JPH0764638B2 - Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool - Google Patents

Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Info

Publication number
JPH0764638B2
JPH0764638B2 JP62030839A JP3083987A JPH0764638B2 JP H0764638 B2 JPH0764638 B2 JP H0764638B2 JP 62030839 A JP62030839 A JP 62030839A JP 3083987 A JP3083987 A JP 3083987A JP H0764638 B2 JPH0764638 B2 JP H0764638B2
Authority
JP
Japan
Prior art keywords
powder
boron nitride
sintered body
cubic boron
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62030839A
Other languages
Japanese (ja)
Other versions
JPS63201065A (en
Inventor
文洋 植田
弘一 中野
薫 川田
逸郎 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62030839A priority Critical patent/JPH0764638B2/en
Publication of JPS63201065A publication Critical patent/JPS63201065A/en
Publication of JPH0764638B2 publication Critical patent/JPH0764638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐摩耗性(粒子の耐脱落性)にすぐれ、特
に鋳鉄の仕上加工に切削工具として使用するのに適した
立方晶窒化硼素(以下、CBNで示す)基超高圧焼結体の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a cubic boron nitride excellent in wear resistance (particle drop resistance) and particularly suitable for use as a cutting tool for finishing cast iron. The present invention relates to a method for manufacturing a base ultra-high pressure sintered body (hereinafter referred to as CBN).

〔従来の技術〕[Conventional technology]

近年、鋳鉄の仕上加工に、500m/min.のような高い切削
速度で切削する切削工具が用いられ、これにはCBN基超
高圧焼結体が使用されるようになり、このようなCBN基
超高圧焼結体として、例えば、周期律表の4a族、5a族、
および6a族元素の炭化物、窒化物、硼化物、珪化物、Al
2O3、MgO、AlN、Si3N4のうちの1種または2種以上:20
〜80重量%と、CBNおよび不可避不純物:残り、からな
る組成を有するものが提案されている(特公昭57−3631
号公報参照)。
In recent years, for finishing of cast iron, a cutting tool that cuts at a high cutting speed of 500 m / min. Has been used, and a CBN-based ultra-high pressure sintered body has come to be used for this. As an ultra-high pressure sintered body, for example, 4a group of the periodic table, 5a group,
And carbides of 6a group elements, nitrides, borides, silicides, Al
One or more of 2 O 3 , MgO, AlN, and Si 3 N 4 : 20
-80% by weight, CBN and unavoidable impurities: the rest is proposed (Japanese Patent Publication No. 57-3631).
(See the official gazette).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記の従来CBN基超高圧焼結体のうち、
炭化チタン(以下、TiCで示す)と、CBNおよび不可避不
純物からなるCBN基超高圧焼結体を仕上加工用の切削工
具として、例えば鋳鉄に穴明け加工を施すのに用いた場
合には、3.2Sの面粗度を得るのが限度であって、従来、
鋳鉄の研削加工において得られている寸法精度と面粗度
に及ばず、そのため、鋳鉄の研削加工から、より加工能
率の高い切削加工へと移行しつつある現状において、上
記CBN基超高圧焼結体では、鋳鉄の仕上加工用切削工具
とした場合、満足な寸法精度と面粗度を得るとこができ
ず、したがって上記従来のCBN基超高圧焼結体は、仕上
加工用の切削工具として適していないという問題があ
り、このようなCBN基超高圧焼結体が鋳鉄の仕上加工に
も利用できるためには、当面、被加工物を少なくとも1.
6Sの面粗度に仕上げられることが必要である。
However, among the above conventional CBN-based ultra-high pressure sintered bodies,
If a CBN-based ultra-high pressure sintered body composed of titanium carbide (hereinafter referred to as TiC) and CBN and unavoidable impurities is used as a cutting tool for finishing work, for example, for drilling cast iron, 3.2 The limit is to obtain the surface roughness of S.
The dimensional accuracy and surface roughness obtained in the grinding of cast iron are inferior, and therefore, in the present situation where the grinding of cast iron is shifting to the cutting with higher processing efficiency, the above CBN-based ultra-high pressure sintering However, when used as a cutting tool for finishing cast iron, it is not possible to obtain satisfactory dimensional accuracy and surface roughness.Therefore, the conventional CBN-based ultra-high pressure sintered body is suitable as a cutting tool for finishing. In order for such a CBN-based ultra-high pressure sintered body to be used for finishing of cast iron, at least 1.
It needs to be finished to a surface roughness of 6S.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上記のような従来CBN基超高圧
焼結体のもつ問題点を解決するために種々研究を重ねた
結果、 (1) TiC粒子とCBN粒子とからなるCBN基超高圧焼結
体(以下、焼結体ともいう)中でTiC粒子どうし、およ
びCBN粒子どうしが接触したところでは、結合強度の弱
いガラス相が界面に形成されやすく、このガラス相は、
切削加工中に刃先温度が上昇することによって粒界強度
を低下させるため、刃先表面で前記粒子を十分に保持で
きず、それによって粒子は早目にその表面から脱落し
て、そこに比較的大きな凹部が生じるので、前記ガラス
相に富む材料を切削工具として使用した場合は、製品の
面粗度が低下すること、 (2) 一方、TiC粒子とCBN粒子との界面では安定な硼
化チタン(以下、TiB2で示す)が形成され、この安定な
TiB2に富んだ反応相は、上記とは逆に、刃先温度が上昇
しても十分は粒界強度を維持して粒子をしっかりと保持
し、それにより粒子は刃先表面から脱落しないで徐々に
摩耗して、その表面には前記凹部が生じないので、刃先
表面は切削加工中比較的滑らかに維持され、したがっ
て、前記反応相に富むCBN基超高圧焼結体を切削工具と
して使用した場合は、製品の寸法精度と面粗度が向上す
ること、 (3) 粒子界面において、前記ガラス相の形成を減ら
すとともに、前記TiB2に富んだ反応相の形成を増大させ
るためには、TiC粒子とCBN粒子との粒度を揃え、かつ両
者の容量を基にした配合割合をなるべく等しくすればよ
いこと、 (4) TiC粒子とCBN粒子とからなる焼結体の特性を損
わない範囲で前記第(3)項記載の要求を満たすために
は、原料粉末であるTiC粉末とCBN粉末の平均粒径をいず
れも0.5〜5μとするとともに、それらの間の平均粒径
比を相互に0.5〜2.0の範囲内におさめ、かつ両者の配合
割合を、容量%で、TiC粉末:40〜60%、CBN粉末:残
り、とすればよいこと、および (5) 前記第(4)項記載の焼結体中に含まれる不純
物のうち、例えばボールミルのような混合装置による混
合、またはその他の原因によって混入してくる鉄族金属
とWとからなる不純物を混合粉末から除去して、その含
有量を、0.5容量%以下に抑えると、この結果の焼結体
は靭性が向上するとともに、それの高温における耐溶着
性、したがって耐摩耗性が向上するので、このような耐
熱性をそなえた焼結体では高温に曝される高速切削にお
いてもすぐれた寸法精度と面粗度を維持できること、 以上(1)〜(5)に示される研究結果を得たのであ
る。
Therefore, the present inventors have conducted various studies to solve the problems of the conventional CBN-based ultra-high pressure sintered body as described above, and as a result, (1) a CBN-based super-compound composed of TiC particles and CBN particles When TiC particles and CBN particles contact each other in a high-pressure sintered body (hereinafter, also referred to as a sintered body), a glass phase with weak bonding strength is easily formed at the interface.
Since the grain boundary strength is reduced by the rise of the cutting edge temperature during cutting, the particles cannot be sufficiently held on the cutting edge surface, whereby the particles fall off from the surface prematurely and there are relatively large particles. Since a concave portion is formed, when the material rich in the glass phase is used as a cutting tool, the surface roughness of the product is reduced. (2) On the other hand, stable titanium boride (at the interface between the TiC particles and the CBN particles ( Below, TiB 2 ) is formed and this stable
Contrary to the above, the reaction phase rich in TiB 2 maintains the grain boundary strength sufficiently and firmly holds the particles even when the cutting edge temperature rises, so that the particles do not fall off from the cutting edge surface and gradually The surface of the cutting edge is kept relatively smooth during cutting as it wears out and the recesses do not occur on its surface, and therefore, when the CBN-based ultra-high pressure sintered body rich in the reaction phase is used as a cutting tool. (3) In order to reduce the formation of the glass phase at the grain interface and increase the formation of the TiB 2 -rich reaction phase at the grain interface, it is necessary to improve the dimensional accuracy and surface roughness of the product. The particle size of the CBN particles should be the same, and the mixing ratio based on the volumes of both should be as equal as possible. In order to meet the requirements described in (3), raw powder The average particle size of both TiC powder and CBN powder is 0.5 to 5μ, and the average particle size ratio between them is kept within the range of 0.5 to 2.0. Then, TiC powder: 40 to 60%, CBN powder: rest, and (5) Among impurities contained in the sintered body according to (4), a mixture such as a ball mill is used. Impurities consisting of iron group metal and W, which are mixed by the device or mixed for other reasons, are removed from the mixed powder and the content thereof is suppressed to 0.5% by volume or less, the resulting sintered body is Since the toughness is improved and the welding resistance at high temperatures, and therefore the wear resistance, is improved, such a heat-resistant sintered body has excellent dimensional accuracy and surface even in high-speed cutting exposed to high temperatures. Roughness can be maintained, above (1) to (5 Than it was to obtain the results of a study it is shown in.

この発明は、上記研究結果に基づいてなされたもので、
すぐれた「粒子の耐脱落性」を有し、特に鋳鉄の仕上加
工において製品の寸法精度と面粗度を改善できる切削工
具として用いるのに適したCBN基超高圧焼結体を製造す
る方法を提供することを目的とし、 原料粉末として、いずれも0.5〜5μの平均粒径を有す
るTiC粉末とCBN粉末を用い、これら両粉末を、 TiC粉末:40〜60容量%、CBN粉末:残り、 の割合で、かつこれら両粉末の平均粒径比が0.5〜2を
満足する条件で配合すると共に、混合粉末中に混入する
Fe,Ni,Co、およびWのうちの1種または2種以上からな
る不純物を除去して、混合粉末中の前記不純物の含有量
を0.5容量%以下とすることにより、実質的にTiC粒子ど
うしおよびCBN粒子どうしの接触がなく、これらTiC粒子
とCBN粒子の界面にTiB2に富んだ反応相が存在する組織
を有する切削工具用CBN基超高圧焼結体を製造する方法
に特徴を有するものである。
This invention was made based on the above research results,
A method for producing a CBN-based ultra-high pressure sintered body that has excellent "particle detachment resistance" and is particularly suitable for use as a cutting tool that can improve the dimensional accuracy and surface roughness of products in the finishing of cast iron. For the purpose of providing, TiC powder and CBN powder each having an average particle size of 0.5 to 5μ are used as raw material powders, and both of these powders are TiC powder: 40 to 60% by volume, CBN powder: rest, And mix them in the mixed powder in proportion to each other and the condition that the average particle diameter ratio of these two powders satisfies 0.5 to 2.
By removing impurities consisting of one or more of Fe, Ni, Co, and W so that the content of the impurities in the mixed powder is 0.5% by volume or less, the TiC particles are substantially separated from each other. Characterized by a method for producing a CBN-based ultra-high pressure sintered body for a cutting tool, which has a structure in which a TiB 2 -rich reaction phase exists at the interface between these TiC particles and CBN particles without contact between CBN particles and CBN particles Is.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described.

A.配合組成 TiC粉末には、焼結体に耐摩耗性を付与する作用がある
が、その割合が40%(容量%、以下同じ)未満では、耐
摩耗性が不足するようになるとともに、CBN粒子に対す
るTiC粒子の量が少なくなり過ぎて、CBN粒子どうしの接
触が増大し、それによって前記ガラス相の形成が著しく
なって焼結体の耐摩耗性が一層低下し、またその割合が
60%を越えると、CBN粒子の量が少なくなり過ぎて、焼
結体の熱伝導性が不足し、刃先に溶着が起こりやすくな
るとともに、TiC粒子どうしの接触が増大し、それによ
ってやはり前記ガラス相の形成が著しくなって焼結体の
耐摩耗性が低下し、もって、いずれの場合にも、これを
鋳鉄の仕上加工に使用すると、製品の寸法精度と面粗度
が低下するようになることから、その割合を40〜60%と
定めた。
A. Blend composition TiC powder has the effect of imparting wear resistance to the sintered body, but if the proportion is less than 40% (volume%, the same applies below), wear resistance will be insufficient and The amount of TiC particles relative to the CBN particles becomes too small, the contact between CBN particles increases, whereby the formation of the glass phase becomes remarkable and the wear resistance of the sintered body further decreases, and the ratio is
If it exceeds 60%, the amount of CBN particles will be too small, the thermal conductivity of the sintered body will be insufficient, welding will easily occur at the cutting edge, and the contact between TiC particles will increase, which also causes the above-mentioned glass. The formation of phases becomes remarkable and the wear resistance of the sintered body decreases, and in any case, when this is used for finishing of cast iron, the dimensional accuracy and surface roughness of the product will decrease. Therefore, the ratio was set to 40-60%.

なお、混合粉末中に混入する不純物のうち、鉄族金属と
Wからなる不純物は、焼結時にBと化合して部分的に液
相を生じ、それによってTiC粒子の成長を促して焼結体
の靭性を低下させるとともに、前記不純物と化合した状
態で焼結体中に含まれるB成分は、切削時に高温に曝さ
れることによって被削材中に拡散しやすくなり、その結
果刃先の耐溶着性を低下させてそれの摩耗を急激に増大
させる作用をもつので、格別の耐熱性と強度を付与し
て、これを高速切削にも適したものとするために、これ
ら不純物を混合粉末から除去して、その含有量を0.5%
以下に抑えることが肝要である。
Of the impurities mixed in the mixed powder, the impurities composed of the iron group metal and W combine with B at the time of sintering to partially form a liquid phase, which promotes the growth of TiC particles and thereby the sintered body. B component contained in the sintered body in a state of being combined with the impurities is easily diffused in the work material by being exposed to high temperature during cutting, resulting in welding resistance of the cutting edge. These impurities are removed from the mixed powder in order to impart special heat resistance and strength and to make it suitable for high speed cutting as well, since it has the effect of decreasing the heat resistance and rapidly increasing its wear. And its content is 0.5%
It is important to keep below.

B.平均粒径 CBN粉末およびTiC粉末の平均粒径がそれぞれ0.5μ未満
になると、焼結体中のそれらの粒子は小さくなり過ぎて
同種の粒子が互に凝集しやすくなり、それによってCBN
粒子どうしまたはTiC粒子どうしの接触が増大して、粒
界強度を低下させるガラス相が形成しやすくなり、一方
CBN粉末の平均粒径が5μを越えると、焼結体中のCBN粒
子自体が脆くなって焼結体の強度および耐摩耗性が低下
し、もって製品の寸法精度と面粗度が劣化するようにな
り、また前記ガラス相の形成を避けるにはTiC粉末の平
均粒径をCBN粉末のそれと揃える必要があることから、T
iC粉末およびCBN粉末の平均粒径をいずれも0.5〜5μと
定めた。
B. Average particle size When the average particle size of CBN powder and TiC powder is less than 0.5 μ, the particles in the sintered body become too small and the same kind of particles tend to agglomerate with each other.
The contact between particles or TiC particles increases, which facilitates the formation of a glass phase that reduces the grain boundary strength.
If the average particle size of the CBN powder exceeds 5μ, the CBN particles in the sintered body itself become brittle, and the strength and wear resistance of the sintered body decrease, which may deteriorate the dimensional accuracy and surface roughness of the product. In addition, in order to avoid the formation of the glass phase, it is necessary to make the average particle size of the TiC powder equal to that of the CBN powder.
The average particle size of both iC powder and CBN powder was set to 0.5 to 5 μm.

C.平均粒径比 TiC粉末とCBN粉末の平均粒径が前記範囲内にあっても、
それら相互の平均粒径比が0.5未満となるか、または2.0
を越すと、焼結体中でTiC粒子とCBN粒子との接触界面が
減少し、同種の粒子どうしの界面で形成れるガラス相の
割合が増大して、前述のような不都合を生ずるところか
ら、このTiC粉末とCBN粉末との平均粒径比を0.5〜2.0と
定めた。
C. Average particle size ratio Even if the average particle size of TiC powder and CBN powder is within the above range,
The mutual average particle size ratio is less than 0.5, or 2.0
If it exceeds, the contact interface between TiC particles and CBN particles in the sintered body will decrease, and the proportion of the glass phase formed at the interface between particles of the same type will increase, causing the aforementioned inconvenience, The average particle size ratio between the TiC powder and the CBN powder was set to 0.5 to 2.0.

なお、この発明の方法を実施するに際しては、通常の超
高圧焼結法、すなわち、まず原料粉末として、いずれも
平均粒径が0.5〜2.0の範囲内にあるCBN粉末とTiC粉末を
用意し、これら原料粉末のうちからTiC粉末とCBN粉末と
の平均粒径比が0.5〜2.0の範囲内となるものを適宜選択
して所定の配合組成に配合し、混合し、ついで、例え
ば、混合粉末調製中に、ボールミルのような混合装置か
ら混入してきた前記不純物を除去するために、例えば、
アセトン等の溶剤と混ざり合って、またスラリー状とな
っている混合粉末中で磁石をゆるやかに回転させ、それ
によって鉄族金属およびそれらと結合しているWを磁石
に吸着する方法、あるいは混合粉末を乾燥した後、それ
を酸洗して前記不純物を選択的に溶解する方法などを利
用することにより除去して、鉄族金属とWからなる不純
物の含有量を0.5%以下に低減し、つぎに混合粉末の状
態、あるいは圧粉体の状態で、必要に応じてWC基超硬合
金製プレートなどと一緒に、金属容器に挿入し、これを
800〜1200℃の温度に加熱して真空脱ガスを行って封入
し、引続いてこの封入容器を超高圧高温発生装置に装着
してから圧力および温度を上げ、圧力:40〜70Kb、温度:
1200〜1600℃の範囲内の圧力および温度に数分〜数10分
保持した後、冷却し、最終的に圧力を解放することから
なる基本的工程がとられる。
Incidentally, when carrying out the method of the present invention, a normal ultra-high pressure sintering method, that is, first as a raw material powder, both have an average particle size of 0.5 to 2.0 prepared CBN powder and TiC powder, From these raw material powders, those having an average particle size ratio of TiC powder and CBN powder within the range of 0.5 to 2.0 are appropriately selected and mixed into a predetermined composition and mixed, and then, for example, mixed powder preparation In order to remove the impurities mixed in from a mixing device such as a ball mill, for example,
A method in which a magnet is mixed with a solvent such as acetone or is gently rotated in a slurry-like mixed powder to thereby adsorb the iron group metal and W bound thereto to the magnet, or a mixed powder. After being dried, the impurities are removed by utilizing a method such as pickling and selectively dissolving the impurities to reduce the content of impurities of the iron group metal and W to 0.5% or less. If necessary, insert it into a metal container together with a WC-based cemented carbide plate, etc. in the mixed powder state or the green compact state,
It is heated to a temperature of 800 to 1200 ° C, vacuum degassed and sealed, and then this sealed container is attached to an ultrahigh pressure and high temperature generator, then the pressure and temperature are raised, pressure: 40 to 70 Kb, temperature:
The basic steps consist of holding the pressure and temperature in the range of 1200-1600 ° C for a few minutes to a few tens of minutes, then cooling and finally releasing the pressure.

さらに、この発明の方法で製造されたCBN基超高圧焼結
体を切削工具として使用するに当っては、単独で、ある
いはWC基超硬合金やサーメットなどの高剛性焼結体と複
合させた状態で、スローアウェイチップとして用いて
も、さらにこれらのチップをWC基超硬合金や焼入鋼など
でつくられたホルダの先端部にろう付けにより取り付け
た状態で用いてもよい。
Furthermore, in using the CBN-based ultra-high pressure sintered body produced by the method of the present invention as a cutting tool, alone or in combination with a high-rigidity sintered body such as WC-based cemented carbide or cermet. In this state, it may be used as a throw-away tip, or these tips may be attached to the tip of a holder made of WC-based cemented carbide or hardened steel by brazing.

〔実施例〕〔Example〕

ついで、この発明の方法を実施例によって説明する。 Next, the method of the present invention will be described with reference to examples.

原料粉末として、平均粒径:0.6μ,1.0μ,2.5μ,4.0μ、
および6.0μを有するCBN粉末、同0.3μ,1.5μ,2.5μ、
および5.0μを有するTiC粉末を用意し、これら原料粉末
を、それぞれ第1表に示される配合組成に配合した後、
ボールミルによりアセトン中で5〜40時間混合して、主
として混合装置に由来する鉄族金属とWからなる不純物
を1〜3%の範囲内で含む混合粉末とし、ついでこのア
セトンと混ざってスラリー状となっている混合粉末中
に、表面をテフロンシート(ただしテフロンは米国デュ
ポン社の商標)で被った円柱状の永久磁石を挿入し、前
記スラリー状混合粉末中でゆるやかに回転させて鉄族金
属とWからなる不純物を吸着除去し、それによってこの
不純物含有量が第1表に示されるように低減した混合粉
末を調製し、ついで、このように調製した混合粉末を2t
on/cm2の圧力で直径:13mm×厚さ:1.5mmの寸法を有する
円板状圧粉体に成形した後、これらの圧粉体を、超高圧
高温発生装置の容器内に装入し、圧力:50Kb、温度:1500
℃、保持時間:5分の条件で超高圧焼結することによって
本発明法1〜8を実施し、実質的に配合組成と同一の成
分組成をもち、かつ原料粉末と実質的に同一の平均粒径
を有するTiC粒子とCBN粒子からなるCBN基超高圧焼結体
を製造した。
As raw material powder, average particle size: 0.6μ, 1.0μ, 2.5μ, 4.0μ,
And CBN powder having 6.0μ, the same 0.3μ, 1.5μ, 2.5μ,
And a TiC powder having 5.0 μm are prepared, and these raw material powders are mixed with the compounding compositions shown in Table 1, respectively,
A ball mill is used to mix in acetone for 5 to 40 hours to obtain a mixed powder containing impurities of iron group metal and W mainly from the mixing device in the range of 1 to 3%, and then mixed with this acetone to form a slurry. A cylindrical permanent magnet whose surface was covered with a Teflon sheet (Teflon is a trademark of DuPont, USA) was inserted into the mixed powder, and gently rotated in the slurry-like mixed powder to form an iron group metal. A mixed powder was prepared by adsorbing and removing the impurities consisting of W, whereby the content of this impurity was reduced as shown in Table 1, and then 2 t of the mixed powder thus prepared was prepared.
After molding into a disk-shaped green compact having a diameter of 13 mm and a thickness of 1.5 mm at a pressure of on / cm 2 , these green compacts were placed in the container of the ultrahigh pressure and high temperature generator. , Pressure: 50Kb, temperature: 1500
C., holding time: Carrying out the method 1 to 8 of the present invention by performing ultra-high pressure sintering under the conditions of 5 minutes, and having the same component composition as the blending composition, and substantially the same average as the raw material powder. A CBN-based ultra-high pressure sintered body composed of TiC particles and CBN particles each having a particle size was manufactured.

さらに比較のため、第1表に示される通り、配合組成、
TiC粉末とCBN粉末の平均粒径、およびこれら平均粒径相
互の比のうちのいずれかがこの発明の範囲から外れた条
件(第1表中に※印で示す)とする以外は同一の条件で
比較法1〜5を行ない、CBN基超高圧焼結体を製造し
た。
For comparison, as shown in Table 1, the compounding composition,
The same conditions except that one of the average particle sizes of TiC powder and CBN powder and the ratio of the average particle sizes to each other is outside the scope of the present invention (indicated by * in Table 1). Comparative methods 1 to 5 were performed to produce a CBN-based ultrahigh pressure sintered body.

ついで、この結果得られた各種のCBN基超高圧焼結体に
ついて、靭性を評価する目的で靭性破壊値を測定し、ま
た高温における耐溶着性並びに耐摩耗性を評 価するとともに鋳鉄の仕上加工において得られる寸法精
度と面粗度を評価する目的で、上記各焼結体から切削チ
ップを切出し、WC基超硬合金製ホルダにろう付けし、研
磨仕上げした後、 被削材:鋳鉄(FC25)、 切削速度:700m/min.、 切込み:0.3mm、 送り:0.04mm/rev.、 切削時間:20mm、 の条件で連続高速切削試験を実施して、切刃の逃げ面摩
耗幅を測定するとともに、切削後の製品について、その
面粗度を測定した。これらの測定結果を第2表に示し
た。
Next, for the various CBN-based ultra-high pressure sintered bodies obtained as a result of this, the toughness fracture value was measured for the purpose of evaluating the toughness, and the welding resistance and wear resistance at high temperatures were evaluated. For the purpose of assessing the dimensional accuracy and surface roughness obtained in the finishing of cast iron with valuation, cutting chips are cut from each of the above sintered bodies, brazed to a WC-based cemented carbide holder, and after polishing finish, Work material: cast iron (FC25), cutting speed: 700 m / min., Depth of cut: 0.3 mm, feed: 0.04 mm / rev., Cutting time: 20 mm. The flank wear width was measured, and the surface roughness of the product after cutting was measured. The results of these measurements are shown in Table 2.

〔発明の効果〕〔The invention's effect〕

第1,2表に示される結果から、本発明法1〜8で製造さ
れたCBN基超高圧焼結体は、いずれも高い靭性と耐摩耗
性、さらに耐熱性をそなえているところから、高速切削
ですぐれた切削性能を発揮するとともに、鋳鉄の仕上加
工においてすぐれた寸法精度と面粗度を有する製品を製
造することができるのに対し、比較法1〜5に見られる
ように、配合組成、粉末の平均粒径、および粉末の平均
粒径比のうちのいずれかがこの発明の範囲から外れた条
件で製造されたCBN基超高圧焼結体では、前記寸法精度
と面粗度が劣っていることがわかる。
From the results shown in Tables 1 and 2, the CBN-based ultra-high pressure sintered bodies produced by the methods 1 to 8 of the present invention have high toughness, wear resistance, and heat resistance. In addition to exhibiting excellent cutting performance in cutting, it is possible to manufacture a product having excellent dimensional accuracy and surface roughness in finish processing of cast iron, while as shown in Comparative Methods 1 to 5, the compounding composition In the CBN-based ultra-high pressure sintered body manufactured under the condition that any one of the average particle diameter of the powder and the average particle diameter ratio of the powder is out of the range of the present invention, the dimensional accuracy and surface roughness are inferior. You can see that

上述のように、この発明の方法によれば、特にすぐれた
「粒子の耐脱落性」をそなえ、かつすぐれた耐熱性と靭
性を有し、したがって鋳鉄の仕上加工に切削工具として
使用した場合、高速切削でもすぐれた寸法精度と面粗度
を確保できるCBN基超高圧焼結体を製造することができ
るのである。
As described above, according to the method of the present invention, in particular, having excellent “particle detachment resistance”, and having excellent heat resistance and toughness, and therefore when used as a cutting tool for finishing cast iron, It is possible to manufacture a CBN-based ultra-high pressure sintered body that can secure excellent dimensional accuracy and surface roughness even with high-speed cutting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 逸郎 埼玉県大宮市北袋町1―297 三菱金属株 式会社中央研究所内 (56)参考文献 特開 昭61−14763(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Itaro Tajima 1-2-97 Kitabukuro-cho, Omiya-shi, Saitama Inside Central Research Laboratory, Mitsubishi Metals Co., Ltd. (56) References JP-A-61-14763 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】立方晶窒化硼素基超高圧焼結体を製造する
方法において、原料粉末として、いずれも0.5〜5μの
平均粒径を有する炭化チタン粉末と立方晶窒化硼素粉末
を用い、これら両粉末を、 炭化チタン粉末:40〜60容量%、 立方晶窒化硼素粉末:残り、 の割合で、かつ炭化チタン粉末/立方晶窒化硼素粉末の
平均粒径比が0.5〜2を満足する条件で配合すると共
に、混合粉末中に混入するFe,Ni,Co、およびWのうちの
1種または2種以上からかる不純物を除去して、混合粉
末中の前記不純物の含有量を0.5容量%以下とすること
により、実質的に炭化チタン粒子どうしおよび立方晶窒
化硼素粒子どうしの接触がなく、これら炭化チタン粒子
と立方晶窒化硼素粒子の界面に硼化チタンに富んだ反応
相が存在する組織を有する立方晶窒化硼素基超高圧焼結
体を製造することを特徴とする切削工具用立方晶窒化硼
素基超高圧焼結体の製造法。
1. A method for producing a cubic boron nitride-based ultra-high pressure sintered body, wherein titanium carbide powder and cubic boron nitride powder each having an average particle diameter of 0.5 to 5 μ are used as raw material powders. The powder is compounded in the following ratios: titanium carbide powder: 40 to 60% by volume, cubic boron nitride powder: rest, and an average particle size ratio of titanium carbide powder / cubic boron nitride powder of 0.5 to 2 is satisfied. At the same time, impurities such as one or more of Fe, Ni, Co, and W mixed in the mixed powder are removed to reduce the content of the impurity in the mixed powder to 0.5% by volume or less. As a result, there is substantially no contact between the titanium carbide particles and the cubic boron nitride particles, and the cubic structure has a structure in which a titanium boride-rich reaction phase exists at the interface between the titanium carbide particles and the cubic boron nitride particles. Crystalline boron nitride-based ultra-high pressure firing Preparation of cutting tools for cubic boron nitride based ultra-high-pressure sintered body, which comprises manufacturing the body.
JP62030839A 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool Expired - Fee Related JPH0764638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62030839A JPH0764638B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62030839A JPH0764638B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Publications (2)

Publication Number Publication Date
JPS63201065A JPS63201065A (en) 1988-08-19
JPH0764638B2 true JPH0764638B2 (en) 1995-07-12

Family

ID=12314866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62030839A Expired - Fee Related JPH0764638B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPH0764638B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114763A (en) * 1984-06-29 1986-01-22 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS63201065A (en) 1988-08-19

Similar Documents

Publication Publication Date Title
JP2006315898A (en) Cubic boron nitride sintered compact
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP4229750B2 (en) Cubic boron nitride sintered body
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JP2007145667A (en) Cubic boron nitride sintered compact
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JPS644988B2 (en)
JP2861487B2 (en) High hardness sintered cutting tool
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPH08732B2 (en) Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
JPH0764638B2 (en) Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
JPS644989B2 (en)
JPS6319585B2 (en)
JPH0776130B2 (en) Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPH01122971A (en) Cubic boron nitride sintered product
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP5023448B2 (en) cBN tool
JP2621301B2 (en) Tungsten carbide based cemented carbide cutting tool
JP2000202705A (en) Throwaway cutting tip making its cutting edge piece display excellent cutting edge chipping resistance
JPH0377151B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees