JPH0766869B2 - Plasma x-ray source - Google Patents

Plasma x-ray source

Info

Publication number
JPH0766869B2
JPH0766869B2 JP61231180A JP23118086A JPH0766869B2 JP H0766869 B2 JPH0766869 B2 JP H0766869B2 JP 61231180 A JP61231180 A JP 61231180A JP 23118086 A JP23118086 A JP 23118086A JP H0766869 B2 JPH0766869 B2 JP H0766869B2
Authority
JP
Japan
Prior art keywords
plasma
ray source
capacitor
discharge
discharge device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61231180A
Other languages
Japanese (ja)
Other versions
JPS6388795A (en
Inventor
浩 有田
光二 鈴木
幸夫 黒沢
邦夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61231180A priority Critical patent/JPH0766869B2/en
Publication of JPS6388795A publication Critical patent/JPS6388795A/en
Publication of JPH0766869B2 publication Critical patent/JPH0766869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSI製造用X線リソグラフイ装置のX線源に係
り、特にX線強度向上を図つたプラズマX線源に関す
る。
Description: TECHNICAL FIELD The present invention relates to an X-ray source for an X-ray lithographic apparatus for LSI manufacturing, and more particularly to a plasma X-ray source for improving the X-ray intensity.

〔従来の技術〕[Conventional technology]

従来装置としては、例えば特開昭60−151945号公報に示
されているようなものが知られている。これは第7図に
示すように、充電用電源1,充電用抵抗2,コンデンサ3,放
電スイツチ4,電路7,放電装置5から構成されている。16
は露光用マスク、17は露光ウエーハ、19はアライナであ
る。放電装置5は、図示していない排気装置,絶縁スペ
ーサ18,電極11,12から構成されている。動作は先ず適当
に制御された充電用電源1より充電用抵抗2を介してコ
ンデンサ3に電力を供給し、所定の電圧まで充電する。
その後、放電スイツチ4を図示しない外的要因により閉
じて、電路7(7は高圧伝送板8,低圧伝送板9,絶縁スペ
ーサ10により構成されている)を経由し、放電装置5の
有する一対の電極11,12間に、上記電圧を印加して放電
を起こさせ、そしてプラズマを生成し、それ以後コンデ
ンサに蓄えられたエネルギーを供給することによつてプ
ラズマピンチを生じさせ、X線14を放出させる。保護抵
抗6は放電装置5で、放電を生じなかつた場合、コンデ
ンサ3のエネルギーを吸収するために設けたものであ
る。このX線14はX線取り出し窓15とX線マスク16を通
してレジストを塗布したウエーハ17に照射され、露光す
る。このような従来装置は、まだ研究の段階であり、電
源コンデンサには一般に電力用に使用されている油浸紙
コンデンサや、油浸プラスチツクフイルムコンデンサな
どが使用されている。
As a conventional device, for example, one disclosed in Japanese Patent Laid-Open No. 60-151945 is known. As shown in FIG. 7, it is composed of a charging power source 1, a charging resistor 2, a capacitor 3, a discharging switch 4, an electric circuit 7, and a discharging device 5. 16
Is an exposure mask, 17 is an exposure wafer, and 19 is an aligner. The discharge device 5 includes an exhaust device (not shown), an insulating spacer 18, and electrodes 11 and 12. In operation, power is first supplied to the capacitor 3 from the appropriately controlled charging power source 1 via the charging resistor 2 to charge the capacitor 3 to a predetermined voltage.
After that, the discharge switch 4 is closed by an external factor (not shown), and passes through the electric path 7 (7 is composed of the high-voltage transmission plate 8, the low-voltage transmission plate 9, and the insulating spacer 10) and the pair of discharge devices 5 has The above voltage is applied between the electrodes 11 and 12 to cause discharge, and plasma is generated. Thereafter, the energy stored in the capacitor is supplied to generate a plasma pinch and emit X-rays 14. Let The protection resistor 6 is provided in the discharge device 5 to absorb the energy of the capacitor 3 when no discharge occurs. This X-ray 14 is applied to a resist-coated wafer 17 through an X-ray extraction window 15 and an X-ray mask 16 to expose it. Such a conventional device is still in the research stage, and an oil-immersed paper capacitor or an oil-immersed plastic film capacitor which is generally used for electric power is used as the power supply capacitor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、放電電流の立ち上り時間の点について
配慮がされておらず、弱いX線出力しか得られないこと
に問題があつた。すなわち、放電電流の立ち上り時間が
遅いと、電極間で発生したプラズマをピンチさせる磁気
力が弱くなるため、結果的にX線出力が弱くなる傾向に
ある。従来技術の場合、放電スイツチと放電管を結ぶ電
路が比較的長く、この電路のインダクタンスが小さくで
きないため、早い立ち上り時間の放電電流を得ることは
困難であつた。
The prior art described above has a problem in that the rise time of the discharge current is not taken into consideration and only a weak X-ray output can be obtained. That is, when the rise time of the discharge current is slow, the magnetic force for pinching the plasma generated between the electrodes becomes weak, and as a result, the X-ray output tends to become weak. In the case of the conventional technique, since the electric path connecting the discharge switch and the discharge tube is relatively long and the inductance of this electric path cannot be reduced, it is difficult to obtain a discharge current with a fast rise time.

本発明の目的は、上記した従来技術の欠点を除去し、強
いX線出力の得られるプラズマX線源を提供することに
ある。
It is an object of the present invention to eliminate the above-mentioned drawbacks of the prior art and to provide a plasma X-ray source capable of obtaining a strong X-ray output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では上記目的を達成するために、コンデンサバン
クを平行導体板に複数個のセラミツクコンデンサをサン
ドイツチ状にし、かつ平行導体板の少なくとも1個所か
ら電路を設けたものをユニツトとし、電気的に複数個の
ユニツトを並列接続した。
In the present invention, in order to achieve the above object, a capacitor bank is formed into a parallel conductor plate and a plurality of ceramic capacitors are formed in a sun-gate shape, and an electric path is provided from at least one place of the parallel conductor plate as a unit, and a plurality of electrically conductive plates are electrically connected. The units were connected in parallel.

〔作用〕[Action]

セラミツクコンデンサを複数個平行平板間に配設してあ
るため、回路的に分布定数回路となり、ある電圧を充電
しておいて、回路的に短絡させると矩形波状の電流が流
れることになり、電流の立ち上り峻度はきわめて大きく
なる。負荷が低インピーダンスの放電装置の場合にも同
様のことが生じて電流波形の立ち上り峻度はきわめて大
きくなる。このように放電電流の立ち上り峻度がきわめ
て大きくなることにより、放電装置のプラズマの加熱温
度が上り、強いX線放射を得ることができる。
Since a plurality of ceramic capacitors are arranged between parallel plates, it becomes a distributed constant circuit in the circuit, and if a certain voltage is charged and short-circuited in the circuit, a rectangular wave current will flow, The rising steepness of is extremely large. The same phenomenon occurs in the case of a discharge device having a low impedance load, and the rising steepness of the current waveform becomes extremely large. Since the rising steepness of the discharge current becomes extremely large in this way, the plasma heating temperature of the discharge device rises, and strong X-ray radiation can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第2図により説明す
る。ここで、第7図の実施例と同一構成要素には同一番
号を付けてある。セラミツクコンデンサ20が、高圧導体
板22,低圧導体板21間にサンドイツチ状に設けてある。
第1図をひとつのユニツト板として、2ユニツトを重ね
たものを第2図に示す。導体板の一方は同軸ケーブル23
を介して放電スイツチ4に接続され、伝送板8,9を介し
て放電管5に接続されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Here, the same components as those in the embodiment of FIG. 7 are designated by the same reference numerals. The ceramic capacitor 20 is provided between the high-voltage conductor plate 22 and the low-voltage conductor plate 21 in the shape of a sun gate.
FIG. 2 shows one unit plate of FIG. 1 and two units stacked. One side of the conductor plate is coaxial cable 23
Is connected to the discharge switch 4 via the transmission plate 8 and is connected to the discharge tube 5 via the transmission plates 8 and 9.

セラミツクコンデンサ20が充電されたあと、放電スイツ
チ4を入れると、セラミツクコンデンサ20の電荷は急速
に電極11,12間に放出される。この時、この回路は分布
定数回路となり、放電管までの電路の最も短い位置にあ
るセラミツクコンデンサ20aの電荷が最初に電極11,12間
に到達し、ある一定の遅延時間後に順次、セラミツクコ
ンデンサ20b,20c,…,20hの電荷が流入する。このため、
放電電流波形は、第3図(a)に示すようになる。この
ため従来例の放電電流波形(b)に比べて、立ち上り時
間の早い放電電流波形が得られる。この結果、電極間1
1,12にあるプラズマをピンチさせるに必要な磁気力が強
く、加熱温度が上がるため、強力なX線出力を得ること
ができる。またこの発明例の場合、高圧導体板が内側に
入つており、コンデンサバンク24の感電に対する安全性
の高い構造となつている。さらにユニツト板構造となつ
ているので、コンデンサ容量変更等のメインテナンスが
容易になる特有の効果も有する。
When the discharge switch 4 is put in after the ceramic capacitor 20 is charged, the electric charge of the ceramic capacitor 20 is rapidly released between the electrodes 11 and 12. At this time, this circuit becomes a distributed constant circuit, and the electric charge of the ceramic capacitor 20a at the shortest position of the electric path to the discharge tube first reaches between the electrodes 11 and 12, and after a certain delay time, the ceramic capacitor 20b sequentially. , 20c, ..., 20h charge flows in. For this reason,
The discharge current waveform is as shown in FIG. Therefore, as compared with the discharge current waveform (b) of the conventional example, a discharge current waveform having a faster rise time can be obtained. As a result, between the electrodes 1
Since the magnetic force required to pinch the plasma at 1, 12 is strong and the heating temperature rises, a strong X-ray output can be obtained. Further, in the case of the present invention example, the high-voltage conductor plate is inserted inside, and the structure of the capacitor bank 24 is highly safe against electric shock. Further, since it has a unit plate structure, it also has a unique effect of facilitating maintenance such as change of capacitor capacity.

第4図,第5図は本発明の他の実施例である。第5図は
第4図のAA′視図を示している。構成はほぼ第2図と同
様となつているが、X線リソグラフイ用X線源として使
用する場合の実規模のコンデンサバンクを示している。
通常コンデンサバンクの電荷エネルギーは次式で示され
る。
4 and 5 show another embodiment of the present invention. FIG. 5 shows a view of AA ′ of FIG. The configuration is almost the same as that of FIG. 2, but shows a real-scale capacitor bank when used as an X-ray source for X-ray lithography.
The charge energy of a normal capacitor bank is given by the following equation.

但しC:コンデンサ容量(μF),V:充電電圧(kV)必要
なエネルギーは数kJである。今E=3.125(kJ)V=50
(kV)とすると必要な容量C=2.5(μF)となる。一
般に高電圧用セラミツクコンデンサ容量は2000pF程度で
あるので、実装個数は1250個となる。このため、多数個
を実装する方法が重要となる。ユニツト板は横方向に13
個、2列に並べ合計26個実装する。このユニツト板を絶
縁物25をはさんで、高圧導体板22同志を重ねる。この様
にしてユニツト板・48組をコンデンサバンク24中に収納
する構造となつている。実装コンデンサ個数は1248個
(=26×48)である。セラミツクコンデンサ自身に荷重
をかけないように、コンデンサバンク24は仕切り板24a
によつて4段構造としている。本発明例の場合多数のセ
ラミツクコンデンサを実装可能であり、しかもユニツト
構造を取つているため、放電時の電流分布は、各ユニツ
ト均一にでき、再現性の良い放電電流を得る効果があ
る。
However, C: capacitor capacity (μF), V: charging voltage (kV) The required energy is several kJ. Now E = 3.125 (kJ) V = 50
If it is (kV), the required capacitance C = 2.5 (μF). Generally, the capacity of high voltage ceramic capacitors is about 2000pF, so the number of mounted capacitors is 1250. Therefore, the method of mounting a large number is important. The unit plate is 13
A total of 26 pieces are arranged in two rows. This unit plate is sandwiched with an insulator 25, and the high voltage conductor plates 22 are stacked. In this way, the structure is such that 48 sets of unit plates are stored in the capacitor bank 24. The number of mounted capacitors is 1248 (= 26 x 48). The capacitor bank 24 is a partition plate 24a so as not to apply a load to the ceramic capacitor itself.
Has a four-stage structure. In the case of the example of the present invention, a large number of ceramic capacitors can be mounted, and since the unit structure is adopted, the current distribution during discharge can be made uniform in each unit, and there is an effect of obtaining a discharge current with good reproducibility.

第6図は本発明のさらに他の実施例を示す。コンデンサ
バンク24の上面図のみを示す。放電スイツチとの接続部
は第4図と同様である。第6図は大面積の平行平板間に
セラミツクコンデンサを配設した場合である。放電時の
電流分布の均一性を得るため、電流阻止用スリツト26を
設けている。これにより、第4図と同一の効果を得るこ
とができ、強いX線出力が得られる。
FIG. 6 shows still another embodiment of the present invention. Only the top view of the capacitor bank 24 is shown. The connection with the discharge switch is the same as in FIG. FIG. 6 shows a case where a ceramic capacitor is arranged between parallel plates having a large area. A current blocking slit 26 is provided to obtain a uniform current distribution during discharge. As a result, the same effect as in FIG. 4 can be obtained, and a strong X-ray output can be obtained.

なお、第2図・第4図・第6図の実施例ではコンデンサ
をすべてセラミツクコンデンサとしており、従来の油浸
フイルムを用いたコンデンサに比べて、2桁程度、充放
電回数の寿命が伸びるという付帯的な効果も有する。
In the embodiments of FIGS. 2, 4, and 6, all the capacitors are ceramic capacitors, and it is said that the life of the number of times of charging and discharging is extended by about two digits as compared with the capacitors using the conventional oil-immersed film. It also has an incidental effect.

〔発明の効果〕〔The invention's effect〕

本発明によれば、コンデンサバンクを平行導体板にセラ
ミツクコンデンサを複数個サンドイツチ状にし、かつ平
行導体板の少なくとも1箇所から電路を設けたものをユ
ニツトととし、複数個のユニツトを並列接続したもので
あるから、早い立ち上りの放電電流を得ることができ、
電極間のプラズマを短時間に強力にピンチすることがで
きるので、強いX線出力を得る効果がある。
According to the present invention, a capacitor bank is a parallel conductor plate having a plurality of ceramic capacitors in the shape of a sun-gate, and an electric path is provided from at least one position of the parallel conductor plate as a unit, and a plurality of units are connected in parallel. Therefore, it is possible to obtain a fast rising discharge current,
Since the plasma between the electrodes can be strongly pinched in a short time, a strong X-ray output can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例、第2図は本発明の他の実施
例、第3図は代表的放電電流波形、第4図は本発明の別
の実施例、第5図は本発明の別の実施例の上面図、第6
図は本発明のさらに別の実施例、第7図は従来例を示
す。 5……放電装置、11,12……電極、21,22……導体板、20
……セラミツクコンデンサ、26……電流阻止用スリツ
ト。
1 is an embodiment of the present invention, FIG. 2 is another embodiment of the present invention, FIG. 3 is a typical discharge current waveform, FIG. 4 is another embodiment of the present invention, and FIG. Top view of another embodiment of the invention, sixth
FIG. 7 shows another embodiment of the present invention, and FIG. 7 shows a conventional example. 5 ... Discharge device, 11, 12 ... Electrodes, 21, 22 ... Conductor plate, 20
…… Ceramic capacitor, 26 …… Current blocking slit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空容器内に設けられた少なくとも一対の
電極を有する放電装置と、該放電装置にパルス大電流を
供給する電路とコンデンサバンクからなるプラズマX線
源において、コンデンサバンクを平行導体板に複数個の
セラミツクコンデンサをサンドイツチ状に接続し、かつ
平行導体板の少なくとも1箇所から電路を設けたものを
ユニツトとして電気的に複数の該ユニツトを並列接続し
たことを特徴とするプラズマX線源。
1. A plasma X-ray source comprising a discharge device having at least a pair of electrodes provided in a vacuum container, and an electric circuit for supplying a large pulse current to the discharge device, and a capacitor bank. A plasma X-ray source characterized in that a plurality of ceramic capacitors are connected to each other in the shape of a sun deer, and a plurality of units are electrically connected in parallel as a unit in which an electric path is provided from at least one location of a parallel conductor plate. .
【請求項2】真空容器内に設けられた少なくとも一対の
電極を有する放電装置と、該放電装置にパルス大電流を
供給する電路とコンデンサバンクからなるプラズマX線
源において、コンデンサバンクを平行導体板に複数個の
セラミツクコンデンサをサンドイツチ状に接続したもの
とし、該平行導体板に横方向電流阻止用スリツトを設け
たことを特徴とするプラズマX線源。
2. A plasma X-ray source comprising a discharge device having at least a pair of electrodes provided in a vacuum container, a circuit for supplying a large pulse current to the discharge device, and a capacitor bank. 2. A plasma X-ray source, characterized in that a plurality of ceramic capacitors are connected to each other in a sun-gate shape, and a parallel current blocking slit is provided on the parallel conductor plate.
JP61231180A 1986-10-01 1986-10-01 Plasma x-ray source Expired - Lifetime JPH0766869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231180A JPH0766869B2 (en) 1986-10-01 1986-10-01 Plasma x-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231180A JPH0766869B2 (en) 1986-10-01 1986-10-01 Plasma x-ray source

Publications (2)

Publication Number Publication Date
JPS6388795A JPS6388795A (en) 1988-04-19
JPH0766869B2 true JPH0766869B2 (en) 1995-07-19

Family

ID=16919572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231180A Expired - Lifetime JPH0766869B2 (en) 1986-10-01 1986-10-01 Plasma x-ray source

Country Status (1)

Country Link
JP (1) JPH0766869B2 (en)

Also Published As

Publication number Publication date
JPS6388795A (en) 1988-04-19

Similar Documents

Publication Publication Date Title
WO2019223407A1 (en) Gas switch triggered by optical pulse introduced by optical fiber
US3643094A (en) Portable x-ray generating machine
JP2774326B2 (en) Pulse power linear accelerator
JPH0766869B2 (en) Plasma x-ray source
US2937301A (en) Electric-discharge device and cathode
JPS63308896A (en) Plasma x-ray source
JP2533568B2 (en) Plasma x-ray source
JPS6372052A (en) Plasma x-ray source
JPH05275116A (en) Overvoltage protecting device for assembled-type battery
US2525205A (en) Electric device for the operation of x-ray tubes
JPH01236598A (en) Plasma x-ray source
US3921097A (en) Crossed-field excitation, pulsed gas laser
JPH0250600B2 (en)
GB1594897A (en) Vacuum gap device
US3773050A (en) Defibrillator with flash tube switch
JPS5968127A (en) Porcelain-type breaker
SU1637032A1 (en) Impulsive roentgen apparatus
JPS63316000A (en) Plasma x-ray source
US5208844A (en) Electronic devices using discrete, contained charged particle bundles and sources of same
JPS6348799A (en) X-ray generator
JP3441218B2 (en) Semiconductor switch device and electric device using the same
JPS61125096A (en) Discharge device of gas laser
JPS6457599A (en) Plasma x-ray source
JP2532443B2 (en) Plasma X-ray generator
JPH01698A (en) plasma x-ray source