JPH0769097B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0769097B2
JPH0769097B2 JP2107911A JP10791190A JPH0769097B2 JP H0769097 B2 JPH0769097 B2 JP H0769097B2 JP 2107911 A JP2107911 A JP 2107911A JP 10791190 A JP10791190 A JP 10791190A JP H0769097 B2 JPH0769097 B2 JP H0769097B2
Authority
JP
Japan
Prior art keywords
branch
indoor
indoor unit
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2107911A
Other languages
Japanese (ja)
Other versions
JPH046368A (en
Inventor
秀一 谷
節 中村
智彦 河西
茂生 ▲高▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107911A priority Critical patent/JPH0769097B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046368A publication Critical patent/JPH046368A/en
Publication of JPH0769097B2 publication Critical patent/JPH0769097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、熱源機1台に対して複数台の室内機を接続
する多室型ヒートポンプ空気調和装置に関するもので、
特に各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房が同時に行うことがで
きる空気調和装置に関するものである。
TECHNICAL FIELD The present invention relates to a multi-chamber heat pump air conditioner in which a plurality of indoor units are connected to one heat source device,
In particular, the present invention relates to an air conditioner capable of selectively performing heating and cooling for each indoor unit, simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

[従来の技術] 従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり各室内機はすべて暖
房、またはすべて冷房を行うように形成されている。
[Prior Art] Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source device by two pipes of a gas pipe and a liquid pipe to perform a cooling and heating operation is common, and each indoor unit is The machines are all configured to heat or cool.

[発明が解決しようとする課題] 従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、すべての室内機を冷房または暖
房にしか運転しないため、冷房が必要な場所で暖房が行
われたり、逆に暖房が必要な場所で冷房が行われるよう
な問題があった。
[Problems to be Solved by the Invention] Since the conventional multi-chamber heat pump type air conditioner is configured as described above, all indoor units are operated only for cooling or heating, and therefore, in a place where cooling is required. There is a problem that heating is performed, and conversely, cooling is performed in a place where heating is required.

特に、大規模なビルに据え付けた場合、インテリア部と
ペリメーター部、または一般事務室と、コンピューター
ルーム等のOA化された部屋では空調の負荷が著しく異な
るため、特に問題となっている。
In particular, when installed in a large-scale building, the air-conditioning load is significantly different between the interior section and the perimeter section, or the general office room and a computer room or other OA room, which is a particular problem.

この発明は、上記のような問題点を解消するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房が同時に行うことがで
きるようにして、大規模なビルに据え付けた場合、イン
テリア部とペリメーター部、または一般事務室と、コン
ピュータールーム等のOA化された部屋で空調の負荷が著
しく異なっても、それぞれに対応できる多室型ヒートポ
ンプ式空気調和装置を得ることを目的とする。
The present invention has been made to solve the above problems, and a plurality of indoor units are connected to one heat source unit, and heating and cooling are selectively performed for each indoor unit, and one of the indoor units is provided. When installed in a large building so that the indoor unit can perform cooling and the other indoor unit can perform heating at the same time, the interior section and perimeter section, or the general office room and computer room will be converted to OA. It is an object of the present invention to provide a multi-room heat pump type air conditioner capable of coping with different air conditioning loads in different rooms.

[課題を解決するための手段] この発明の請求項1に係わる空気調和装置は、圧縮機、
切換弁、熱源機側熱交換器等よりなる1台の熱源機と、
それぞれ室内側熱交換器を有する複数台の室内機とを、
第1、第2の接続配管を介して接続したものにおいて、
上記複数台の室内機の上記室内側熱交換器の一方を上記
第1の接続配管または、第2の接続配管に切り換え可能
に接続する第1の分岐部と、上記複数台の室内機の上記
室内側熱交換器の他方に接続されかつ上記第2の接続配
管に接続してなる第2の分岐部と、上記第2の接続配管
から分岐して上記第1の分岐部に到る配管を分岐する配
管分岐部と、上記配管分岐部と上記室内側熱交換器の他
方とを接続する管路途中に設けられて、冷媒の流量を制
御する流量制御装置と、上記第1の分岐部に設けられ、
上記室内側熱交換器の一方に接続する複数の第1の分岐
口とを備え、上記第1の分岐口の数と上記室内機の台数
が異なるように配置したことを特徴とするものである。
[Means for Solving the Problems] An air conditioner according to claim 1 of the present invention is a compressor,
One heat source device including a switching valve and a heat source device side heat exchanger,
A plurality of indoor units each having an indoor heat exchanger,
In those connected via the first and second connection pipes,
A first branch portion that connects one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe in a switchable manner, and the plurality of indoor units described above. A second branch portion connected to the other of the indoor heat exchangers and connected to the second connection pipe, and a pipe branching from the second connection pipe to reach the first branch portion. A branching pipe branch, a flow rate control device provided in the middle of the pipeline connecting the branching pipe and the other of the indoor heat exchangers to control the flow rate of the refrigerant, and the first branching part. Is provided,
A plurality of first branch ports connected to one of the indoor heat exchangers are provided, and the number of the first branch ports and the number of the indoor units are different from each other. .

この発明の請求項2に係わる空気調和装置は、請求項1
記載において、一端が第2の分岐部に接続され、他端が
第3の流量制御装置を介して低圧となる接続配管に接続
されたバイパス配管と、上記第3の流量制御装置下流側
バイパス配管と各室内機と上記第2の分岐部とを接続す
る接続配管との間で熱交換を行なう熱交換部と、この熱
交換部に対応して設けられ、室内側熱交換器の他方に接
続する複数の第2の分岐口とを備え、この第2の分岐口
の数と上記室内機の台数が異なるように配置したことを
特徴とするものである。
An air conditioner according to claim 2 of the present invention comprises
In the description, a bypass pipe, one end of which is connected to the second branch portion, and the other end of which is connected to a connection pipe having a low pressure through a third flow control device, and the third flow control device downstream-side bypass pipe And a heat exchange section for exchanging heat between each indoor unit and the connection pipe connecting the second branch section, and a heat exchange section provided corresponding to this heat exchange section and connected to the other of the indoor heat exchangers. A plurality of second branch openings, and the number of the second branch openings is different from the number of the indoor units.

この発明の請求項3に係わる空気調和装置は、請求項2
記載において、熱交換部は、複数の接続配管にそれぞれ
設け、各熱交換部の熱交換量を略々同一としたことを特
徴とするものである。
The air conditioner according to claim 3 of the present invention is the same as that of claim 2.
In the description, the heat exchange part is provided in each of the plurality of connection pipes, and the heat exchange amount of each heat exchange part is substantially the same.

この発明に請求項4に係わる空気調和装置は、請求項1
記載において、室内機の容量に応じて、第1の分岐口を
単独または複数統合して上記室内機に接続し、かつ第2
の分岐口を単独または複数統合して上記室内機に接続す
ることを特徴とするものである。
According to a fourth aspect of the present invention, there is provided the air conditioner according to the first aspect.
In the description, according to the capacity of the indoor unit, the first branch port is singly or plurally integrated and connected to the indoor unit, and the second
Is connected to the indoor unit either individually or in combination.

[作用] この発明の請求項1に係わる空気調和装置は、室内側熱
交換器の一方に接続され、第1の分岐部に設けられた複
数の第1の分岐口の数と室内機の台数が異なるようにし
ているため、空気調和装置の運転時に、室内機の容量に
応じて第1の分岐部の接続数を変えることができ、室内
機の容量が異なる場合でも、容量の大きな室内機から第
1の分岐部へ流入する冷媒が第1の分岐部を通る際の圧
力損失を低く抑えることができる。
[Operation] The air conditioner according to claim 1 of the present invention is connected to one of the indoor heat exchangers, and the number of a plurality of first branch ports provided in the first branch portion and the number of indoor units. The number of connections of the first branch portion can be changed according to the capacity of the indoor unit when the air conditioner is operating, and the indoor unit having a large capacity can be used even when the capacity of the indoor unit is different. The pressure loss when the refrigerant flowing from the first branch portion to the first branch portion can be suppressed to a low level.

また、この発明の請求項2に係わる空気調和装置は、空
気調和装置の運転時に、室内機の容量に応じて熱交換部
に対応して設けられる第2の分岐部の第2の分岐口の室
内機との接続数を変えることができ、室内機の容量が異
なる場合でも容量の大きな室内機を通る冷媒が第2の分
岐部を通る際の圧力損失を低く抑えることができ、ま
た、上記熱交換部により冷房しようとしている容量の大
きな室内機の冷媒の過冷却度を十分つけることができ
る。
Further, according to claim 2 of the present invention, when the air conditioner is in operation, the second branch port of the second branch part provided corresponding to the heat exchange part according to the capacity of the indoor unit is provided. The number of connections with the indoor unit can be changed, and even when the capacity of the indoor unit is different, the pressure loss when the refrigerant passing through the indoor unit having a large capacity passes through the second branch portion can be suppressed to a low level. The heat exchange section can provide a sufficient degree of supercooling of the refrigerant in the indoor unit having a large capacity to be cooled.

また、この発明の請求項3に係わる空気調和装置は、室
内機と第2の分岐部とを接続する複数の接続配管に、そ
れぞれ設けた熱交換部の熱交換容量を略略同一とし、室
内機の容量に応じて第3の熱交換部の接続数を変えるこ
とにより、空気調和装置の運転時に、室内機の容量が異
なる場合でも容量の大きな室内機を通る冷媒が第3の熱
交換部を通る際の圧力損失を低く抑えることができる。
Further, in the air conditioner according to claim 3 of the present invention, the heat exchange capacities of the heat exchange parts respectively provided in the plurality of connection pipes connecting the indoor unit and the second branch part are substantially the same, and By changing the number of connections of the third heat exchanging unit according to the capacity of the air conditioner, the refrigerant passing through the indoor unit having a large capacity does not pass through the third heat exchanging unit even when the capacity of the indoor unit is different during the operation of the air conditioner. The pressure loss when passing through can be kept low.

また、この発明の請求項4に係わる空気調和装置は、空
気調和装置の運転時に、室内機の容量に応じて第1の分
岐部の第1の分岐口及び第2の分岐部の第2の分岐口の
室内機への接続数を変えることができ、室内機の容量が
異なる場合でも容量の大きさな室内機を通る冷媒が第1
の分岐部及び第2の分岐部を通る際の冷媒の圧力損失を
低く抑えることができる。
Further, in the air conditioner according to claim 4 of the present invention, when the air conditioner is operating, the first branch port of the first branch part and the second branch part of the second branch part are operated according to the capacity of the indoor unit. The number of connections to the indoor unit at the branch port can be changed, and even if the capacity of the indoor unit is different, the refrigerant that passes through the indoor unit with a large capacity is the first
The pressure loss of the refrigerant when passing through the branch portion and the second branch portion can be suppressed low.

[実施例] 以下、この発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図、第3
図、第4図は第1図の一実施例における冷暖房運転時の
動作状態を示したもので、第2図は冷房または暖房のみ
の運転動作状態図、第3図及び第4図は冷暖房同時運転
の動作を示すもので、第3図は暖房主体(暖房運転しよ
うとしている室内機の合計容量が冷房運転しようとして
いる室内機の合計容量より大きい場合)を、第4図は冷
房主体(冷房運転しようとしている室内機の合計容量が
暖房運転しようとしている室内機の合計容量より大きい
場合)を示す運転動作状態図である。そして、第5図は
この発明の他の実施例の空気調和装置の冷媒系を中心と
する全体構成図である。
FIG. 1 is an overall configuration diagram centering on the refrigerant system of the air conditioner of the first embodiment of the present invention. Also, FIG. 2 and FIG.
Fig. 4 and Fig. 4 show the operation state during the heating and cooling operation in the embodiment of Fig. 1, Fig. 2 is an operation state diagram of only cooling or heating, and Figs. 3 and 4 are simultaneous cooling and heating. Fig. 3 shows the operation of the operation, and Fig. 3 shows the heating main body (when the total capacity of the indoor units trying to perform the heating operation is larger than the total capacity of the indoor units trying to perform the cooling operation), and Fig. 4 shows the cooling main (cooling operation). It is a driving | operation operation | movement state diagram which shows the case where the total capacity of the indoor unit which is going to drive is larger than the total capacity of the indoor unit which is going to carry out heating operation. FIG. 5 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention.

なお、この実施例では熱源機1台に容量の異なる室内機
2台を接続した場合について説明するが、2台以上の室
内機を接続した場合、及び同じ容量の室内機を接続した
場合でも同様である。
In addition, in this embodiment, a case where two indoor units having different capacities are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected and an indoor unit having the same capacity is connected. Is.

第1図において、(A)は熱源機、(B)、(C)は後
述するように互いに並列接続された室内機でそれぞれ同
じ構成となっているが、室内機の容量としては、室内機
(C)の方が室内機(B)より大きい。(E)は後述す
るように、第1の分岐部、第2の流量調整装置、第2の
分岐部、気液分離装置、第1及び第2の熱交換部を内蔵
した中継機である。(1)は圧縮機、(2)は熱源機の
冷媒流通方向を切り換える切換弁である四方切換弁、
(3)は熱源機側熱交換器、(4)はアキュムレータ
で、上記機器(1)〜(3)と接続された熱源機(A)
を構成する。(5)はそれぞれ室内機(B),(C)の
室内側熱交換器、(6)は四方切換弁(2)と中継機
(E)を接続する太い第1の接続配管、(6b),(6c)
はそれぞれ室内機(B),(C)の室内側熱交換器
(5)と中継機(E)を接続し、第1の接続配管(6)
に対応する室内機側の第1の接続配管、(7)は熱源機
側熱交換器(3)と中継機(E)を接続する上記第1の
接続配管(6)より細い第2の接続配管、(7b),(7
c)はそれぞれ室内機(B),(C)の室内側熱交換器
(5)と中継機(E)を接続し、第2の接続配管(7)
に対応する室内機側の第2の接続配管、(8)は室内機
側の第1の接続配管(6b),(6c)と、第1の接続配管
(6)または、第2の接続配管(7)側に切り換え可能
に接続する三方切換弁、(10b),(10c),(10d)は
それぞれ三方切換弁(8)に対応している第1の分岐
口、(9)は室内側熱交換器(5)に近接して接続され
室内側熱交換器(5)の出口側の冷房時は加熱度、暖房
時は過冷却度により制御される第1の流量調整装置で、
室内機側の第2の接続配管(7b),(7c)に接続され
る。(10)は第1の分岐口(10b),(10c),(10d)
と、第1の接続配管(6)または、第2の接続配管
(7)に切り換え可能に接続する三方切換弁(8)より
なる第1の分岐部、(11)は室内機側に対応した第2の
分岐口(11b),(11c),(11d)と、その合流部より
なる第2の分岐部、(12)は第2の接続配管(7)の途
中に設けられた配管分岐部を構成する気液分離装置で、
その気相部は、三方切換弁(8)のそれぞれの第1口
(8a)に接続され、その液相部は第2の分岐部(11)に
接続されている。(13)は気液分離装置(12)と第2の
分岐部(11)との間に接続する開閉自在な第2の流量調
整装置、(14)は第2の分岐部(11)と上記第1の接続
配管(6)とを結ぶバイパス配管、(15)はバイパス配
管(14)の途中に設けられた第3の流量調整装置、(16
b),(16c),(16d)はバイパス配管(14)の第3の
流量調整装置(15)の下流に設けられ、第2の分岐部
(11)における各第2の分岐口(11b),(11c),(11
d)との間でそれぞれ熱交換を行う熱交換容量が同一の
第3の熱交換部、(16a)はバイパス配管(14)の第3
の流量調整装置(15)の下流及び第3の熱交換部(16
b)、(16c)、(16d)の下流に設けられ、第2の分岐
部(11)における各室内機側の第2の分岐口(11b),
(11c),(11d)の合流部との間で熱交換を行う第2の
熱交換部、(19)はバイパス配管(14)の第3の流量調
整装置(15)の下流と機液分離装置(12)と第2の流量
制御装置(13)とを接続する配管との間で熱交換を行う
第1の熱交換部、(17)は第2の分岐部(11)と第1の
接続配管(6)との間に接続する開閉自在な第4の流量
制御装置、(44)は第1の分岐口(10c),(10d)を統
合して容量の大きい室内機(C)と接続する室内機側の
第1の接続配管(6c)とを接続する第1の統合部、(4
5)は第2の分岐口(11c),(11d)を統合して容量の
大きい室内機(C)と接続する室内機側の第2の接続配
管(7c)とを接続する第2の統合部、 (32)は熱源機側熱交換機(3)と第2の接続配管
(7)との間に設けられた第3の逆止弁であり、熱源機
側熱交換機(3)からの第2の接続配管(7)へのみ冷
媒流通を許容する。(33)は熱源機(A)の四方切換弁
(2)と第1の接続配管(6)との間に設けられた第4
の逆止弁であり、第1の接続配管(6)から四方切換弁
(2)へのみ冷媒流通を許容する。(34)は熱源機
(A)の四方切換弁(2)と第2の接続配管(7)との
間に設けられた第5の逆止弁であり、四方切換弁(2)
から第2の接続配管(7)へのみ冷媒流通を許容する。
(35)は熱源機側熱交換器(3)と第1の接続配管(5
6)との間に設けられた第6の逆止弁であり、第1の接
続配管(6)から熱源機側熱交換器(3)へのみ冷媒流
通を許容する。上記第3の逆止弁(32)から第6の逆止
弁(35)で接続配管切換装置(40)を構成する。
In FIG. 1, (A) is a heat source unit, and (B) and (C) are indoor units that are connected in parallel with each other, as will be described later, but have the same configuration. (C) is larger than the indoor unit (B). As will be described later, (E) is a repeater having a first branch part, a second flow rate adjusting device, a second branch part, a gas-liquid separation device, and first and second heat exchange parts. (1) is a compressor, (2) is a four-way switching valve that is a switching valve that switches the refrigerant flow direction of the heat source device,
(3) is a heat source machine side heat exchanger, (4) is an accumulator, and the heat source machine (A) connected with said apparatus (1)-(3)
Make up. (5) is the indoor heat exchanger of the indoor units (B) and (C), respectively, (6) is the thick first connection pipe connecting the four-way switching valve (2) and the relay (E), (6b) , (6c)
Respectively connect the indoor heat exchanger (5) of the indoor units (B) and (C) to the relay unit (E), and connect the first connection pipe (6).
Corresponding to the indoor unit side first connection pipe, (7) is a second connection thinner than the first connection pipe (6) for connecting the heat source unit side heat exchanger (3) and the relay (E) Piping, (7b), (7
c) connects the indoor heat exchanger (5) and the relay (E) of the indoor units (B) and (C), respectively, and the second connection pipe (7)
Corresponding to the second connection pipe on the indoor unit side, (8) is the first connection pipe (6b), (6c) on the indoor unit side, and the first connection pipe (6) or the second connection pipe A three-way switching valve switchably connected to the (7) side, (10b), (10c), and (10d) are first branch ports corresponding to the three-way switching valve (8), and (9) is an indoor side. A first flow rate adjusting device which is connected in proximity to the heat exchanger (5) and is controlled by a heating degree at the time of cooling on the outlet side of the indoor side heat exchanger (5) and a supercooling degree at the time of heating,
It is connected to the second connection pipes (7b) and (7c) on the indoor unit side. (10) is the first branch port (10b), (10c), (10d)
And a first branch portion (11) composed of a three-way switching valve (8) switchably connected to the first connection pipe (6) or the second connection pipe (7) corresponds to the indoor unit side. A second branch part consisting of the second branch ports (11b), (11c), (11d) and its confluence, and (12) is a pipe branch part provided in the middle of the second connection pipe (7). In the gas-liquid separation device that comprises
The gas phase portion is connected to each first port (8a) of the three-way switching valve (8), and the liquid phase portion is connected to the second branch portion (11). (13) is a second flow rate adjusting device which is connected between the gas-liquid separator (12) and the second branch part (11) and which can be opened and closed, and (14) is the second branch part (11) and the above. A bypass pipe connecting to the first connection pipe (6), (15) a third flow rate adjusting device provided in the middle of the bypass pipe (14), (16)
b), (16c), (16d) are provided in the bypass pipe (14) downstream of the third flow rate adjusting device (15), and each second branch port (11b) in the second branch section (11). , (11c), (11
d) is a third heat exchange part having the same heat exchange capacity for performing heat exchange, and (16a) is the third part of the bypass pipe (14).
Downstream of the flow rate control device (15) and the third heat exchange section (16
b), (16c) and (16d) are provided downstream, and the second branch port (11b) on the side of each indoor unit in the second branch section (11),
A second heat exchange part for exchanging heat with the confluence part of (11c) and (11d), and (19) a downstream of the third flow regulating device (15) of the bypass pipe (14) and a machine liquid separation. A first heat exchange part (17) for exchanging heat between a pipe connecting the device (12) and the second flow rate control device (13), and a second branch part (11) and a first heat exchange part (17). A fourth flow control device (44) which is connected to the connection pipe (6) and which can be opened and closed is provided with an indoor unit (C) having a large capacity by integrating the first branch ports (10c) and (10d). The first integrated section that connects to the first connection pipe (6c) on the indoor unit side to be connected, (4
5) is the second integration that connects the second branch ports (11c) and (11d) to the second connection pipe (7c) on the indoor unit side that connects to the indoor unit (C) with a large capacity Part (32) is a third check valve provided between the heat source unit side heat exchanger (3) and the second connection pipe (7), and is a third check valve from the heat source unit side heat exchanger (3). Refrigerant is allowed to flow only to the second connecting pipe (7). (33) is a fourth provided between the four-way switching valve (2) of the heat source unit (A) and the first connecting pipe (6).
Of the first connection pipe (6) and allows the refrigerant to flow only to the four-way switching valve (2). (34) is a fifth check valve provided between the four-way switching valve (2) of the heat source unit (A) and the second connecting pipe (7), and the four-way switching valve (2)
To allow the refrigerant to flow only to the second connecting pipe (7).
(35) is the heat source side heat exchanger (3) and the first connecting pipe (5
It is a sixth check valve provided between the first and second connection pipes (6) and allows the refrigerant to flow only from the heat source unit side heat exchanger (3). The third check valve (32) to the sixth check valve (35) constitute a connection pipe switching device (40).

(41)は一端を気液分離装置(12)に他端を第1の接続
配管(6)に接続した液抜き配管、(42)は液抜き配管
(41)の気液分離装置(12)と第1の接続配管(6)の
間に設けた第5の流量制御装置、(43)は液抜き配管
(41)の第5の流量制御装置(42)の下流に設けられ、
気液分離装置(12)と第1の分岐部(10)を接続する配
管との間で熱交換を行う第4の熱交換部である。
(41) is a liquid-drainage pipe having one end connected to the gas-liquid separator (12) and the other end connected to the first connection pipe (6), and (42) is a gas-liquid separator (12) of the liquid-drained pipe (41). And a third flow control device (43) provided between the first connection pipe (6) and the liquid removal pipe (41) downstream of the fifth flow control device (42).
It is a fourth heat exchanging part for exchanging heat between the gas-liquid separator (12) and the pipe connecting the first branch part (10).

(23)は第2の流量制御装置(13)と第1の熱交換部
(19)を接続する配管に取り付けた第1の温度検出器、
(25)は上記第1の温度検出器(23)と同じ配管に取り
付けた第1の圧力検出器、(26)は第2の分岐部(11)
に取り付けた第2の圧力検出器、(52)は第1の接続配
管(6)と第1の分岐部(11)を接続する配管に取り付
けた第3の圧力検出器、(51)は液抜き配管(41)側の
第4の熱交換部(43)の出口側に取り付けた第2の温度
検出器、(53)はバイパス配管(14)側の第1の熱交換
部(19)の出口側に取り付けた第3の温度検出器であ
る。
(23) is a first temperature detector attached to a pipe connecting the second flow rate control device (13) and the first heat exchange section (19),
(25) is a first pressure detector attached to the same pipe as the first temperature detector (23), and (26) is a second branch part (11).
A second pressure detector attached to the pipe, (52) a third pressure detector attached to a pipe connecting the first connecting pipe (6) and the first branch portion (11), and (51) a liquid The second temperature detector mounted on the outlet side of the fourth heat exchange section (43) on the side of the extraction pipe (41), (53) is the first heat exchange section (19) on the side of the bypass pipe (14). It is the 3rd temperature detector attached to the exit side.

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the present invention configured as above will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only the cooling operation will be described with reference to FIG.

すなわち、第2図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
を通り、熱源機側熱交換器(3)で熱交換して凝縮され
た後、第3の逆止弁(32)、第2の接続配管(7)、気
液分離装置(12)、第2の流量調整装置(13)の順に通
り、更に第2の分岐部(11)を経て、一方は第2の分岐
口(11b)、室内機側の第2の接続配管(7b)を通り室
内機(B)へ流入し、他方は第2の分岐口(11c),(1
1d)、第2の統合部(45)、室内機側の第2の接続配管
(7c)を通り、室内機(C)へ流入する。各室内機
(B),(C)に流入した冷媒は、各室内側熱交換器
(5)の出口の加熱度により制御される第1の流量調整
装置(9)により低圧まで減圧されて室内側熱交換器
(5)で室内空気と熱交換して蒸発しガス化され室内を
冷房する。そして、このガス状態となった冷媒は、室内
機(B)からは室内機側の第1の接続配管(6b)、第1
の分岐口(10b)を経て、室内機(C)からは室内機側
の第1を接続配管(6c)、第1の統合部(44)、第1の
分岐口(10c),(10d)を経て、三方切換弁(8)に流
入し、第1の分岐部(10)を通り、第1の接続配管
(6)、第4の逆止弁(33)、四方切換弁(2)、アキ
ュムレータ(4)を経て圧縮機(1)に吸入される循環
サイクルを構成し、冷房運転を行う。このとき、三方切
換弁(8)はそれぞれの第1口(8a)は閉路、第2口
(8b)及び第3口(8c)は開路されている。ここで容量
の大きい室内機(C)から第1の分岐部(10)へ流入す
る冷媒は、室内機(B)からの冷媒がより多いが、室内
機(C)から流入する冷媒は第1の統合部(44)で2つ
に別れて、第1の分岐口(10c),(10d)を経て、三方
切換弁(8)に流入するので、三方切換弁(8)を通る
際の圧力損失は低く抑えられて、第1の接続配管(6)
へ流入する。
That is, as shown by the solid line arrow in FIG.
High-temperature and high-pressure refrigerant gas discharged from the four-way switching valve (2)
Through the heat source side heat exchanger (3) to be condensed, and then the third check valve (32), the second connecting pipe (7), the gas-liquid separation device (12), the third 2 flow control device (13) in order, then through the second branch (11), one through the second branch (11b), the second connection pipe (7b) on the indoor unit side Flow into the machine (B), the other is the second branch port (11c), (1
1d), the second integration section (45), and the second connection pipe (7c) on the indoor unit side, and flows into the indoor unit (C). The refrigerant flowing into each indoor unit (B), (C) is decompressed to a low pressure by the first flow rate control device (9) controlled by the heating degree at the outlet of each indoor heat exchanger (5), and then the room The inside heat exchanger (5) exchanges heat with the indoor air, evaporates and gasifies, and cools the room. Then, the refrigerant in the gas state flows from the indoor unit (B) to the first connection pipe (6b) on the indoor unit side,
Through the branch port (10b) of the indoor unit (C) to the first indoor unit side connection pipe (6c), the first integration section (44), the first branch port (10c), (10d) Through the three-way switching valve (8), the first branch portion (10), the first connecting pipe (6), the fourth check valve (33), the four-way switching valve (2), A circulation cycle is formed in which the compressor (1) is sucked through the accumulator (4) to perform cooling operation. At this time, in the three-way switching valve (8), the first port (8a) is closed and the second port (8b) and the third port (8c) are open. Here, the refrigerant flowing from the indoor unit (C) having a large capacity to the first branch portion (10) is more refrigerant from the indoor unit (B), but the refrigerant flowing from the indoor unit (C) is the first refrigerant. It is divided into two in the integrated part (44) and flows into the three-way switching valve (8) through the first branch ports (10c) and (10d), so the pressure when passing through the three-way switching valve (8). Loss is kept low and the first connecting pipe (6)
Flow into.

この時、第1の接続配管(6)が低圧、第2の接続配管
(7)が高圧のため必然的に第3の逆止弁(32)、第4
の逆止弁(33)へ冷媒は流通する。
At this time, the first connecting pipe (6) is low pressure and the second connecting pipe (7) is high pressure, so that inevitably the third check valve (32), the fourth
The refrigerant flows to the check valve (33).

また、このサイクルの時、第2の流量調整装置(13)を
通過した冷媒の一部がバイパス配管(14)へ入り、第3
の流量調整装置(15)で低圧まで減圧されて、第3の熱
交換部(16b),(16c),(16d)で各第2の分岐口(1
1b),(11c),(11d)との間で、第2の熱交換部(16
a)で第2の分岐部(11)の第2の分岐口(11b),(11
c),(11d)の合流部との間で、更に第1の熱交換部
(19)で第2の流量制御装置(13)に流入する冷媒との
間で熱交換を行い蒸発した冷媒は、第1の接続配管
(6)へ入り、第4と逆止弁(33)、四方切換弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される。一方、第1及び第2及び第3の熱交換部(1
9),(16a),(16b),(16c),(16d)で熱交換
し、例され過冷却度を十分につけられた上記第2の分岐
部(11)の冷媒は冷房しようとしている室内機(B),
(C)へ流入する。ここで容量の大きい室内機(C)へ
流入する冷媒は、室内機(B)より多いが、室内機
(C)へ流入する冷媒は第3の熱交換部(16c),(16
d)の2つに別れてそれぞれ冷却され過冷却度を十分に
つけられた後、第2の分岐口(11c),(11d)を経て、
第2の統合部(45)にて合流し、室内機側の第2の接続
配管を通って室内機(C)へ流入する。また、2つに別
れて第3の熱交換部(16c),(16d)を通るため、通る
際の圧力損失が抑えられる。
Also, during this cycle, part of the refrigerant that has passed through the second flow rate control device (13) enters the bypass pipe (14),
Is reduced to a low pressure by the flow rate adjusting device (15) of the second heat exchanger (16b), (16c), (16d) and the second branch port (1
1b), (11c), (11d), the second heat exchange section (16
In a), the second branch opening (11b), (11) of the second branch section (11)
c) and (11d), the heat exchanger exchanges heat with the refrigerant flowing into the second flow rate control device (13) in the first heat exchange section (19), and the evaporated refrigerant is , Enters the first connecting pipe (6), and is sucked into the compressor (1) through the fourth and check valves (33), the four-way switching valve (2) and the accumulator (4). On the other hand, the first, second and third heat exchange parts (1
9), (16a), (16b), (16c), (16d) heat exchange, for example, the refrigerant in the second branch part (11), which has been sufficiently subcooled, is about to be cooled Machine (B),
It flows into (C). Here, the refrigerant flowing into the indoor unit (C) having a large capacity is larger than that in the indoor unit (B), but the refrigerant flowing into the indoor unit (C) is the third heat exchange units (16c) and (16).
After being divided into two parts of d) and cooled to a sufficient degree of supercooling, they are passed through the second branch ports (11c) and (11d),
They merge at the second integration section (45) and flow into the indoor unit (C) through the second connection pipe on the indoor unit side. In addition, since it is divided into two parts and passes through the third heat exchange parts (16c) and (16d), pressure loss at the time of passing is suppressed.

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、第2図に破線矢印で示すように圧縮機
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離接続装置(12)を通り、第1の分岐部
(10)、三方切換弁(8)を経て、一方は第1の分岐口
(10b)、室内気側の第1の接続配管(6b)を通り室内
機(B)へ流入し、他方は第2の分岐口(10c),(10
d)、第1の統合部(44)、室内機側の第1の接続配管
(6c)を通り、室内機(C)へ流入する。各室内機
(B),(C)に流入した冷媒は、室内空気と熱交換し
て凝縮液化し、室内を暖房する。そして、この液状態と
なった冷媒は、各室内側熱交換器(5)の出口に過冷却
度により制御される第1の流量調整装置(9)を通り、
室内機(B)からは室内機側の第2の接続配管(7b)、
第2の分岐口(11b)を経て、室内機(C)からは室内
機側の第2の接続配管7c)、第2の統合部(45)、第2
の分岐口(11c),(11d)を経て、第2の分岐部(11)
に流入して合流し、更に第4の流量調整装置(17)を通
り、ここで第1の流量制御装置(9)又は第4の流量調
整装置(17)のどちらか一方で低圧の二相状態まで減圧
される。そして、低圧まで減圧された冷媒は、第1の接
続配管(6)を経て、第6の逆止弁(35)、熱源機側熱
交換器(3)に流入し熱交換して蒸発しガス状態となっ
た冷媒は、四方切換弁(2)、アキュムレータ(4)を
経て圧縮機(1)に吸入される循環サイクルを構成し、
暖房運転を行う。このとき、三方切換弁(8)はそれぞ
れの第2口(8b)は閉路、第1口(8a)及び第3口(8
c)は開路されている。ここで第1の分岐部(10)から
容量の大きい室内機(C)へ流入する冷媒は、室内機
(B)へ流入する冷媒より多いが、室内機(C)へ流入
する冷媒は2つに別れて三方切換弁(8)を通り、第1
の分岐口(10c),(10d)を経て第1の統合部(44)で
合流するので、三方切換弁(8)を通る際の圧力損失は
低く抑えられて、室内機(C)へ流入する。また、容量
の大きい室内機(C)から第2の分岐部(11)へ流入す
る冷媒は、室内機(B)からの冷媒より多いが、室内機
(C)から流入する冷媒は第2の統合部(45)で2つに
別れて、第2の分岐口(11c),(11d)を経て、第3の
熱交換部(16c),(16d)に流入するので、第3の熱交
換部(16c),(16d)を通る際の圧力損失は低く抑えら
れて、第2の分岐部(11)へ流入する。この時、第1の
接続配管(6)が低圧、第2の接続配管(7)が高圧の
ため必然的に第5の逆止弁(34)、第6の逆止弁(35)
へ冷媒は流通する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the broken line arrow in FIG. 2, the high-temperature high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2), the fifth check valve (34), and the second connection valve. It passes through the pipe (7), the gas-liquid separation connection device (12), the first branch part (10) and the three-way switching valve (8), one of which is the first branch port (10b), and the one on the indoor air side. It flows into the indoor unit (B) through the first connecting pipe (6b), and the other flows into the second branch port (10c), (10
d), through the first integration section (44) and the first connection pipe (6c) on the indoor unit side, and flows into the indoor unit (C). The refrigerant that has flowed into each of the indoor units (B) and (C) exchanges heat with the indoor air to condense and liquefy, thereby heating the room. Then, the refrigerant in the liquid state passes through the first flow rate control device (9) controlled by the degree of supercooling to the outlet of each indoor heat exchanger (5),
From the indoor unit (B), the second connection pipe (7b) on the indoor unit side,
The second connection pipe 7c on the indoor unit side from the indoor unit (C) via the second branch port (11b), the second integrated section (45), the second
After passing through the branch openings (11c) and (11d) of the second branch section (11)
Flow into and merge with each other, and further pass through the fourth flow rate control device (17), where either the first flow rate control device (9) or the fourth flow rate control device (17) has a low pressure two-phase The pressure is reduced to the state. Then, the refrigerant decompressed to a low pressure flows into the sixth check valve (35) and the heat source side heat exchanger (3) through the first connecting pipe (6), exchanges heat and evaporates gas. The refrigerant in the state forms a circulation cycle in which it is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4),
Perform heating operation. At this time, the three-way switching valve (8) has a closed second opening (8b), a first opening (8a), and a third opening (8b).
c) is open circuit. Here, the refrigerant flowing from the first branch portion (10) into the indoor unit (C) having a large capacity is larger than the refrigerant flowing into the indoor unit (B), but two refrigerant flowing into the indoor unit (C). The three-way selector valve (8)
Since they merge at the first integration section (44) via the branch ports (10c) and (10d) of the, the pressure loss when passing through the three-way switching valve (8) is suppressed to a low level, and flows into the indoor unit (C). To do. Further, the refrigerant flowing from the indoor unit (C) having a large capacity to the second branch section (11) is larger than the refrigerant flowing from the indoor unit (B), but the refrigerant flowing from the indoor unit (C) is the second refrigerant. It is divided into two parts in the integration part (45) and flows into the third heat exchange parts (16c) and (16d) through the second branch ports (11c) and (11d), so that the third heat exchange part is formed. The pressure loss when passing through the parts (16c) and (16d) is suppressed to a low level and flows into the second branch part (11). At this time, the first connecting pipe (6) is low pressure and the second connecting pipe (7) is high pressure, so that the fifth check valve (34) and the sixth check valve (35) are inevitable.
The refrigerant circulates.

冷暖房同時運転における暖房主体の場合について第3図
を用いて説明する。ここでは室内機(C)が暖房、室内
機(B)が冷房しようとしている場合について説明す
る。
The case of mainly heating in the simultaneous heating and cooling operation will be described with reference to FIG. Here, a case where the indoor unit (C) is about to heat and the indoor unit (B) is about to cool will be described.

すなわち、第3図に点線矢印で示すように圧縮機(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
を通り、第5の逆止弁(34)、第2の接続配管(7)を
通り、中継機(E)へ送られ、気液分離装置(12)を通
り、そして第1の分岐部(10)、室内機(C)に接続さ
れた三方切換弁(8)、第1の分岐口(10c),(10
d)、第1の統合部(44)、室内機側の第1の接続配管
(6c)を通り、暖房しようとしている室内機(C)に流
入した冷媒は、室内側熱交換器(5)で室内空気と熱交
換して凝縮液化し、室内を暖房する。そして、この液状
態となった冷媒は、室内側熱交換器(5)の出口に過冷
却度により制御され、ほぼ前回状態の第1の流量調整装
置(9)を通り少し減圧されて高圧と低圧の中間の圧力
(中間圧)になり、室内機側の第2の接続配管(7c)か
ら第2の統合部(45)、第2の分岐口(11C),(11d)
を経て、第2の分岐部(11)に流入する。そして、第2
の分岐口(11b)、室内機側の第2の接続配管(7b)を
通り冷房しようとしている室内機(B)に入り、室内側
熱交換器(5)の出口の過熱度により制御される出し1
の流量調整装置(9)により減圧された後に室内側熱交
換器(5)に入り熱交換して蒸発しガス状態となって室
内を冷房し、室内機(B)に接続された三方切換弁
(8)を介して第1の接続配管(6)に流入する。
That is, as shown by a dotted arrow in FIG. 3, the compressor (1)
High-temperature and high-pressure refrigerant gas discharged from the four-way switching valve (2)
Through the fifth check valve (34), the second connecting pipe (7), the relay device (E), the gas-liquid separator (12), and the first branch ( 10), three-way switching valve (8) connected to the indoor unit (C), first branch port (10c), (10
The refrigerant that has flowed into the indoor unit (C) that is going to be heated through the d), the first integrated unit (44), and the first connection pipe (6c) on the indoor unit side is the indoor heat exchanger (5). Heats the room by exchanging heat with the room air to condense and liquefy. The refrigerant in the liquid state is controlled at the outlet of the indoor heat exchanger (5) by the degree of subcooling, passes through the first flow rate adjusting device (9) in the almost previous state, and is slightly decompressed to a high pressure. It becomes a low intermediate pressure (intermediate pressure), and the second connection pipe (7c) on the indoor unit side to the second integrated section (45), the second branch port (11C), (11d)
And flows into the second branch (11). And the second
Of the indoor heat exchanger (5) is controlled by the superheat at the outlet of the indoor heat exchanger (5) through the branch port (11b) and the second connection pipe (7b) on the indoor unit side into the indoor unit (B) that is going to be cooled. Out 1
After being decompressed by the flow rate control device (9), it enters the indoor heat exchanger (5), exchanges heat and evaporates to become a gas state to cool the room, and the three-way switching valve connected to the indoor unit (B). It flows into the first connecting pipe (6) via (8).

一方、他の冷媒は第2の分岐部(11)、第2の接続配管
(7)の高圧と第2の分岐部(11)の中間圧の差を一定
にするように制御される開閉自在な第4の流量調整装置
(17)を通って、冷房しようとしている室内機(D)を
通った冷媒と合流して太い第1の接続配管(6)に流入
し、第6の逆止弁(35)、熱源機側熱交換器(3)に流
入し熱交換して蒸発しガス状態となる。その冷媒は、四
方切換弁(2)、アキュムレータ(4)を経て圧縮機
(1)に吸入される循環サイクルを構成し、暖房主体運
転を行う。この時、冷房しようとしている室内機(B)
の室内側熱交換器(5)の蒸発圧力と熱源機側熱交換器
(3)の蒸発圧力の圧力差が、太い第1の接続配管
(6)に切り換えるために小さくなる。この時、室内機
(C)に接続された三方切換弁(8)はそれぞれの第2
口(8b)は閉路、第1口(8a)及び第3口(8c)は開路
されている。また室内機(B)に接続された三方切換弁
(8)は第2口(8b)及び第3口(8c)は開路、第1口
(8a)は閉路されている。ここで第1の分岐部(10)か
ら容量の大きい室内機(C)へ流入する冷媒は、室内機
(B)からの冷媒より多いが、室内機(C)へ流入する
冷媒は2つに別れて三方切換弁(8)を通り、第1の分
岐口(10c),(10d)を経て第1の統合部(44)で合流
するので、三方切換弁(8)を通る際の圧力損失は低く
抑えられて、室内機(C)へ流入する。
On the other hand, other refrigerants can be opened / closed so that the difference between the high pressure in the second branch portion (11) and the second connection pipe (7) and the intermediate pressure in the second branch portion (11) is kept constant. Through the fourth flow rate control device (17), merges with the refrigerant that has passed through the indoor unit (D) to be cooled, flows into the thick first connection pipe (6), and then the sixth check valve. (35) The heat source unit side heat exchanger (3) flows into the heat source unit to exchange heat and evaporate into a gas state. The refrigerant forms a circulation cycle in which it is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4), and performs heating-main operation. At this time, the indoor unit (B) that is about to be cooled
The pressure difference between the evaporating pressure of the indoor heat exchanger (5) and the evaporating pressure of the heat source side heat exchanger (3) becomes small due to switching to the thick first connecting pipe (6). At this time, the three-way selector valve (8) connected to the indoor unit (C) is
The mouth (8b) is closed, and the first mouth (8a) and the third mouth (8c) are open. The three-way switching valve (8) connected to the indoor unit (B) has the second port (8b) and the third port (8c) open, and the first port (8a) closed. Here, the refrigerant flowing into the indoor unit (C) having a large capacity from the first branch portion (10) is larger than the refrigerant flowing from the indoor unit (B), but the refrigerant flowing into the indoor unit (C) is two. Since it separates and passes through the three-way switching valve (8), and then merges at the first integration section (44) via the first branch ports (10c) and (10d), the pressure loss when passing through the three-way switching valve (8). Is kept low and flows into the indoor unit (C).

この時、第1の接続配管(6)が低圧、第2の接続配管
(7)が高圧のため必然的に第5の逆止弁(34)、第6
の逆止弁(35)へ冷媒は流入する。
At this time, the first connection pipe (6) is low pressure and the second connection pipe (7) is high pressure, so that the fifth check valve (34) and the sixth
The refrigerant flows into the check valve (35).

また、このサイクルの時、一部の液冷媒は各第2の分岐
口(11b),(11c),(11d)の合流部からバイパス配
管(14)へ入り、第3の流量調整装置(15)で低圧まで
減圧されて、第2の熱交換器(16a)で第2の分岐部(1
1)の各第2の分岐口(11b),(11c),(11d)の合流
部との間で、更に第1の熱交換部(19)で第2の流量調
整装置(13)へ流入する冷媒との間で熱交換器を行い蒸
発した冷媒は、第1の接続配管(6)へ入り、第6の逆
止弁(35)を経て、熱源機側熱交換器(3)に流入し熱
交換して蒸発しガス状態となる。そして、この冷媒は四
方切換弁(2)、アキュムレータ(4)を経て圧縮機
(1)に吸入される。一方、第1及び第2及び第3の熱
交換部(19),(16a),(16c),(16d)で熱交換し
冷却され過冷却度を十分につけられた上記第2の分岐部
(11)の冷媒は冷房しようとしている室内機(B)へ流
入する。ここで容量の大きい室内機(C)から第2の分
岐部(11)へ流入する冷媒は、室内機(B)への冷媒よ
り多いが、室内機(C)から第2の分岐部(11)へ流入
する冷媒は、第2の統合部(45)にて2つに分れて、第
2の分岐口(11c),(11d)を経て、第3の熱交換部
(16c),(16d)のそれぞれで冷却され過冷却度を十分
につけられた後、第2の分岐部(11)へ流入する。ま
た、2つに別れて第3の熱交換部(16c),(16d)を通
るた第、通る際の圧力損失が抑えられる。
Further, during this cycle, a part of the liquid refrigerant enters the bypass pipe (14) from the confluence of the second branch ports (11b), (11c), (11d), and the third flow rate adjusting device (15). ) Is reduced to a low pressure by the second heat exchanger (16a) and the second branch (1
Inflow to the second flow rate adjusting device (13) at the first heat exchange section (19) between the second branch ports (11b), (11c), and (11d) confluence section of 1). The refrigerant that has performed a heat exchanger with the refrigerant that has evaporated enters the first connection pipe (6), passes through the sixth check valve (35), and flows into the heat source side heat exchanger (3). Then, it exchanges heat and evaporates to become a gas state. Then, this refrigerant is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4). On the other hand, the second branch portion (1) having a sufficient degree of subcooling by being heat-exchanged and cooled by the first, second and third heat exchange portions (19), (16a), (16c) and (16d) ( The refrigerant of 11) flows into the indoor unit (B) that is about to be cooled. Here, the refrigerant flowing into the second branch portion (11) from the indoor unit (C) having a large capacity is larger than the refrigerant flowing to the indoor unit (B), but the refrigerant flowing from the indoor unit (C) to the second branch portion (11). The refrigerant flowing into () is divided into two in the second integration section (45), passes through the second branch ports (11c), (11d), and then flows through the third heat exchange section (16c), ( After being cooled in each of 16d) and having a sufficient degree of supercooling, it flows into the second branch portion (11). Further, the pressure loss at the time of passing through the third heat exchange portions (16c) and (16d), which is divided into two, can be suppressed.

冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。ここでは室内機(C)が冷房、室内
機(B)が暖房しようとしている場合について説明す
る。すなわち、第4図に実線矢印で示すように圧縮機
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、熱源機側熱交換器(3)で任意量熱交換
して2相の高温高圧ガスとなり、第3の逆止弁(32)、
第2の接続配管(7)より、中継機(E)の気液分離装
置(12)へ送られる。ここで、ガス状冷媒と液状冷媒に
分離され、分離されたガス状冷媒を第1の分岐部(1
0)、三方切換弁(8)、第1の分岐口(10b)、室内機
側の第1の接続配管(6b)の順に送り、暖房しようとし
ている室内機(B)へ流入し、室内側熱交換器(5)で
室内空気と熱交換して凝縮液化し、室内を暖房する。更
に、室内側熱交換器(5)の出口に過冷却度により制御
されほぼ全開状態の第1の流量調整装置(9)を通り少
し減圧されて、高圧と低圧の中間の圧力(中間圧)とな
り、第2の分岐部(11)に流入する。一方、残りの液状
冷媒は高圧と中間圧の差を一定にするように制御される
第2の流量調整装置(13)を通って第2の分岐部(11)
に流入し、暖房しようとしている室内機(B)を通った
冷媒と合流する。そして、第2の分岐部(11)、第2の
分岐口(11c),(11d)、第2の統合部(45)、室内機
側の第2の接続配管(7c)を通り、室内機(C)に流入
する。そして、この冷媒は、室内機C)の室内側熱交換
器(5)の出口の過熱度により制御される第1の流量調
整装置(9)により低圧まで減圧されて室内側熱交換器
(5)で室内空気と熱交換して蒸発しガス化され室内を
冷房する。そして、このガス状態となった冷媒は、室内
機側の第1の接続配管(6c)、第1の統合部(44)、第
1の分岐口(10c),(10d)を経て、室内機(C)に接
続された三方切換弁(8)、第1の分岐部(10)、第1
の接続配管(6)、第4の逆止弁(33)、四方切換弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される循環サイクルを構成し、冷房主体運転を行う。
この時、室内機(C)に接続された三方切換弁(8)は
それぞれの第1口(8a)は閉路、第2口(8b)及び第3
口(8c)は開路されている。また室内機(B)に接続さ
れた三方切換弁(8)は第1口(8a)及び第3図(8c)
は開路、第2口(8b)は閉路されている。ここで容量の
大きい室内機(C)から第1の分岐部(10)へ流入する
冷媒は、室内機(B)への冷媒より多いが、室内機
(C)から入流する冷媒は第1の統合部(44)で2つに
別れて、第1の分岐口(10c),(10d)を経て、三方切
換弁(8)に流入するので、三方切換弁(8)を通る際
の圧力損失は低く抑えられて、第1の接続配管(6)へ
流入する。
A case of mainly cooling in the cooling / heating simultaneous operation will be described with reference to FIG. Here, the case where the indoor unit (C) is about to cool and the indoor unit (B) is about to heat will be described. That is, as shown by the solid arrow in FIG. 4, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2) and exchanges an arbitrary amount of heat in the heat source side heat exchanger (3). To become a two-phase high-temperature high-pressure gas, the third check valve (32),
It is sent from the second connecting pipe (7) to the gas-liquid separator (12) of the relay (E). Here, the gaseous refrigerant and the liquid refrigerant are separated, and the separated gaseous refrigerant is supplied to the first branch (1
0), the three-way switching valve (8), the first branch port (10b), the first connection pipe (6b) on the indoor unit side in this order, flow into the indoor unit (B) to be heated, and then the indoor side The heat exchanger (5) exchanges heat with the room air to condense and liquefy it and heat the room. Furthermore, the outlet of the indoor heat exchanger (5) is controlled by the degree of subcooling and is slightly decompressed through the first flow rate adjusting device (9) which is in a substantially fully opened state, and an intermediate pressure between high pressure and low pressure (intermediate pressure). And flows into the second branch (11). On the other hand, the remaining liquid refrigerant passes through the second flow rate adjusting device (13) which is controlled so that the difference between the high pressure and the intermediate pressure becomes constant, and then the second branch portion (11).
And joins the refrigerant having passed through the indoor unit (B) that is about to be heated. Then, the second branch part (11), the second branch ports (11c), (11d), the second integration part (45), and the second connection pipe (7c) on the indoor unit side pass through the indoor unit. It flows into (C). Then, this refrigerant is decompressed to a low pressure by the first flow rate adjusting device (9) controlled by the superheat degree of the outlet of the indoor heat exchanger (5) of the indoor unit C), and the indoor heat exchanger (5). ) Heat-exchanges with the room air to evaporate and gasify to cool the room. Then, the refrigerant in the gas state passes through the first connection pipe (6c) on the indoor unit side, the first integration section (44), the first branch ports (10c), (10d), and then the indoor unit. Three-way switching valve (8) connected to (C), first branch part (10), first
A circulation cycle in which the compressor (1) is drawn through the connecting pipe (6), the fourth check valve (33), the four-way switching valve (2), and the accumulator (4) to perform the cooling main operation .
At this time, the three-way switching valve (8) connected to the indoor unit (C) has a closed first opening (8a), a second opening (8b), and a third opening (8b).
Mouth (8c) is open. Also, the three-way switching valve (8) connected to the indoor unit (B) has a first port (8a) and FIG. 3 (8c).
Is open and the second port (8b) is closed. Here, the refrigerant flowing from the large capacity indoor unit (C) into the first branch portion (10) is larger than the refrigerant flowing into the indoor unit (B), but the refrigerant flowing from the indoor unit (C) is the first refrigerant. It is divided into two parts in the integrated part (44) and flows into the three-way switching valve (8) via the first branch ports (10c) and (10d), so the pressure loss when passing through the three-way switching valve (8). Is kept low and flows into the first connecting pipe (6).

この時、第1の接続配管(6)が低圧、第2の接続配管
(7)が高圧のため必然的に第3の逆止弁(32)、第4
の逆止弁(33)へ冷媒は流通する。
At this time, the first connecting pipe (6) is low pressure and the second connecting pipe (7) is high pressure, so that inevitably the third check valve (32), the fourth
The refrigerant flows to the check valve (33).

また、このサイクルの時、一部の液冷媒は各室内機の第
2の接続配管(7b),(7c),(7d)の合流部からバイ
パス配管(14)へ入り、第3の流量調整装置(15)で低
圧まで減圧されて第2の熱交換部(16a)で第2の分岐
部(11)の各第2の分岐部(11b),(11c),(11d)
の合流部との間で、更に第1の熱交換部(19)で第2の
流量制御装置へ流入する冷媒との間で熱交換を行い蒸発
した冷媒は、第1の接続配管(6)へ入り、第4の逆止
弁(33)、四方切換弁(2)、アキュムレータ(4)を
経て圧縮機(1)に吸入される。一方、第1及び第2及
び第3の熱交換器部(19),(16a),(16b),(16
c),(16d)で熱交換し、冷却され過冷却度を十分につ
けられた上記第2の分岐部(11)の冷媒は冷房しようと
している室内機(C)へ流入する。ここで容量の大きい
室内機(C)へ流入する冷媒は第3の熱交換部(16
c),(16d)の2つに別れてそれぞれ冷却され過冷却度
を十分つけられた後、第2の分岐口(11c),(11d)を
経て、第2の統合部(45)にて合流し、室内機側の第2
の接続配管を通って室内機(C)へ流入する。また、2
つに別れて第3の熱交換部(16c),(16d)を通るた
め、通る際の圧力損失が抑えられる。
In addition, during this cycle, a part of the liquid refrigerant enters the bypass pipe (14) from the confluence of the second connection pipes (7b), (7c), (7d) of each indoor unit, and adjusts the third flow rate. The pressure is reduced to a low pressure by the device (15) and each second branch portion (11b), (11c), (11d) of the second branch portion (11) is reduced by the second heat exchange portion (16a).
The refrigerant that has undergone heat exchange with the confluence part of the first heat exchange part (19) and the refrigerant flowing into the second flow rate control device and has evaporated is the first connection pipe (6). And enters the compressor (1) through the fourth check valve (33), the four-way switching valve (2) and the accumulator (4). On the other hand, the first, second and third heat exchanger parts (19), (16a), (16b), (16
The refrigerant in the second branch portion (11) that has been heat-exchanged in c) and (16d) and has been cooled and has a sufficient degree of supercooling flows into the indoor unit (C) that is about to be cooled. Here, the refrigerant flowing into the indoor unit (C) having a large capacity is the third heat exchange section (16
c) and (16d), each of which is cooled and fully subcooled, and then passed through the second branch ports (11c) and (11d) and then to the second integration section (45). Merge, the second on the indoor unit side
Flows into the indoor unit (C) through the connection pipe of. Also, 2
Since it passes through the third heat exchange parts (16c) and (16d) in part, the pressure loss during the passage can be suppressed.

なお、上記実施例では三方切換弁(8)を設けて室内機
側の第1の接続配管(6b),(6c)と、第1の接続配管
(6)または、第2の接続配管(7)に切り換え可能に
接続しているが、第5図に示すように2つの電磁開閉弁
(30),(31)等の開閉弁を設けて上述したように切り
換え可能に接続しても同様な作用効果が得られる。
In the above embodiment, the three-way switching valve (8) is provided to provide the first connection pipes (6b) and (6c) on the indoor unit side with the first connection pipe (6) or the second connection pipe (7). ) Is switchably connected. However, as shown in FIG. 5, two solenoid on-off valves (30), (31) and other on-off valves may be provided to switchably connect as described above. The effect is obtained.

[発明の効果] 以上説明したとおり、この発明の請求項1の空気調和装
置は、圧縮機、切換弁、熱源機側熱交換器等よりなる1
台の熱源機と、それぞれ室内側熱交換器を有する複数台
の室内機とを、第1、第2の接続配管を介して接続した
ものにおいて、上記複数台の室内機の上記室内側熱交換
器の一方を上記第1の接続配管または、第2の接続配管
に切り換え可能に接続する第1の分岐部と、上記複数台
の室内機の上記室内側熱交換器の他方に接続されかつ上
記第2の接続配管に接続してなる第2の分岐部と、上記
第2の接続配管から分岐して上記第1の分岐部に到る配
管を分岐する配管分岐部と、上記配管分岐部と上記室内
側熱交換器の他方とを接続する管路途中に設けられて、
冷媒の流量を制御する流量制御装置と、上記第1の分岐
部に設けられ、上記室内側熱交換器の一方に接続する複
数の第1の分岐口とを備え、上記第1の分岐口の数と上
記室内機の台数が異なるように配置したものである。
[Effects of the Invention] As described above, the air conditioner according to claim 1 of the present invention includes a compressor, a switching valve, a heat source side heat exchanger, and the like.
Heat source units and a plurality of indoor units each having an indoor heat exchanger are connected via first and second connection pipes, the indoor heat exchange of the plurality of indoor units A first branch portion that connects one of the units to the first connection pipe or the second connection pipe in a switchable manner, and the other of the indoor heat exchangers of the plurality of indoor units, and A second branch part connected to the second connection pipe; a pipe branch part branching from the second connection pipe to a pipe reaching the first branch part; and the pipe branch part. Provided in the middle of the pipeline connecting the other of the indoor heat exchangers,
A flow rate control device for controlling the flow rate of the refrigerant, and a plurality of first branch ports provided in the first branch section and connected to one of the indoor heat exchangers are provided. The number of indoor units is different from that of the indoor units.

よって、室内機の容量に応じて第1の分岐部の接続数を
変えることができ、室内機の容量が異なる場合でも、容
量の大きな室内機から第1の分岐部へ流入する冷媒及び
第1の分岐部から容量の大きな室内機へ流入する冷媒が
第1の分岐部を通る際の圧力損失を低く抑えることがで
きる。
Therefore, the number of connections of the first branch portion can be changed according to the capacity of the indoor unit, and even when the capacity of the indoor unit is different, the refrigerant and the first refrigerant flowing from the indoor unit having a large capacity to the first branch portion can be changed. It is possible to suppress the pressure loss when the refrigerant flowing from the branch portion to the indoor unit having a large capacity passes through the first branch portion.

この発明の請求項2と空気調和装置は、請求項1記載の
ものにおいて、一端が第2の分岐部に接続され、他端が
第3の流量制御装置を介して低圧となる接続配管に接続
されたバイパス配管と、上記第3の流量制御装置下流側
バイパス配管と各室内機と上記第2の分岐部とを接続す
る接続配管との間で熱交換を行う熱交換部と、この熱交
換部に対応して設けられ、室内側熱交換器の他方に接続
する複数の第2の分岐口とを備え、この第2の分岐口の
数と上記室内側の台数が異なるように配置したものであ
る。
A second aspect of the present invention and an air conditioner according to the first aspect of the present invention are such that one end is connected to the second branch portion, and the other end is connected to a connection pipe having a low pressure via the third flow rate control device. And a heat exchanging section for exchanging heat between the bypass pipe, the bypass pipe downstream of the third flow rate control device, the connection pipe connecting each indoor unit and the second branching unit, and the heat exchange unit. Provided with a plurality of second branch ports connected to the other of the indoor heat exchangers, and arranged so that the number of the second branch ports and the number of indoors are different from each other. Is.

よって、室内機の容量に応じて熱交換部に対応して設け
られる第2の分岐口の接続数を変えることができ、室内
機の容量が異なる場合でも容量の大きな室内機を通る冷
媒が第2の分岐部を通る際の圧力損失を低く抑えること
ができ、また、冷房しようとしている容量の大きな室内
機の冷媒の過冷却度を十分つけることができる。
Therefore, it is possible to change the number of connections of the second branch ports provided corresponding to the heat exchange unit according to the capacity of the indoor unit, and even if the capacity of the indoor unit is different, the refrigerant passing through the indoor unit having a large capacity is It is possible to suppress the pressure loss when passing through the second branch portion to a low level, and it is possible to provide a sufficient degree of supercooling of the refrigerant in the indoor unit having a large capacity to be cooled.

この発明の請求項3の空気調和装置は、請求項2記載の
ものにおいて、熱交換部を、室内機と第2の分岐部とを
接続する複数の接続配管にそれぞれ設け、各熱交換部の
熱交換容量を略々同一としたものである。
According to a third aspect of the present invention, in the air conditioning apparatus according to the second aspect, the heat exchange section is provided in each of a plurality of connection pipes connecting the indoor unit and the second branch section, and each heat exchange section has a heat exchange section. The heat exchange capacities are almost the same.

よって、室内機の容量に応じて第3の熱交換部の接続数
を変えることができ、室内機の容量が異なる場合でも容
量の大きな室内機を通る冷媒が第3の熱交換部を通る際
の圧力損失を低く抑えることができる。
Therefore, the number of connections of the third heat exchange unit can be changed according to the capacity of the indoor unit, and when the refrigerant passing through the indoor unit having a large capacity passes through the third heat exchange unit even when the capacity of the indoor unit is different. The pressure loss of can be kept low.

この発明の請求項4の空気調和装置は、請求項1記載に
おいて、室内機の容量に応じて、第1の分岐口を単独ま
たは複数統合して上記室内機に接続し、かつ第2の分岐
口を単独または複数統合して上記室内機に接続したもの
である。
According to a fourth aspect of the present invention, in the air conditioner according to the first aspect, the first branch port is connected to the indoor unit independently or in a plurality of ways according to the capacity of the indoor unit, and the second branch is provided. One or more mouths are integrated and connected to the indoor unit.

よって、室内機の容量に応じて第1の分岐口及び第2の
分岐口の接続数を変えることができ、室内機の容量が異
なる場合でも容量を大きな室内機を通る冷媒が第1の分
岐部及び第2の分岐部を通る際の冷媒の圧力損失を低く
抑えることができる。
Therefore, the number of connections of the first branch port and the second branch port can be changed according to the capacity of the indoor unit, and even when the capacity of the indoor unit is different, the refrigerant passing through the indoor unit having a large capacity has the first branch. The pressure loss of the refrigerant when passing through the section and the second branch can be suppressed low.

従って、冷暖房同時運転が可能であるとともに、容量の
異なる様々な室内機に対応可能なシステムが提供できる
という効果がある。
Therefore, there is an effect that it is possible to provide a system capable of simultaneously performing cooling and heating operations and capable of coping with various indoor units having different capacities.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例の空気調和装置の冷媒系
を中心とする全体構成図である。第2図は第1図で示し
た一実施例の冷房又は暖房のみの運転動作状態図、第3
図は第1図で示した一実施例の暖房主体(暖房しようと
している室内機の合計容量が冷房しようとしている室内
機の合計容量より大きい場合)の運転動作状態図、第4
図は第1図で示した一実施例の冷房主体(冷房しようと
している室内機の合計容量が暖房しようとしている室内
機の合計容量より大きい場合)の運転動作状態図、第5
図はこの発明の他の実施例の空気調和装置の冷媒系を中
心とする全体構成図である。 図において、(A)は熱源機、(B),(C)は室内
機、(E)は中継機、(1)は圧縮機、(2)は四方切
換弁、(3)は熱源機側熱交換器、(4)はアキュムレ
ータ、(5)は室内側熱交換器、(6)は第1の接続配
管、(6b),(6c)は室内機側の第1の接続配管、
(7)は第2の接続配管、(7b),(7c)は室内機側の
第2の接続配管、(8)は三方切換弁、(9)は第1の
流量調整装置、(10)は第1の分岐部、(10b),(10
c),(10d)は第1の分岐口、(11)は第2の分岐部、
(11b),(11c),(11d)は第2の分岐口、(12)は
気液分離装置(配管分岐部)、(13)は第2の流量調整
装置、(14)はバイパス配管、(15)は第3の流量調整
装置、(16a),(16b),(16c),(16d)は第2及び
第3の熱交換部、(17)は第4の流量制御装置、(19)
は第1の熱交換部、(23)は第1の温度検出器、(25)
は第1の圧力検出器、(27)第1の過冷却度算出手段、
(29)は制御手段、(32)は第3の逆止弁、(33)は第
4の逆止弁、(34)は第5の逆止弁、(35)は第6の逆
止弁、(40)は接続配管切換装置、(44)は第1の統合
部、(45)は第2の統合部である。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is an overall configuration diagram centering on the refrigerant system of the air conditioner of the first embodiment of the present invention. FIG. 2 is a diagram showing the operation state of only the cooling or heating of the embodiment shown in FIG. 1, and FIG.
FIG. 4 is a diagram showing the operation state of the heating main body (when the total capacity of the indoor units to be heated is larger than the total capacity of the indoor units to be cooled) of the embodiment shown in FIG.
FIG. 5 is a diagram showing the operation state of the cooling subject (when the total capacity of the indoor units to be cooled is larger than the total capacity of the indoor units to be heated) of the embodiment shown in FIG. 1, 5
The figure is an overall configuration diagram centering on a refrigerant system of an air conditioner according to another embodiment of the present invention. In the figure, (A) is a heat source device, (B) and (C) are indoor units, (E) is a relay device, (1) is a compressor, (2) is a four-way switching valve, and (3) is the heat source device side. Heat exchanger, (4) accumulator, (5) indoor heat exchanger, (6) first connecting pipe, (6b), (6c) first indoor unit connecting pipe,
(7) is the second connecting pipe, (7b) and (7c) are the second connecting pipes on the indoor unit side, (8) is the three-way switching valve, (9) is the first flow control device, and (10). Is the first branch, (10b), (10
c) and (10d) are the first branch openings, (11) are the second branch sections,
(11b), (11c) and (11d) are second branch ports, (12) is a gas-liquid separator (pipe branch part), (13) is a second flow rate controller, (14) is bypass pipe, (15) is a third flow rate adjusting device, (16a), (16b), (16c) and (16d) are second and third heat exchange units, (17) is a fourth flow rate controlling device, and (19). )
Is the first heat exchange section, (23) is the first temperature detector, and (25)
Is a first pressure detector, (27) first supercooling degree calculating means,
(29) is a control means, (32) is a third check valve, (33) is a fourth check valve, (34) is a fifth check valve, and (35) is a sixth check valve. , (40) is a connection pipe switching device, (44) is a first integrated section, and (45) is a second integrated section. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、切換弁、熱源機側熱交換器等より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを、第1、第2の接続配管を介して接
続したものにおいて、上記複数台の室内機の上記室内側
熱交換器の一方を上記第1の接続配管または、第2の接
続配管に切り換え可能に接続する第1の分岐部と、上記
複数台の室内機の上記室内側熱交換器の他方に接続され
かつ上記第2の接続配管に接続してなる第2の分岐部
と、上記第2の接続配管から分岐して上記第1の分岐部
に到る配管を分岐する配管分岐部と、上記配管分岐部と
上記室内側熱交換器の他方とを接続する管路途中に設け
られて、冷媒の流量を制御する流量制御装置と、上記第
1の分岐部に設けられ、上記室内側熱交換器の一方に接
続する複数の第1の分岐口とを備え、上記第1の分岐口
の数と上記室内機の台数が異なるように配置したことを
特徴とする空気調和装置。
1. A first and second connection of a heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger and the like, and a plurality of indoor units each having an indoor side heat exchanger. A first branch part that connects one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe in a connected manner via a pipe. A second branch part connected to the other of the indoor heat exchangers of the plurality of indoor units and connected to the second connection pipe; and a second branch part branched from the second connection pipe A flow control device for controlling the flow rate of the refrigerant, which is provided in the middle of a pipe connecting the pipe branch part that branches the pipe reaching the branch part 1 and the other of the indoor heat exchangers. And a plurality of first plurality of first branch units provided in the first branch portion and connected to one of the indoor heat exchangers. A 岐口, air conditioner, characterized in that the first number and the number of the indoor unit of the branch opening is arranged differently.
【請求項2】一端が第2の分岐部に接続され、他端が第
3の流量制御装置を介して低圧となる接続配管に接続さ
れたバイパス配管と、上記第3の流量制御装置下流側バ
イパス配管と各室内機と上記第2の分岐部とを接続する
接続配管との間で熱交換を行なう熱交換部と、この熱交
換部に対応して設けられ、室内側熱交換器の他方に接続
する複数の第2の分岐口とを備え、この第2の分岐口の
数と上記室内機の台数が異なるように配置したことを特
徴とする請求項1記載の空気調和装置。
2. A bypass pipe, one end of which is connected to the second branch portion, and the other end of which is connected to a connection pipe having a low pressure through a third flow control device, and a downstream side of the third flow control device. A heat exchanging portion for exchanging heat between the bypass pipe, each indoor unit and the connecting pipe connecting the second branch portion, and the other of the indoor heat exchangers provided corresponding to the heat exchanging portion. 2. The air conditioner according to claim 1, further comprising a plurality of second branch ports connected to each other, and the second branch ports and the number of the indoor units are different from each other.
【請求項3】熱交換部は、室内機と第2の分岐部とを接
続する複数の接続配管にそれぞれ設け、各熱交換部の熱
交換容量を略々同一としたことを特徴とする請求項2記
載の空気調和装置。
3. The heat exchange section is provided in each of a plurality of connection pipes connecting the indoor unit and the second branch section, and the heat exchange capacities of the heat exchange sections are substantially the same. Item 2. The air conditioner according to item 2.
【請求項4】室内機の容量に応じて、第1の分岐口を単
独または複数統合して上記室内機に接続し、かつ第2の
分岐口を単独または複数統合して上記室内機に接続する
ことを特徴とする請求項1記載の空気調和装置。
4. Depending on the capacity of the indoor unit, the first branch port is singly or plurally integrated and connected to the indoor unit, and the second branch port is singly or plurally integrated and connected to the indoor unit. The air conditioner according to claim 1, wherein
JP2107911A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JPH0769097B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107911A JPH0769097B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107911A JPH0769097B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046368A JPH046368A (en) 1992-01-10
JPH0769097B2 true JPH0769097B2 (en) 1995-07-26

Family

ID=14471185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107911A Expired - Lifetime JPH0769097B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0769097B2 (en)

Also Published As

Publication number Publication date
JPH046368A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JP2522361B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JPH08291952A (en) Air conditioner
JP2616523B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2616525B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2503669B2 (en) Air conditioner
JPH0769097B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus
JP3092214B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JPH0752045B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JPH07104075B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 15