which first melts and comes into contact with the seed crystal and is the starting point for crystal growth) to the other end, that is, in the axial direction. The raw material is heated so that the distribution has a temperature gradient line 2 (about 20 ° C./cm at the crystal growth interface) indicated by the broken line in FIG. The contact area with the seed crystal is heated to 1020 ° C. The saturation concentration of solute (InAs) corresponding to this temperature distribution can be represented by a liquidus line 3 (liquidus) and a solidus line 4 (solidus). The liquidus and solidus lines in FIG. 2 can be obtained from the equilibrium diagram of FIG. In the portion close to the seed crystal in the axial direction of the raw material in FIG. 2, the InAs concentration in the region 5 is higher than the saturation concentration of the melting temperature, so that the region is melted and a molten zone is formed. At this time, the melt tries to reach an equilibrium state in contact with the solid at the two interfaces where the melting zone contacts the solid, that is, the interface between the seed crystal side and the unmelted raw material side. Equilibrium is reached at the interface in a short time, but in order to reach the equilibrium state in the entire melting zone, excess InAs in the melting zone must be transported to the interface by diffusion. InAs-GaAs interdiffusion rate is about 1 × 10 -8 m 2 / s (K. Kinoshita et al., J. Jpn. Soc. Microgravity A
ppl. vol. 17 (2000) pp.57-63), so depending on the melting zone width, it takes 2-3 hours for the entire melting zone to reach an equilibrium state.

【0018】平衡に達すると、溶融帯中のInAs濃度分布
は図3に示すように、2つの固液界面の組成を結ぶ直線
で近似される濃度勾配(厳密には(1)式で記述される濃
度勾配)が形成される。これはまた、溶融帯中の各点に
おいてInAsはその場所の温度に対応した飽和濃度とほぼ
等しいとも言える。よって、このような平衡状態に達し
た後もInAsは拡散により濃度の低い未溶融原料側に輸送
され、順次当該界面領域付近で平衡状態に移行する。こ
の場合、種結晶側ではInAs濃度が低下して平衡濃度以下
になり固化が始まる。 固化の際にはInAsの一部しか取
り込まれない偏析が生じるために、InAsは結晶化の進行
に伴い溶融帯中に排出される。この排出されたInAsは拡
散によって原料側へ輸送される。図示の例では、In0.3G
a0.7Asの結晶を成長させるものであり、InAs 濃度は、
0.3である。図2に示すような温度勾配線2を与えて
おくと種結晶側では、拡散によるInAs濃度低下→結晶化
→偏析によるInAsの界面前方融液中への排出→拡散によ
るInAs濃度低下というサイクルによって結晶成長が自発
的に高温側へ向かって進行する(図3)。この結晶成長
法は温度勾配帯溶融法と呼ばれる。
When the equilibrium is reached, the InAs concentration distribution in the melting zone is, as shown in FIG. 3, a concentration gradient approximated by a straight line connecting the compositions of two solid-liquid interfaces (strictly described by equation (1)). Concentration gradient) is formed. It can also be said that InAs at each point in the melting zone is approximately equal to the saturation concentration corresponding to the temperature at that location. Therefore, even after reaching such an equilibrium state, InAs is transported to the unmelted raw material side having a low concentration by diffusion, and sequentially shifts to the equilibrium state near the interface region. In this case, on the seed crystal side, the InAs concentration decreases to below the equilibrium concentration and solidification begins. During solidification, segregation occurs where only a portion of InAs is taken in, so InAs is discharged into the melting zone as crystallization progresses. The discharged InAs is transported to the raw material side by diffusion. In the example shown, In 0.3 G
a 0.7 As crystal is grown, and the InAs concentration is
It is 0.3. When the temperature gradient line 2 as shown in Fig. 2 is given, the InAs concentration decreases by diffusion on the seed crystal side → crystallization → InAs is discharged into the melt in front of the interface due to segregation → the InAs concentration decreases by diffusion. Crystal growth spontaneously proceeds toward the high temperature side (FIG. 3). This crystal growth method is called a temperature gradient zone melting method.

【0019】上記したように原料の移動や炉の温度変化
を伴わない温度勾配帯溶融法によって結晶を成長させる
と、図4に示すような結晶中のInAs濃度分布となる。す
なわち、結晶成長界面が高温側へ移動するため平衡なIn
Asの濃度は低下し結晶成長とともにInAs濃度が低下す
る。このようにして生成された多結晶原料を用いて、温
度勾配帯溶融法により単結晶を形成する場合に具体的手
法は、特開2001-72487には教示されていない。
As described above, when the crystal is grown by the temperature gradient zone melting method without the movement of the raw material and the temperature change of the furnace, the InAs concentration distribution in the crystal becomes as shown in FIG. That is, since the crystal growth interface moves to the high temperature side, the equilibrium In
The As concentration decreases and the InAs concentration decreases with crystal growth. Japanese Patent Laid-Open No. 2001-72487 does not teach a specific method for forming a single crystal by the temperature gradient zone melting method using the polycrystalline raw material thus produced.

【0020】本発明の方法の第一の特徴は、原料位置と
原料加熱源としてのヒーターとの軸方向の位置を相対的
に変化させる移動機構を導入したことであり、結晶成長
界面の高温側への移動速度に合わせて試料を低温側へ移
動させ、成長界面の温度すなわち成長界面でのInAs濃度
を一定に保ち均一組成の結晶を成長さるものである。以
下にこの点に関し更に詳しく説明する。成長界面で、拡
散律速定常状態結晶成長が成り立っている場合、偏析に
よって結晶化の際に融液中へ排出される溶質量は拡散に
よって界面前方融液中へ輸送される量と等しいので、界
面の移動速度をVとすると、次の関係が成立する。 ここで、CSは溶質の結晶中の濃度、CLはCSと平衡関係に
ある液相組成の溶質濃度、Dは液相中での溶質と溶媒間
の相互拡散係数である。温度勾配∂T/∂Z=G、液相線の
勾配∂T/∂C=mとおき、Vについて解くと、 が得られる。この速度が拡散律速定常状態結晶成長が成
り立っている場合の成長界面の移動速度である。
The first feature of the method of the present invention is the introduction of a moving mechanism for relatively changing the axial position between the raw material position and the heater as the raw material heating source. The sample is moved to the low temperature side in accordance with the moving speed to the temperature, and the temperature of the growth interface, that is, the InAs concentration at the growth interface is kept constant to grow a crystal of uniform composition. This point will be described in more detail below. When diffusion-controlled steady-state crystal growth is established at the growth interface, the melt mass discharged into the melt during crystallization due to segregation is equal to the amount transported to the interface front melt by diffusion. Let V be the moving speed of, then the following relationship holds. Here, C S is the concentration of solute in the crystal, C L is the concentration of solute having a liquid phase composition in equilibrium with C S, and D is the mutual diffusion coefficient between the solute and the solvent in the liquid phase. If we set temperature gradient ∂T / ∂Z = G and gradient of liquidus ∂T / ∂C = m and solve for V, Is obtained. This speed is the moving speed of the growth interface when the diffusion-controlled steady-state crystal growth is established.

【0021】育成したい結晶の溶質濃度CSが0.3(InAsが
0.3モル)の場合、これと平衡関係にある液相中の溶質濃
度CLは図1の平衡状態図から0.83と求められ、また図1
から液相線の勾配mは約330℃/molと求められる。Dは測
定から約1×10-8m2/sであることが判っているので、温
度勾配G=20℃/cmの場合、Vは0.4mm/hと計算される。試
料をこの速度に合わせて低温側へ移動させた場合におけ
る結晶中の溶質濃度分布の解析結果を図5に示す。図5
の生成した単結晶におけるInAsの濃度分布と原料移動を
させないで育成した単結晶におけるInAsの濃度分布を示
す図4と比較すれば、図5の濃度分布はほぼ結晶の成長
方向に対してほぼ一定であり、均一組成になっているこ
とが分かる。一方、図4から明らかなように、原料移動
をさせないで、結晶成長をさせた場合には、結晶成長界
面が高温側へ移行するために結晶に濃度分布が生じる。
すなわち結晶成長の初期では、InAsの濃度が高く、終期
に近づくにつれてInAsの濃度が減少する傾向となる。す
なわち、本発明により、原料を溶融帯内のInAs濃度が平
衡に達するのを阻害しない程度の所定の速度で移動させ
ながら原料溶融界面の温度を一定に保持するように制御
する本発明の手法により長い均一組成の単結晶が生成す
る成長することが判る。本発明の原料移動機構を導入し
た効果は、顕著である。
The solute concentration C S of the crystal to be grown is 0.3 (InAs is
In the case of 0.3 mol), the solute concentration C L in the liquid phase in equilibrium with this is determined to be 0.83 from the equilibrium diagram of FIG.
Therefore, the gradient m of the liquidus line is determined to be about 330 ° C / mol. Since D has been found from measurement to be about 1 × 10 −8 m 2 / s, V is calculated to be 0.4 mm / h when the temperature gradient G = 20 ° C./cm. FIG. 5 shows the analysis result of the solute concentration distribution in the crystal when the sample was moved to the low temperature side according to this speed. Figure 5
In comparison with FIG. 4, which shows the concentration distribution of InAs in the generated single crystal and the concentration distribution of InAs in the single crystal grown without moving the raw material, the concentration distribution in FIG. 5 is almost constant in the crystal growth direction. It can be seen that the composition is uniform. On the other hand, as is clear from FIG. 4, when the crystal is grown without moving the raw material, the crystal growth interface shifts to the high temperature side, so that a concentration distribution occurs in the crystal.
That is, the concentration of InAs is high at the initial stage of crystal growth, and the concentration of InAs tends to decrease toward the end. That is, according to the present invention, by the method of the present invention to control the raw material melting interface temperature to be kept constant while moving the raw material at a predetermined speed that does not prevent the InAs concentration in the melting zone from reaching equilibrium. It can be seen that a single crystal with a long uniform composition is generated and grows. The effect of introducing the raw material moving mechanism of the present invention is remarkable.

【0022】図5の結果は線形の液相線濃度勾配が溶融
帯中に形成されている場合における成長結晶中の組成分
布であるが、実際の場合は溶融帯中の溶質濃度は(1)式
で示すように線形からずれる。その差異を以下に計算す
る。式(1)において、Zが小さい場合はTailor展開で近似
される。線形の一次式までの近似とすると、(5)式にお
いて2次以下の項は誤差となり、誤差は2次の項で近似
すると
The result of FIG. 5 is the composition distribution in the grown crystal in the case where a linear liquidus concentration gradient is formed in the melting zone. In the actual case, the solute concentration in the melting zone is (1) It deviates from linear as shown in the equation. The difference is calculated below. In Equation (1), when Z is small, it is approximated by Tailor expansion. Assuming linear approximation up to a linear expression, in equation (5) terms below quadratic become an error, and error is approximated by a quadratic term.

【0023】実験から式(6)で表される線形からの誤差
が1%以内である場合に、図5に示ような均一組成の単結
晶が成長する。すなわち線形からの誤差1%を与える溶融
帯幅dに対して(7)式が成立し、これと(4)式の関係より
溶融帯幅に関する制約条件(8)が求まる。すなわち、こ
の関係が特許請求範囲第3項記載の関係式である。固溶
体単結晶の組成がInxGa1-xAs(0≦X<1)であらわさ
れるものである場合には、結晶成長実験結果から溶融帯
幅d は約25 mmが限度である。
From the experiment, when the error from the linearity expressed by the equation (6) is within 1%, a single crystal having a uniform composition as shown in FIG. 5 grows. That is, the equation (7) holds for the melting zone width d that gives an error of 1% from the linear shape, and the constraint condition (8) regarding the melting zone width is obtained from the relationship between this and equation (4). That is, this relationship is the relational expression described in claim 3. When the composition of the solid solution single crystal is represented by In x Ga 1-x As (0 ≦ X <1), the melting zone width d is limited to about 25 mm from the crystal growth experiment results.

【0024】次に本発明の他の特徴である単結晶を安定
性良く生成させることについて述べる。単結晶を安定的
に成長させるためには融液中に組成的過冷却を発生させ
てはならない。そのためには、温度分布が線形からやや
ずれている場合の方が有利である。その理由は、溶融帯
中の溶質濃度分布は、融液中に対流が存在しない場合
は、上記 (1)式のように指数関数で表され、線形からず
れているからである。図1の相図から明らかなように、
溶質濃度変化が0.2程度(例えばInAs濃度が0.8〜
0.6の間)では飽和溶質濃度XはX=αT+C(αお
よびCは定数)のように温度Tに線形に比例する形で近
似できる。この場合、距離Zの指数関数で表される溶質
濃度分布に対して、組成的過冷却を起こさないためには
温度分布も同じ指数関数で表される分布でなければなら
ない。
Next, another feature of the present invention, that is, formation of a single crystal with good stability will be described. In order to stably grow a single crystal, compositional supercooling should not occur in the melt. For that purpose, it is more advantageous when the temperature distribution is slightly deviated from linear. The reason is that the solute concentration distribution in the melting zone is expressed by an exponential function as in the above equation (1) and deviates from linearity when there is no convection in the melt. As is clear from the phase diagram of FIG.
Solute concentration change is about 0.2 (for example, InAs concentration is 0.8 ~
(Between 0.6), the saturated solute concentration X can be approximated in a form linearly proportional to the temperature T as X = αT + C (α and C are constants). In this case, with respect to the solute concentration distribution represented by the exponential function of the distance Z, the temperature distribution must also be the distribution represented by the same exponential function in order to prevent compositional supercooling.

【0025】以下では、温度分布が線形である場合に生
じる組成的過冷却に関し、さらに詳しく論じる。(1)式
で表される実際の溶質濃度分布と線形な温度分布の下で
形成される飽和溶質濃度分布の差をΔとすると、Δは
(2)式のように表される。この差を溶融帯幅xをパラメー
タとしてZの関数として計算した結果を図6に示す。図
6に示すように、線形な温度分布の下では実際のInAs濃
度は飽和濃度よりも低い方へ、すなわち過飽和の方へず
れており、溶融帯の中心部で組成的過冷却領域が形成さ
れていることが判る。さらにまた、図6から溶融帯幅が
大きくなる程過冷却の深度が大きくなることが判る。こ
のような過冷却域では、不可避的に含まれる不純物や、
るつぼ壁との作用などがきっかけとなって核発生を生じ
て多結晶化を引き起こすことがあり、その発生確率は過
冷却度が大きいほど大きくなる。単結晶を再現性良く得
るためには、この組成的過冷却領域の発生を無くすある
いはできる限り小さくする必要がある。以上考察したよ
うに、飽和濃度(液相線組成)が温度に線形に依存する
とすると、(1)式に対応する飽和濃度分布を与え、融液
中に組成的過冷却を発生させない温度分布は、溶質濃度
分布と相似形の で表されるものでなければならない。ここで、C1および
C2は定数である。式(9)において、拡散係数Dは物質固有
の値であるので、結晶成長速度Vをパラメータとしてあ
る値に選ぶことによって目的の温度分布を具体的に決め
ることができる。
In the following, the compositional supercooling that occurs when the temperature distribution is linear will be discussed in more detail. Let Δ be the difference between the actual solute concentration distribution expressed by equation (1) and the saturated solute concentration distribution formed under the linear temperature distribution.
It is expressed as in equation (2). FIG. 6 shows the result of calculating this difference as a function of Z using the melting zone width x as a parameter. As shown in FIG. 6, under the linear temperature distribution, the actual InAs concentration deviates to the lower side than the saturation concentration, that is, to the supersaturation, and a compositional supercooling region is formed in the center of the melting zone. You can see that Furthermore, it can be seen from FIG. 6 that the depth of supercooling increases as the melting zone width increases. In such a supercooled region, impurities that are unavoidably contained,
Occurrence of nucleation may occur due to the action with the crucible wall, causing polycrystallization, and the probability of occurrence increases as the degree of supercooling increases. In order to obtain a single crystal with good reproducibility, it is necessary to eliminate or minimize the compositional supercooling region. As discussed above, if the saturation concentration (liquidus composition) depends linearly on the temperature, the saturation concentration distribution corresponding to Eq. (1) is given, and the temperature distribution that does not cause compositional supercooling in the melt is , Similar to solute concentration distribution Must be represented by. Where C 1 and
C 2 is a constant. In the equation (9), since the diffusion coefficient D is a value peculiar to the substance, the target temperature distribution can be specifically determined by selecting a certain value with the crystal growth rate V as a parameter.

【0026】結晶製造装置 In0.3Ga0.7Asの結晶を育成する場合について説明する。
図7に本発明の製造方法を適用することができる単結晶
製造装置6の概略構成が示されている。
Crystal production apparatus A case of growing a crystal of In 0.3 Ga 0.7 As will be described.
FIG. 7 shows a schematic configuration of a single crystal manufacturing apparatus 6 to which the manufacturing method of the present invention can be applied.

【0027】図7を参照すると、本発明の実施例にかか
る単結晶製造装置6は原料を溶融するための加熱装置7
を備えている。加熱装置7はドーナツ状をなしており、
その中空部にはその中心線の方向すなわち軸方向にそっ
て原料を装填した図8に示すような原料容器11が配置
される。原料容器は円筒状をなしており、内部に原料の
InxGa1-xAsが装填される。原料容器11は、軸方向に延
びる支持棒8の先端に取り付けられており、支持棒8の
基端側は、ステップモータを動力源とする駆動機構9を
有し、支持棒上に形成された溝と噛み合っておりるラッ
クアンドピニオンによる動力伝達を受けるようになって
いる。これによって支持棒8の先端にとりつけられた原
料容器11は加熱装置7のドーナツ型空間内を軸方向に
制御された速度で加熱装置7に対して相対的に移動する
ことできる。原料容器11の加熱装置空間内での移動速
度は、制御機構10によって所定の速度に制御されるよ
うになっている。この制御機構10は、速度を入力する
ことによって、原料容器の加熱装置7に対する速度を設
定することもできるが、所定の速度となるようにマイク
ロプロセッサを組み込んでプログラムにしたがって速度
制御を行うようにすることもできる。図7の結晶製造装
置の加熱装置7は、図示のように軸方向に3のヒータ7
a、7b、および7cに分割されており、それぞれ独立
に温度制御できるようになっている。本例では、原料容
器の入口側から原料容器の進行方向に向かって温度が高
くなるようににそれぞれのヒータ温度が制御されるよう
になっている。
Referring to FIG. 7, the apparatus 6 for producing a single crystal according to the embodiment of the present invention is a heating apparatus 7 for melting raw materials.
Is equipped with. The heating device 7 has a donut shape,
A raw material container 11 as shown in FIG. 8 in which the raw material is loaded is arranged in the hollow portion along the direction of the center line, that is, the axial direction. The raw material container has a cylindrical shape.
In x Ga 1-x As is loaded. The raw material container 11 is attached to the tip of a support rod 8 extending in the axial direction, and the base end side of the support rod 8 has a drive mechanism 9 using a step motor as a power source and is formed on the support rod. It receives power from a rack and pinion that meshes with the groove. As a result, the raw material container 11 attached to the tip of the support rod 8 can move in the donut-shaped space of the heating device 7 relative to the heating device 7 at a speed controlled in the axial direction. The moving speed of the raw material container 11 in the heating device space is controlled to a predetermined speed by the control mechanism 10. The control mechanism 10 can set the speed of the raw material container with respect to the heating device 7 by inputting the speed. However, the speed is controlled according to a program by incorporating a microprocessor so that the speed becomes a predetermined speed. You can also do it. As shown in the figure, the heating device 7 of the crystal production apparatus shown in FIG.
It is divided into a, 7b, and 7c, and the temperature can be controlled independently of each other. In this example, the temperature of each heater is controlled so that the temperature increases from the inlet side of the raw material container toward the advancing direction of the raw material container.

【0028】図8にこの後工程段階における原料容器す
なわち、結晶成長用容器の断面図を示す。
FIG. 8 shows a cross-sectional view of a raw material container, that is, a crystal growth container in the subsequent process step.

【0029】結晶成長用容器すなわち、原料容器11
は、窒化ボロン製のルツボ12と、単結晶化を助長する
ヒートシンク13、およびこれらの外側にあって真空封
入の役目をする石英容器14から成っている。窒化ボロ
ン製のルツボ12内には、種結晶15、InAs16および
予め一方向凝固させて調製した原料17が挿入されてい
る。この装置において、(9)式における定数C1およびC2
の具体的決定例を以下に示す。
Crystal growth container, ie, raw material container 11
Is composed of a crucible 12 made of boron nitride, a heat sink 13 that promotes single crystallization, and a quartz container 14 that serves as a vacuum enclosure outside these. In the crucible 12 made of boron nitride, the seed crystal 15, InAs 16 and the raw material 17 prepared by unidirectional solidification in advance are inserted. In this device, the constants C 1 and C 2 in the equation (9) are
A specific example of the determination of is shown below.

【0030】結晶成長界面で温度勾配20℃/cmを与えた
場合であってかつ0.4 mm/hの結晶成長速度で結晶成長さ
せた場合に均一組成のIn0.3Ga0.7Asの結晶が得られる。
In0. 3Ga0.7Asの組成に対する固相線温度は1020℃である
ので、結晶成長界面(Z =0)において(9)式から、 が得られる。また成長界面から20mm程度前方までは、温
度勾配20℃/cmが変化せず保たれると仮定すると、1070
℃での拡散係数が約1×10-8m2/sと求められているので
(K. Kinoshita et al., J. Jpn. Soc. Microgravity A
ppl. vol. 17 (2000) pp. 57-63.)、(9)式にZ = 20 m
m、V = 0.4 mm/h、D = 1×10-8m2/sを代入して、
When a temperature gradient of 20 ° C./cm is applied at the crystal growth interface and the crystal is grown at a crystal growth rate of 0.4 mm / h, a crystal of In 0.3 Ga 0.7 As of uniform composition can be obtained.
Since the solidus temperature for the In 0. 3 Ga 0.7 As composition is at 1020 ° C., from the crystal growth interface (Z = 0) (9) wherein Is obtained. Assuming that the temperature gradient of 20 ° C / cm remains unchanged up to about 20 mm from the growth interface, 1070
Since the diffusion coefficient at ℃ is required to be about 1 × 10 -8 m 2 / s (K. Kinoshita et al., J. Jpn. Soc. Microgravity A
ppl. vol. 17 (2000) pp. 57-63.), Z = 20 m in equation (9)
Substituting m, V = 0.4 mm / h, D = 1 × 10 -8 m 2 / s,

【0031】(10)、(11)式より、C1 = 1220、C2 = 200
が求まる。これを再度(9)式に代入すると、設定すべき
温度分布が求まる。その分布を図示すると、図9に示す
ような曲線になる。
From equations (10) and (11), C 1 = 1220, C 2 = 200
Is required. By substituting this into Eq. (9) again, the temperature distribution to be set can be obtained. When the distribution is illustrated, it becomes a curve as shown in FIG.

【0032】結晶育成 結晶育成は次のようにして行った。それぞれ純度99.999
9%のIn, Ga, Asを使用して、In0.3Ga0.7Asの組成となる
ように秤量した後、石英管に真空封入した。該石英管を
電気炉内において約1200℃にまで加熱してIn0.3Ga0.7As
組成の融液を作製した後、該石英管を電気炉より取り出
し、水中に浸して急冷し、In0.3Ga0.7As組成の多結晶体
を合成した。その後、該多結晶体を別な石英管に真空封
入し直し、温度勾配炉中で高温部を約1200℃、低温部を
約800℃に加熱して形成した約40℃/cmの温度勾配を利用
して、約1mm/hの固化速度で一方向凝固させた。得られ
た結晶中のInAs濃度分布は、結晶成長の初期段階では約
0.06モルで、結晶の他端にいくに従いInAs濃度が増加し
ている分布であった。
Crystal Growth Crystal growth was performed as follows. Purity of 99.999 each
After using 9% of In, Ga, and As to make a composition of In 0.3 Ga 0.7 As, it was vacuum-sealed in a quartz tube. The quartz tube was heated to about 1200 ° C in an electric furnace and heated to In 0.3 Ga 0.7 As.
After the melt having the composition was prepared, the quartz tube was taken out of the electric furnace, immersed in water and rapidly cooled to synthesize a polycrystal of In 0.3 Ga 0.7 As composition. Then, the polycrystalline body was vacuum-sealed in another quartz tube again, and a temperature gradient of about 40 ° C./cm was formed by heating the high temperature portion to about 1200 ° C. and the low temperature portion to about 800 ° C. in a temperature gradient furnace. Utilized to unidirectionally solidify at a solidification rate of about 1 mm / h. The InAs concentration distribution in the obtained crystal is approximately
At 0.06 mol, the distribution was such that the InAs concentration increased toward the other end of the crystal.

【0033】次に、前述のようにして生成した上記の濃
度勾配を有する結晶原料を後工程の原料の一部として使
用し、別に用意したInAsと種結晶とともに結晶成長用容
器内に真空封入し直し結晶成長を行った。この場合、原
料17は、一方向凝固により作製した結晶原料の一部を
切り出したもので、原料17中のInAs濃度は一端側の端
面18から他方の端面19に向かって減少する。InAs濃
度が高い方の端面18が種結晶15または溶融帯のInAs
16に接するように配置される。
Next, the crystal raw material having the above-mentioned concentration gradient produced as described above was used as a part of the raw material in the subsequent step, and it was vacuum sealed in a crystal growth container together with separately prepared InAs and seed crystals. A repaired crystal was grown. In this case, the raw material 17 is obtained by cutting out a part of the crystal raw material produced by directional solidification, and the InAs concentration in the raw material 17 decreases from the end face 18 on one end side to the other end face 19. The end face 18 with the higher InAs concentration is the seed crystal 15 or the InAs in the melting zone.
It is arranged so as to contact with 16.

【0034】すなわち、上記で生成した結晶原料のInAs
濃度の大きい側すなわち結晶成長の終端側を一端側すな
わち種結晶と接する側に位置させて、原料容器11に配
置したものである。図10に結晶容器内に配置された種
結晶および原料の軸方向のInAs濃度分布を示す。
That is, InAs of the crystal raw material generated above
The side where the concentration is high, that is, the terminal side of crystal growth is located at one end side, that is, the side that contacts the seed crystal, and is arranged in the raw material container 11. FIG. 10 shows the InAs concentration distribution in the axial direction of the seed crystal and the raw material placed in the crystal container.

【0035】図9の曲線で示す温度分布が溶融帯の領域
に生じるように電気炉(加熱装置)内部の温度分布を調
整して加熱し、溶融帯を形成した後、平衡状態に達する
までの所定時間保持すると、前述したようにInAsとGaAs
の相互拡散によりInAsは溶融帯後端の固体原料側のInAs
低濃度部へ輸送されていくので、種結晶15との界面の
InAs濃度がだんだん低濃度となり図11に示すように種
結晶15の方位を受け継いだIn0.3Ga0.7As組成の単結晶
20が成長してくる。図11は、結晶成長途中段階での
結晶成長用容器11の断面図を示す。InAsの固体原料2
3の側への輸送が進むにつれ溶融帯22は残りの原料2
3の方向すなわち図11では上方へ移動するので、それ
と等しい速度で容器を下方(21の方向)へ移動させて
結晶成長界面とヒータの相対位置を常に一定の位置に保
つようにする。この移動による界面位置のキープによっ
て結晶成長界面での温度すなわちInAs濃度が一定に保た
れることになり、均一組成のIn0.3Ga0.7As単結晶が成長
してくる。In、Ga、As系において、In0.3Ga0.7As単結晶
を生成する場合においては、最適移動速度は前述したよ
うに温度勾配20℃/cmに対し0.4〜0.5 mm/hであった。
The temperature distribution inside the electric furnace (heating device) is adjusted and heated so that the temperature distribution shown by the curve in FIG. 9 is produced in the region of the melting zone, and after forming the melting zone, the equilibrium state is reached. After holding for a certain period of time, AsAs and GaAs
Due to the mutual diffusion of InAs, InAs on the solid material side at the rear end of the melting zone
Since it is transported to the low concentration part,
The InAs concentration gradually decreases, and as shown in FIG. 11, the single crystal 20 of In 0.3 Ga 0.7 As composition, which inherits the orientation of the seed crystal 15, grows. FIG. 11 shows a cross-sectional view of the crystal growth container 11 in the middle stage of crystal growth. InAs solid raw material 2
As the transportation to the 3 side progresses, the melting zone 22 becomes the remaining raw material 2
Since it moves in the direction 3 (upward in FIG. 11), the container is moved downward (direction 21) at the same speed to keep the relative position of the crystal growth interface and the heater at a constant position. By keeping the interface position by this movement, the temperature at the crystal growth interface, that is, the InAs concentration is kept constant, and an In 0.3 Ga 0.7 As single crystal with a uniform composition grows. In the case of producing In 0.3 Ga 0.7 As single crystals in the In, Ga, As systems, the optimum moving speed was 0.4 to 0.5 mm / h with respect to the temperature gradient of 20 ° C./cm as described above.

【0036】上述の方法により得られた結晶は全領域に
わたって単結晶であり、その軸方向InAs濃度分布は図1
2に示す通りであった。この図から、InAsモル分率は結
晶成長初期から目標の0.3に近い組成であり、しかもそ
の一定組成が成長結晶のほぼ全域にわたって維持されて
いることがわかる。
The crystal obtained by the above method is a single crystal over the entire region, and its axial InAs concentration distribution is shown in FIG.
It was as shown in 2. From this figure, it can be seen that the InAs mole fraction is close to the target composition of 0.3 from the early stage of crystal growth, and the constant composition is maintained over almost the entire area of the grown crystal.

【0037】結晶成長界面での温度勾配を40℃/cmに設
定した場合の溶融帯を含む原料の結晶育成中の最適な温
度分布を図示すると、図13に示す曲線のようになる。
この場合、漸近温度は1236℃となり、GaAsの融点温度12
38℃にほぼ等しくなる。これよりも高い漸近温度を設定
すると、原料に濃度勾配を付与していたとしても、一番
融点の高いGaAs部まで溶けてしまい溶融帯を形成するこ
とは不可能である。したがって、In0.3Ga0.7Asの結晶を
育成する場合、温度勾配は約40℃/cmが限度である。
The optimum temperature distribution during the crystal growth of the raw material including the melting zone when the temperature gradient at the crystal growth interface is set to 40 ° C./cm is shown in the curve of FIG.
In this case, the asymptotic temperature is 1236 ° C, which is the melting point temperature of GaAs 12
It is almost equal to 38 ℃. If the asymptotic temperature higher than this is set, even if a concentration gradient is given to the raw material, even the GaAs portion having the highest melting point is melted and it is impossible to form a melting zone. Therefore, when growing a crystal of In 0.3 Ga 0.7 As, the temperature gradient is limited to about 40 ° C./cm.

【0038】上記の実施例の説明では、IIIV族化合物半
導体のInAsとGaAsの固溶体(混晶)を例に取って説明し
たが、本発明の方法は、上記物質に限らずSiとGeのよう
な元素同士の固溶体単結晶や、IIVI族化合物半導体のCd
Te-HgTeの固溶体単結晶、あるいはIVVI族化合物半導体
のPbTe-SnTe固溶体単結晶の製造に適用できることは当
業者に自明である。
In the description of the above-mentioned embodiments, the solid solution (mixed crystal) of InAs and GaAs of the IIIV group compound semiconductor is taken as an example, but the method of the present invention is not limited to the above substances, but Si and Ge may be used. Solid solution single crystals of various elements or Cd of IIVI group compound semiconductors
It is obvious to those skilled in the art that the present invention can be applied to the production of a solid solution single crystal of Te-HgTe or a PbTe-SnTe solid solution single crystal of a group IVVI compound semiconductor.

【0039】[0039]

【発明の効果】以上説明したように、本発明の方法によ
れば、拡散による溶融帯の高温側への移動速度と実質的
に同じ速度で試料を低温側へ移動させ、成長界面での温
度を常に一定に保つようにしたので組成均一性のある結
晶長さを大幅に増大させることができる。また、本発明
の方法によれば、溶融帯内における溶質濃度がいずれの
点においても平衡状態図の飽和濃度と一致するように制
御するので、過飽和となる箇所が溶融帯内では実質的に
生じない状態で、結晶成長が進行する。したがって、溶
融帯内では過飽和に伴って発生する核生成を有効に防止
することができ、単結晶が再現性良く製造できる効果を
有する。したがって本発明は、従来の問題を有効に解決
し、均一組成の単結晶長さを有効に増大させることで
き、かつこのような長い単結晶の均一組成の固溶体(混
晶)を再現性良く製造できるものである。
As described above, according to the method of the present invention, the sample is moved to the low temperature side at a speed substantially the same as the moving speed of the melting zone to the high temperature side due to diffusion, and the temperature at the growth interface is increased. The crystal length having a uniform composition can be greatly increased because the value is always kept constant. Further, according to the method of the present invention, the solute concentration in the melting zone is controlled so as to match the saturation concentration in the equilibrium diagram at any point, so that a supersaturated portion is substantially generated in the melting zone. Crystal growth proceeds in the absence of the crystal. Therefore, in the melting zone, it is possible to effectively prevent nucleation that occurs due to supersaturation, and to produce a single crystal with good reproducibility. Therefore, the present invention can effectively solve the conventional problems, can effectively increase the length of a single crystal having a uniform composition, and can reproducibly produce such a solid solution (mixed crystal) having a uniform composition of a long single crystal. It is possible.

【0040】本発明の方法は、特定の材料に限定される
ものではなく、広く一般の固溶体の単結晶製造に応用で
きるが、特にInAs-GaAsやPbTe-SnTeなどの化合物半導体
の固溶体は、レーザダイオードの作製用基板として高品
質化や組成均一化が要求されるので、本発明の有望な応
用分野である。
The method of the present invention is not limited to a specific material and can be widely applied to the production of single crystals of general solid solutions. In particular, solid solutions of compound semiconductors such as InAs-GaAs and PbTe-SnTe are laser-processed. This is a promising application field of the present invention because high quality and uniform composition are required as a substrate for producing a diode.

【図面の簡単な説明】[Brief description of drawings]

【図1】InAs-GaAs擬似二元系状態図、Fig. 1 InAs-GaAs pseudo binary system phase diagram,

【図2】結晶成長初期の加熱段階における組成分布等を
表す概念図、
FIG. 2 is a conceptual diagram showing the composition distribution and the like in the heating stage in the initial stage of crystal growth

【図3】溶融帯のInAs濃度が飽和濃度になり、該溶融帯
が移動して結晶成長が進行する状態を表した概念図、
FIG. 3 is a conceptual diagram showing a state in which the InAs concentration in the melting zone becomes a saturation concentration, the melting zone moves, and crystal growth proceeds.

【図4】温度勾配帯溶融法で作製されたIn1-xGaxAs混晶
の成長軸方向InAs濃度分布を示すグラフ、
FIG. 4 is a graph showing the InAs concentration distribution in the growth axis direction of an In 1-x Ga x As mixed crystal produced by the temperature gradient zone melting method,

【図5】本発明の方法で作製されたIn1-xGaxAs混晶の成
長軸方向InAs濃度分布、
FIG. 5: InAs concentration distribution in the growth axis direction of the In 1-x Ga x As mixed crystal produced by the method of the present invention,

【図6】溶融帯中のInAs濃度の飽和濃度からのずれの度
合いを表すグラフ、
FIG. 6 is a graph showing the degree of deviation of the InAs concentration in the melting zone from the saturation concentration,

【図7】本発明の1実施例に従う、結晶製造装置の概略
構成図、
FIG. 7 is a schematic configuration diagram of a crystal manufacturing apparatus according to one embodiment of the present invention,

【図8】本発明の固溶体単結晶の製造方法の第1の実施
の形態において用いた結晶成長用容器の断面図、
FIG. 8 is a cross-sectional view of the crystal growth container used in the first embodiment of the method for producing a solid solution single crystal of the present invention,

【図9】本発明の第1の実施形態の単結晶製造方法にお
ける、結晶成長中の試料への印加温度の分布を示すグラ
フ、
FIG. 9 is a graph showing the distribution of the applied temperature to the sample during crystal growth in the method for producing a single crystal according to the first embodiment of the present invention,

【図10】結晶成長用試料の成長前の軸方向InAs濃度分
布を示すグラフ、
FIG. 10 is a graph showing an axial InAs concentration distribution before the growth of a crystal growth sample,

【図11】本発明の固溶体単結晶の製造方法における結
晶成長途中段階での結晶成長用容器の断面図、
FIG. 11 is a cross-sectional view of a container for crystal growth at an intermediate stage of crystal growth in the method for producing a solid solution single crystal of the present invention,

【図12】本発明の第1の実施の形態によって育成され
た単結晶の成長軸方向に沿うInAs濃度分布を示すグラ
フ、
FIG. 12 is a graph showing the InAs concentration distribution along the growth axis direction of the single crystal grown according to the first embodiment of the present invention,

【図13】本発明の第2の実施形態の単結晶製造方法に
おける、結晶成長中の試料への印加温度の分布を示すグ
ラフである。
FIG. 13 is a graph showing a distribution of applied temperature to a sample during crystal growth in the single crystal manufacturing method according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 未溶融固溶体InAs濃度線 2 温度勾配線 3 液相線 4 固相線 5 溶融帯 6 結晶製造装置 7 加熱装置 8 支持棒 9 駆動機構 10 制御機構 11 結晶成長用容器、 12 ルツボ、 13 ヒートシンク 14 石英容器 15 種結晶 16 InAs 17 原料 18 原料のInAs濃度が高い端面 19 原料のInAs濃度が低い端面 20 成長単結晶 21 容器移動方向 22 溶融帯 23 残りの固体原料 1 Unmelted solid solution InAs concentration curve 2 temperature gradient line 3 liquidus 4 Solidus 5 melting zone 6 Crystal production equipment 7 heating device 8 support rods 9 Drive mechanism 10 Control mechanism 11 crystal growth container, 12 crucibles, 13 heat sink 14 Quartz container 15 seed crystals 16 InAs 17 Raw material 18 End face with high InAs concentration of raw material 19 End face with low InAs concentration of raw material 20 grown single crystal 21 Container movement direction 22 Melting zone 23 Remaining solid ingredients

───────────────────────────────────────────────────── フロントページの続き (72)発明者 依田 真一 茨城県つくば市千現2丁目1番1号 宇宙 開発事業団 宇宙環境利用システム本部 宇宙環境利用研究システム内 (72)発明者 花上 康宏 茨城県つくば市千現2丁目1番1号 宇宙 開発事業団 宇宙環境利用システム本部 宇宙環境利用研究センター内 (72)発明者 中村 裕彦 茨城県つくば市千現2丁目1番1号 宇宙 開発事業団 宇宙環境利用システム本部 宇宙環境利用研究センター内 (72)発明者 緒方 康行 茨城県つくば市千現2丁目1番1号 宇宙 開発事業団 宇宙環境利用システム本部 宇宙環境利用研究センター内 Fターム(参考) 4G077 AA02 BE47 CE03 EA02 EH10 HA12 NA05 NF11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Yoda             2-1-1 Sengen Space, Tsukuba City, Ibaraki Prefecture             Development Agency Space Environment Utilization System Division             Space environment utilization research system (72) Inventor Yasuhiro Hanagami             2-1-1 Sengen Space, Tsukuba City, Ibaraki Prefecture             Development Agency Space Environment Utilization System Division             Space Environment Utilization Research Center (72) Inventor Hirohiko Nakamura             2-1-1 Sengen Space, Tsukuba City, Ibaraki Prefecture             Development Agency Space Environment Utilization System Division             Space Environment Utilization Research Center (72) Inventor Yasuyuki Ogata             2-1-1 Sengen Space, Tsukuba City, Ibaraki Prefecture             Development Agency Space Environment Utilization System Division             Space Environment Utilization Research Center F-term (reference) 4G077 AA02 BE47 CE03 EA02 EH10                       HA12 NA05 NF11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 偏析を生じる複数の成分からなる固溶体
単結晶の製造方法において、 固溶体原料を用意し、 加熱炉に前記固溶体原料を投入し、 前記加熱炉内を前記原料の一端から他端に向かう方向に
そって所定の温度勾配になるように調整し、 融点の低い前記一端側の領域を溶融して前記温度勾配の
方向に所定の幅の溶融帯を形成し、 前記固溶体原料を加熱炉内において温度勾配と物性値か
ら特定される所定の速度で一端側に移動させながら結晶
を成長させる段階を備えており、前記固溶体原料は、前
記溶融帯の前記他端側近傍領域において前記複数の成分
の状態図において固相線よりも下方に存在するような成
分比率を有していることを特徴とする固溶体単結晶の製
造方法。
1. A method for producing a solid solution single crystal composed of a plurality of components which causes segregation, wherein a solid solution raw material is prepared, the solid solution raw material is charged into a heating furnace, and the inside of the heating furnace is changed from one end to the other end of the raw material. The temperature is adjusted so as to have a predetermined temperature gradient along the direction, the region on the one end side having a low melting point is melted to form a melting zone having a predetermined width in the direction of the temperature gradient, and the solid solution raw material is heated in a furnace. It comprises a step of growing a crystal while moving to one end side at a predetermined speed specified from a temperature gradient and a physical property value in the solid solution raw material, in the vicinity of the other end side of the melting zone. A method for producing a solid solution single crystal, which has a component ratio such that it exists below the solidus in the phase diagram of the components.
【請求項2】 偏析を生じる複数の成分からなる固溶体
単結晶の製造方法において、 結晶成長の出発点となる一端から他端に向かって融点が
高くなるように成分比率が変化するように調整された固
溶体原料を用意し、 加熱炉に前記固溶体原料を投入し、 前記加熱炉内を前記原料の一端から他端に向かう方向に
そって所定の温度勾配になるように調整し、 融点の低い前記一端側の領域を溶融して前記温度勾配の
方向に所定の幅の溶融帯を形成し、 前記固溶体原料を加熱炉内において温度勾配と物性値か
ら特定される所定の速度で一端側に移動させながら結晶
を成長させる段階を備えたことを特徴とする固溶体単結
晶の製造方法。
2. A method for producing a solid solution single crystal composed of a plurality of components causing segregation, wherein the component ratio is adjusted so that the melting point increases from one end, which is the starting point of crystal growth, to the other end. Prepared solid solution raw material, charging the solid solution raw material into a heating furnace, adjusting the inside of the heating furnace so as to have a predetermined temperature gradient along a direction from one end of the raw material to the other end, A region on one end side is melted to form a molten zone having a predetermined width in the direction of the temperature gradient, and the solid solution raw material is moved to the one end side in the heating furnace at a predetermined speed specified from the temperature gradient and the physical property value. A method for producing a solid solution single crystal, which comprises the step of growing a crystal.
【請求項3】 前記固溶体原料の移動速度(R)は、以
下の式、 (ここで、Vは結晶成長界面の移動速度、CSは溶質の結
晶中の濃度、CLはCSと平衡関係にある液相組成の溶質濃
度、Dは液相中での溶質と溶媒間の相互拡散係数、Gは結
晶成長界面における温度勾配、mは液相線の勾配であ
る。)で表される速度に制御されることを特徴とする請
求項1または2に記載の固溶体単結晶の製造方法。
3. The moving speed (R) of the solid solution raw material is expressed by the following equation: (Where V is the moving speed of the crystal growth interface, C S is the concentration of solute in the crystal, C L is the solute concentration of the liquid phase composition in equilibrium with C S, and D is the solute and solvent in the liquid phase. Inter-diffusion coefficient between them, G is a temperature gradient at the crystal growth interface, and m is a gradient of a liquidus line.) The solid solution single substance according to claim 1 or 2, characterized in that: Crystal manufacturing method.
【請求項4】 前記原料の組成は、最初に溶融帯を形成
する原料領域においては目標とする結晶組成と平衡する
液相の組成よりも液相線上の融点温度が低い成分を含ん
でおり、溶融帯の前記他端側の境界部における未溶融固
相部分では前記目標結晶組成よりも固相線上の融点温度
が高くなっていることを特徴とする請求項1ないし3の
いずれかの請求項に記載の固溶体単結晶の製造方法。
4. The composition of the raw material contains a component whose melting point temperature on the liquidus line is lower than the composition of the liquid phase in equilibrium with the target crystal composition in the raw material region which initially forms the melting zone, 4. The melting point temperature on the solidus line is higher than the target crystal composition in the unmelted solid phase portion at the boundary portion on the other end side of the melting zone. The method for producing a solid solution single crystal according to 1.
【請求項5】 前記溶融帯の幅dが次の式 (ここで、mは平衡状態図から求められる液相線の勾
配、CSは溶質の結晶中の濃度、CLはCSと平衡関係にある
液相組成の溶質濃度、Gは結晶成長界面での温度勾配で
ある。)で表される値以下であることを特徴とする請求
項1ないし4のいずれかに記載の固溶体単結晶の製造方
法。
5. The width d of the melting zone is expressed by the following formula: (Where m is the gradient of the liquidus line obtained from the equilibrium diagram, C S is the concentration of solute in the crystal, C L is the solute concentration of the liquid phase composition in equilibrium with C S, and G is the crystal growth interface. The temperature is less than or equal to the value represented by the temperature gradient in 1.), The method for producing a solid solution single crystal according to any one of claims 1 to 4, wherein.
【請求項6】 固溶体単結晶の組成がInxGa1-xAs(0≦
X<1)であらわされるものであり前記溶融帯の幅dが2
5 mm以下であることを特徴とする請求項1ないし5のい
ずれかの請求項に記載の固溶体単結晶の製造方法。
6. The composition of the solid solution single crystal is In x Ga 1-x As (0 ≦
X <1) and the width d of the melting zone is 2
It is 5 mm or less, The manufacturing method of the solid solution single crystal as described in any one of Claim 1 thru | or 5 characterized by the above-mentioned.
【請求項7】 前記溶融帯内における温度分布を、拡散
律速定常状態結晶成長下での溶質濃度分布から求められ
る以下の式 (ここで、結晶化界面をA、固体原料との界面をB、界面
Aから界面Bへ向かっての軸方向距離をZで表す。また、C
LAは界面Aにおける溶融帯中の溶質濃度、CSAは界面Aに
おける結晶中の溶質濃度、Vは結晶成長界面の移動速
度、Dは液相中での溶質と溶媒間の相互拡散係数を表
す。)で示される濃度分布が飽和濃度(リキダス)と一
致するとして平衡状態図から逆算して求められる温度分
布となるように調整したことを特徴とする、請求項1乃
至6のいずれかに記載の固溶体単結晶の製造方法。
7. The temperature distribution in the melting zone is calculated from the solute concentration distribution under the diffusion-controlled steady-state crystal growth. (Here, the crystallization interface is A, the interface with the solid raw material is B, and the interface is
The axial distance from A to interface B is represented by Z. Also, C
LA is the solute concentration in the melt zone at interface A, C SA is the solute concentration in the crystal at interface A, V is the migration velocity at the crystal growth interface, and D is the interdiffusion coefficient between the solute and solvent in the liquid phase. . 7. The temperature distribution obtained by performing back calculation from the equilibrium diagram on the assumption that the concentration distribution indicated by () matches the saturation concentration (Liquidus), is adjusted. Method for producing solid solution single crystal.
【請求項8】 固溶体単結晶の組成がInxGa1-xAs(0≦
X<1)であらわされるものである場合には、前記溶融
帯の温度分布を有する溶融帯の温度勾配が前記一端から
他端に向かう方向において、40℃/cm以下であることを
特徴とする、請求項1乃至7のいずれか一項に記載の固
溶体単結晶の製造方法。
8. The composition of the solid solution single crystal is In x Ga 1-x As (0 ≦
When represented by X <1), the temperature gradient of the melting zone having the temperature distribution of the melting zone is 40 ° C./cm or less in the direction from the one end to the other end. The method for producing a solid solution single crystal according to any one of claims 1 to 7.
JP2002350886A 2001-12-05 2002-12-03 Method for producing solid solution single crystal Expired - Lifetime JP4239065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350886A JP4239065B2 (en) 2001-12-05 2002-12-03 Method for producing solid solution single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001370927 2001-12-05
JP2001-370927 2001-12-05
JP2002350886A JP4239065B2 (en) 2001-12-05 2002-12-03 Method for producing solid solution single crystal

Publications (2)

Publication Number Publication Date
JP2003238287A true JP2003238287A (en) 2003-08-27
JP4239065B2 JP4239065B2 (en) 2009-03-18

Family

ID=27790485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350886A Expired - Lifetime JP4239065B2 (en) 2001-12-05 2002-12-03 Method for producing solid solution single crystal

Country Status (1)

Country Link
JP (1) JP4239065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084254A (en) * 2012-10-24 2014-05-12 Japan Aerospace Exploration Agency Solid-solution single crystal producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084254A (en) * 2012-10-24 2014-05-12 Japan Aerospace Exploration Agency Solid-solution single crystal producing method

Also Published As

Publication number Publication date
JP4239065B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
WO2007064247A2 (en) METHOD FOR GROWING CD1-x ZnxTe (CZT) MONOCRYSTALS
JP2003238287A (en) Method of manufacturing solid solution single crystal
EP0266227B1 (en) Method for growing compound semiconductor crystals
EP0476389A2 (en) Method of growing single crystal of compound semiconductors
JP3253005B2 (en) Method for producing solid solution single crystal
JP4576571B2 (en) Method for producing solid solution
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2001072488A (en) Method for producing solid solution single crystal
WO2024027072A1 (en) Method for preparing compound crystal via melt migration under supergravity
JP2531875B2 (en) Method for producing compound semiconductor single crystal
RU2199614C1 (en) Method of growing crystals
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JPH0329039B2 (en)
Chani Micro-Pulling-Down (μ-PD) and Related Growth Methods
JP6400946B2 (en) Method for producing Si-Ge solid solution single crystal
JPH06345581A (en) Production of multielement compound mixed single crystal
JP2001322890A (en) Method for producing solid solution single crystal
JP2005075688A (en) Growing method for garnet-type single crystal
JPH06219885A (en) Method for growing compound semiconductor crystal
JPH0139997B2 (en)
JPH0769773A (en) Production of single crystal
JP2007099581A (en) Crystal production method
JPS6042293A (en) Manufacture of single crystal
JP2005089204A (en) Apparatus and method for producing crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4239065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term