JPH0763904A - Compound spherical microlens array and its production - Google Patents

Compound spherical microlens array and its production

Info

Publication number
JPH0763904A
JPH0763904A JP23251593A JP23251593A JPH0763904A JP H0763904 A JPH0763904 A JP H0763904A JP 23251593 A JP23251593 A JP 23251593A JP 23251593 A JP23251593 A JP 23251593A JP H0763904 A JPH0763904 A JP H0763904A
Authority
JP
Japan
Prior art keywords
mask layer
microlens array
flat plate
spherical
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23251593A
Other languages
Japanese (ja)
Inventor
Tomoyuki Shimizu
智之 清水
Toru Iseda
徹 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP23251593A priority Critical patent/JPH0763904A/en
Publication of JPH0763904A publication Critical patent/JPH0763904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a microlens array of a compound spherical shape having optical performance of small aberrations and large numerical aperture by forming the phapes of projecting parts or recessed parts into a compound shape consisting of plural kinds of spherical surfaces. CONSTITUTION:A metallic chromium film 2 is formed on the surface of a washed flat surface 3 and a positive type photoresist is applied thereon to form a resist film (mask layer) 1 thereon. The mask layer 1 is provided corresponding to the positions of the lenses to be formed with fine circular apertures of the same number as the number of lenses and the surface of the flat plate 3 is chemically etched through these apertures to form the hemispherical recessed parts. The mask layer 1 is completely removed and the mask layer 1 is again formed on the surface of the flat plate 3 on which the recessed parts are formed. The mask layer 1 is provided with the circular apertures larger than the bore in the apertures of the recessed part and the surface of the flat plate 3 is further etched through the apertures. This stage is repeated plural times. The second spherical surfaces varying in the radius of curvature disposed in the peripheral parts of the first spherical surfaces in the central parts decrease the aberrations generated at the time of condensing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合球面マイクロレンズ
アレイ及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite spherical microlens array and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ガラス、プラスチック等の透明基板に、
多数のレンズを配列形成したマイクロレンズアレイは、
光アレイデバイス同志の結合や液晶プロジェクターの輝
度向上といった用途に実用化されてきている。
2. Description of the Related Art Transparent substrates such as glass and plastic are
A microlens array in which a large number of lenses are arrayed is
It has been put to practical use for applications such as combining optical array devices and improving the brightness of liquid crystal projectors.

【0003】これらのマイクロレンズアレイは、レンズ
1個の径が1mm以下と微小で、それらが多数個精度良
く配列されることが要求されるため、その金型を機械的
に加工することは困難である。このため、従来マイクロ
レンズアレイは金型を用いない方法で製造されていた。
例として挙げれば、塩浴中で電場を印加しながらガラス
表面に設けられた開口部よりTlなどのイオンをガラス
中に拡散させる方法や、感光性ガラスの熱処理において
未感光部が結晶化して収縮する現象を利用して表面を膨
らます方法が知られている。これらの方法は、レンズの
開口径を充分大きくとれないとか、焦点距離や開口数
(NA)を簡易に選べないとか、製造時間が短縮できず
生産性に劣る、というような欠点があった。
In these microlens arrays, the diameter of each lens is as small as 1 mm or less, and a large number of them are required to be arranged with high precision, so that it is difficult to mechanically process the die. Is. Therefore, the conventional microlens array has been manufactured by a method that does not use a mold.
As an example, a method of diffusing ions such as Tl into the glass through an opening provided on the glass surface while applying an electric field in a salt bath, or a heat treatment of photosensitive glass causes the unexposed portion to crystallize and shrink. There is known a method of swelling the surface by utilizing this phenomenon. These methods have drawbacks such that the aperture diameter of the lens cannot be made sufficiently large, the focal length and the numerical aperture (NA) cannot be easily selected, and the manufacturing time cannot be shortened and the productivity is poor.

【0004】一方、金型成形法としては、金型のもとに
なる母型の表面に微細な円形開口部を有するマスク層を
設け、その開口部を通して母型表面を化学的にエッチン
グすることにより凹状のレンズ形状を形成する方法が提
案されている(特願平3−339981号)。この方法
では、マスク層の開口径を作製するレンズの開口径より
も充分小さく選べば、ほぼ理想的な球面形状を形成する
ことができる。ところが、球面レンズは光を集光する
際、開口数(NA)を大きくするほど、収差が大きくな
るという欠点を有する。従って、この方法は、光ファイ
バーや半導体レーザからの出射光のような拡がりの大き
な光を効率良く集光するには不向きであった。
On the other hand, as a mold forming method, a mask layer having a fine circular opening is provided on the surface of the base of the mold, and the surface of the master is chemically etched through the opening. Has proposed a method of forming a concave lens shape (Japanese Patent Application No. 3-339981). In this method, if the aperture diameter of the mask layer is selected to be sufficiently smaller than the aperture diameter of the lens to be manufactured, a nearly ideal spherical shape can be formed. However, the spherical lens has a drawback that the larger the numerical aperture (NA), the larger the aberration when condensing light. Therefore, this method is not suitable for efficiently condensing light with a large spread such as light emitted from an optical fiber or a semiconductor laser.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来技術の
有していた前述の欠点を解消しようとするものである。
すなわち、本発明は複合球面形状のマイクロレンズアレ
イ、特にレンズ同志の間隔に比べて充分大きな開口径を
有し、かつ収差が小さく開口数(NA)の大きな光学性
能を有する複合球面形状のマイクロレンズアレイを提供
することを目的とする。さらに、本発明はレンズ相互の
特性的バラツキが極力少ないマイクロレンズアレイを提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention is intended to overcome the above-mentioned drawbacks of the prior art.
That is, the present invention relates to a composite spherical microlens array, and in particular, to a composite spherical microlens having an aperture diameter sufficiently larger than the distance between lenses, and having optical performance with a small aberration and a large numerical aperture (NA). It is intended to provide an array. A further object of the present invention is to provide a microlens array in which the characteristic variations among the lenses are minimized.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、平坦な透明基板の少な
くとも片面側に曲面形状から成る凸部もしくは凹部を多
数配列形成したマイクロレンズアレイにおいて、凸部も
しくは凹部の形状が2種類以上の球面の複合形状である
ことを特徴とするマイクロレンズアレイを提供するもの
である。
The present invention has been made to solve the above-mentioned problems, and a microlens in which a large number of convex or concave portions having a curved shape are arrayed on at least one side of a flat transparent substrate. The present invention provides a microlens array characterized in that the shape of a convex portion or a concave portion is a composite shape of two or more kinds of spherical surfaces.

【0007】本発明は、レンズの大きさによらず適用さ
れるが、特にレンズの開口径が1mm以下の小さなレン
ズでは、レンズ曲面全体に対して集光に寄与する曲面部
分の割合が大きいため、収差の低減効果が大きくなる。
The present invention can be applied regardless of the size of the lens, but especially in a small lens having an aperture diameter of 1 mm or less, the ratio of the curved surface portion contributing to the light focusing to the entire lens curved surface is large. As a result, the effect of reducing aberration becomes large.

【0008】このような複合球面マイクロレンズアレイ
を作製するには、金型のもとになる母型の表面のレンズ
形状を化学的エッチング法により形成する金型成形法に
よるマイクロレンズアレイの製造方法において、
In order to fabricate such a composite spherical microlens array, a method for manufacturing a microlens array by a die molding method in which the lens shape on the surface of the mother die which is the basis of the die is formed by a chemical etching method. At

【0009】(1)母型となる平板表面に化学的エッチ
ングを妨げるマスク層を形成し、(2)作製するレンズ
の個数と同数の円形の微細な開口部を作製するレンズの
位置に対応して前記マスク層に設け、(3)該開口部を
通して平板表面を化学的にエッチングすることにより略
半球面状の凹部を形成し、(4)前記マスク層を全て取
り除き、(5)凹部の形成された平板表面に改めてマス
ク層を形成し、(6)前記凹部に対応する位置に、前記
凹部開口径よりも大きな円形の開口部を前記マスク層に
設け、(7)該開口部を通して平板表面を更にエッチン
グし、(8)前記工程(4)〜(7)を必要に応じて複
数回繰り返し、(9)マスク層を全て取り除いた後、平
板表面全体をエッチングする、という母型作製工程を有
することを特徴とする製造方法が好適である。
(1) A mask layer which prevents chemical etching is formed on the surface of a flat plate which is a matrix, and (2) it corresponds to the positions of the lenses for forming circular fine apertures in the same number as the number of lenses to be formed. Is formed on the mask layer, and (3) a substantially hemispherical concave portion is formed by chemically etching the flat plate surface through the opening, (4) all the mask layer is removed, and (5) concave portion is formed. A mask layer is formed again on the surface of the flat plate, and (6) a circular opening larger than the opening diameter of the recess is formed in the mask layer at a position corresponding to the recess, and (7) the flat surface is passed through the opening. Is further etched, and (8) the above steps (4) to (7) are repeated a plurality of times as necessary, (9) after removing all the mask layers, the entire flat plate surface is etched. Characterized by having Manufacturing method that is preferred.

【0010】本発明のマイクロレンズアレイとしては片
凸レンズ、両凸レンズ、片凸凹レンズ、両凹レンズなど
が適用でき、その材質としてはガラス、プラスチックが
適用できる。
As the microlens array of the present invention, a single-convex lens, a double-convex lens, a single-convex concave lens, a double-concave lens or the like can be applied, and its material can be glass or plastic.

【0011】本発明の母型材としてはガラス、単結晶の
他、Ni−P合金のような非晶質金属、微細結晶粒から
成るSi3 4 ,SiC,SiAlONなどのセラミッ
クス等が使用できる。なお、エッチング面の平滑さ、エ
ッチングの等方性の点で、ガラス、特に合成石英ガラス
を使用することが好ましい。
As the matrix material of the present invention, glass, single crystal, amorphous metal such as Ni-P alloy, ceramics such as Si 3 N 4 , SiC and SiAlON having fine crystal grains can be used. From the viewpoint of the smoothness of the etching surface and the isotropy of etching, it is preferable to use glass, especially synthetic quartz glass.

【0012】本発明のマスク層の材質は母型材によって
異なり、母型の化学的エッチング時に侵食されにくい材
質、例えばガラス母型の場合は、フッ酸系の薬液に侵さ
れにくいPt等の貴金属、Cr,Niあるいはそれらの
合金、または各種ポリマーが使用できる。
The material of the mask layer of the present invention differs depending on the matrix material, and is a material that is not easily corroded during the chemical etching of the matrix, for example, in the case of a glass matrix, a noble metal such as Pt that is not easily corroded by a hydrofluoric acid-based chemical solution, Cr, Ni, alloys thereof, or various polymers can be used.

【0013】本発明の化学エッチング液としては、フッ
酸水溶液、フッ酸と硫酸との混合水溶液等がガラス母型
の場合には適している。マスク層への開口部形成は、フ
ォトリソグラフィ法によって行い、マスク層開口部のエ
ッチングは浸漬エッチングあるいはドライエッチングに
よって行う。
As the chemical etching solution of the present invention, an aqueous solution of hydrofluoric acid, an aqueous solution of a mixture of hydrofluoric acid and sulfuric acid, and the like are suitable when the glass matrix is used. The openings are formed in the mask layer by photolithography, and the etching of the openings in the mask layer is performed by immersion etching or dry etching.

【0014】本発明の金型としては、母型材として非晶
質金属、セラミックス等を用いる場合は、母型がそのま
ま金型として使用できる。ガラス、単結晶等を母型材と
して用いる場合は、電鋳法により例えば、Ni父型を作
製し、次にこれを型としてNi金型を作製する。金型の
材質としてはNiの他、Ni−Co合金、Ni−P合金
等が使用できるが、これに限定されるものではない。
As for the mold of the present invention, when an amorphous metal, ceramics or the like is used as a mold material, the mold can be used as it is as a mold. When glass, single crystal or the like is used as a matrix material, for example, a Ni father mold is manufactured by an electroforming method, and then a Ni mold is manufactured using this as a mold. In addition to Ni, Ni-Co alloy, Ni-P alloy and the like can be used as the material of the mold, but the material is not limited to this.

【0015】[0015]

【作用】本発明に係るマイクロレンズアレイでは、中心
部の第1球面を取り巻くかたちでその周辺部に設けられ
た、第1球面とは異なる適切な曲率半径を有する第2球
面が、集光時に生ずる収差、特に球面収差を低減させる
ように機能する。また、複合化させる球面の種類を多く
するほど、理想的な非球面形状に近い滑らかな曲面とな
り、収差をより低減することができる。
In the microlens array according to the present invention, the second spherical surface surrounding the first spherical surface in the central portion and having a proper radius of curvature different from the first spherical surface, which is provided in the peripheral portion of the first spherical surface at the time of focusing, It functions to reduce the resulting aberrations, especially spherical aberrations. Further, as the number of types of spherical surfaces to be compounded increases, a smooth curved surface close to an ideal aspherical surface can be obtained, and the aberration can be further reduced.

【0016】[0016]

【実施例】以下に図面に従って本発明の実施例を示す。
洗浄された厚さ2mmの合成石英ガラス表面に、真空蒸
着法で厚さ0.1μmの金属クロム膜2を形成し、その
上にポジ形フォトレジストをスピン法で塗布しレジスト
膜(マスク層)1を形成した。また、直径1μmの開口
部が縦・横にそれぞれ250μmの間隔で18×18個
形成されたフォトマスクを用意し、上記ガラスの上に密
着させて水銀ランプ下でフォトレジストを露光し、現像
液で感光された部分のフォトレジストを除去する。続い
て、CCl4 ガスを含む雰囲気中で露出した部分のクロ
ム膜をドライエッチングによって取り除き、上記フォト
マスク上の開口部とほとんど同じ径を有する開口部を形
成する(図1(a))。
Embodiments of the present invention will be described below with reference to the drawings.
A 0.1 μm-thick metal chromium film 2 is formed on the surface of the washed synthetic quartz glass having a thickness of 2 mm by a vacuum deposition method, and a positive photoresist is applied thereon by a spin method to form a resist film (mask layer). 1 was formed. In addition, a photomask was prepared in which 18 × 18 openings each having a diameter of 1 μm were formed vertically and horizontally at intervals of 250 μm. The photomask was brought into close contact with the above glass, and the photoresist was exposed under a mercury lamp. The photoresist in the portion exposed by is removed. Then, the exposed portion of the chromium film in the atmosphere containing CCl 4 gas is removed by dry etching to form an opening having a diameter almost the same as the opening on the photomask (FIG. 1A).

【0017】次に20%HFと20%H2 SO4 から成
る水溶液中にこのガラスを9分間浸漬し、上記開口部を
通してガラスをエッチングすると、深さ7μmの半球状
の凹部が形成された(図1(b))。
Next, the glass was dipped in an aqueous solution containing 20% HF and 20% H 2 SO 4 for 9 minutes, and the glass was etched through the above-mentioned opening to form a hemispherical recess having a depth of 7 μm ( FIG. 1B).

【0018】水洗後これを硝酸セリウムアンモニウムと
過塩素酸の混合溶液中に浸漬してマスク層(フォトレジ
ストとクロム膜)を完全に取り除き、水洗後、再びガラ
ス表面にクロム膜とフォトレジストを形成する(図1
(c))。直径40μmの開口部が縦・横にそれぞれ2
50μmの間隔で18×18個形成されたフォトマスク
を用意し、前述のフォトリソグラフィ法により、マスク
層に上記フォトマスク上の開口部とほとんど同じ径を有
する開口部を形成する(図1(d))。この際、フォト
マスク上の開口部の中心と対応するガラス表面上の凹部
の中心とが一致するように、精密に位置合わせを行って
から密着露光を行う。
After washing with water, it is immersed in a mixed solution of cerium ammonium nitrate and perchloric acid to completely remove the mask layer (photoresist and chromium film), and after washing with water, a chromium film and photoresist are formed again on the glass surface. Yes (Fig. 1
(C)). Opening with a diameter of 40 μm is 2 vertically and horizontally
18 × 18 photomasks formed at intervals of 50 μm are prepared, and openings having almost the same diameter as the openings on the photomask are formed in the mask layer by the photolithography method described above (FIG. 1 (d). )). At this time, contact exposure is performed after performing precise alignment so that the center of the opening on the photomask and the center of the corresponding recess on the glass surface coincide with each other.

【0019】続いて、前述のエッチング液中にこのガラ
スを14分間浸漬し、上記開口部を通してガラスをエッ
チングすると、中心部の深さが18μmで中心部と周辺
部の2種類の球面の複合形状を呈する凹部が形成された
(図1(e))。
Subsequently, this glass was immersed in the above-mentioned etching solution for 14 minutes, and the glass was etched through the above-mentioned opening. Was formed (FIG. 1 (e)).

【0020】前述の方法でマスク層を全て取り除き、水
洗後、再びガラス表面に新たなマスク層を形成する。さ
らに別のフォトマスクを使用し、フォトリソグラフィ法
により、ガラス表面上の凹部の中心の位置と中心位置が
一致した直径80μmのマスク層開口部を形成する。前
述のエッチング液中にこのガラスを43分間浸漬し、上
記開口部を通してガラスをエッチングすると、中心部の
深さが52μmで3種類の球面の複合形状を呈する凹部
が形成された。
The mask layer is completely removed by the above-mentioned method, and after washing with water, a new mask layer is formed again on the glass surface. Using another photomask, a mask layer opening having a diameter of 80 μm is formed by the photolithography method so that the center position of the recess on the glass surface coincides with the center position. When this glass was dipped in the above-mentioned etching solution for 43 minutes and the glass was etched through the opening, a recess having a central portion depth of 52 μm and having a complex shape of three spherical surfaces was formed.

【0021】最後に、マスク層を全て取り除いた後(図
1(f))、前述のエッチング液中にこのガラスを11
0分間浸漬し、表面全体を88μmエッチングした(図
1(g))。
Finally, after all the mask layers have been removed (FIG. 1 (f)), this glass is placed in the above-mentioned etching solution.
It was immersed for 0 minutes, and the entire surface was etched by 88 μm (FIG. 1 (g)).

【0022】こうしてできたガラス母型にNi蒸着膜を
形成し、さらに電気メッキ法で1mm厚のNiメッキを
施した後、Niをガラス母型から剥がし、Niメッキ体
にNiメッキを施して1mm厚のNi製金型を作製す
る。
A Ni vapor-deposited film is formed on the glass mother die thus formed, and Ni plating having a thickness of 1 mm is further applied by an electroplating method. Then, Ni is peeled from the glass mother die, and the Ni plated body is plated with Ni to have a thickness of 1 mm. A thick Ni mold is prepared.

【0023】この金型表面に蒸着法でPtを被覆し、シ
ート状の鉛ガラス(重量%で組成がSiO2 :26.9
%,PbO:71.3%,K2 O:1.0%,Na
2 O:0.5%,As2 3 :0.3%)を窒素雰囲気
下500℃でプレスして、厚さ0.6mm,大きさ10
×10mmのガラス板を作製した。
The mold surface was coated with Pt by a vapor deposition method to form a sheet of lead glass (weight% of composition: SiO 2 : 26.9).
%, PbO: 71.3%, K 2 O: 1.0%, Na
2 O: 0.5%, As 2 O 3 : 0.3%) was pressed at 500 ° C. in a nitrogen atmosphere to give a thickness of 0.6 mm and a size of 10
A × 10 mm glass plate was produced.

【0024】このガラス板の片面には凸上の微細なレン
ズが18×18個、ピッチ:250μm、有効径:25
0μmで形成されている。波長630nmにおける、こ
れらのレンズの光学性能を評価したところ、開口数(N
A):0.5,集光スポット径:8μm,焦点距離:1
70μm,球面収差:40μmと良好な特性を示す複合
球面レンズアレイを得た。また、このレンズアレイを用
いて、波長1310nmの半導体レーザとシングルモー
ドファイバーとを光結合させたときの結合効率は30%
であった。これらの光学特性における、18×18個の
レンズ間でのバラツキもほとんど認められなかった。
On one surface of this glass plate, there are 18 × 18 convex fine lenses, pitch: 250 μm, effective diameter: 25
It is formed with 0 μm. When the optical performance of these lenses at a wavelength of 630 nm was evaluated, the numerical aperture (N
A): 0.5, focused spot diameter: 8 μm, focal length: 1
A composite spherical lens array having good characteristics of 70 μm and spherical aberration of 40 μm was obtained. In addition, when this lens array is used to optically couple a semiconductor laser having a wavelength of 1310 nm and a single mode fiber, the coupling efficiency is 30%.
Met. Almost no variation in these optical characteristics was observed among the 18 × 18 lenses.

【0025】[0025]

【発明の効果】本発明の複合球面マイクロレンズアレイ
は、集光時に開口数(NA)を大きくしても収差が小さ
いので、効率良く光を集光、伝送することができる。
The composite spherical microlens array of the present invention has a small aberration even when the numerical aperture (NA) is increased at the time of light collection, so that light can be efficiently collected and transmitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の母型の製造方法の実施例の工程図FIG. 1 is a process diagram of an embodiment of a method for manufacturing a mother die of the present invention.

【符号の説明】[Explanation of symbols]

1:フォトレジスト膜 2:Cr膜 3:ガラス 1: Photoresist film 2: Cr film 3: Glass

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平坦な透明基板の少なくとも片面側に曲面
形状から成る凸部もしくは凹部を多数配列形成したマイ
クロレンズアレイにおいて、凸部もしくは凹部の形状が
2種類以上の球面の複合形状であることを特徴とする複
合球面マイクロレンズアレイ。
1. A microlens array in which a large number of convex portions or concave portions having a curved shape are formed on at least one side of a flat transparent substrate, and the convex portions or concave portions have a composite shape of two or more kinds of spherical surfaces. A composite spherical microlens array characterized by:
【請求項2】1個のレンズの開口径が1mm以下である
ことを特徴とする請求項1記載の複合球面マイクロレン
ズアレイ。
2. The compound spherical microlens array according to claim 1, wherein the aperture diameter of one lens is 1 mm or less.
【請求項3】金型のもとになる母型の表面のレンズ形状
を化学的エッチング法により形成する金型成形法による
マイクロレンズアレイの製造方法において、(1)母型
となる平板表面に化学的エッチングを妨げるマスク層を
形成し、(2)作製するレンズの個数と同数の円形の微
細な開口部を作製するレンズの位置に対応して前記マス
ク層に設け、(3)該開口部を通して平板表面を化学的
にエッチングすることにより略半球面状の凹部を形成
し、(4)前記マスク層を全て取り除き、(5)凹部の
形成された平板表面に改めてマスク層を形成し、(6)
前記凹部に対応する位置に、前記凹部開口径よりも大き
な円形の開口部を前記マスク層に設け、(7)該開口部
を通して平板表面を更にエッチングし、(8)前記工程
(4)〜(7)を必要に応じて複数回繰り返し、(9)
マスク層を全て取り除いた後、平板表面全体をエッチン
グする、という母型作製工程を有することを特徴とする
複合球面マイクロレンズアレイの製造方法。
3. A method of manufacturing a microlens array by a die molding method, wherein a lens shape on the surface of a die which is a base of the die is formed by a chemical etching method. A mask layer that prevents chemical etching is formed, and (2) the same number of circular fine openings as the number of lenses to be formed are provided in the mask layer corresponding to the positions of the lenses, and (3) the openings. The surface of the flat plate is chemically etched through to form a substantially hemispherical recess, (4) all the mask layer is removed, and (5) a mask layer is formed again on the flat plate surface having the recess, ( 6)
A circular opening larger than the opening diameter of the recess is provided in the mask layer at a position corresponding to the recess, (7) the flat plate surface is further etched through the opening, and (8) the steps (4) to (). Repeat 7) as many times as necessary, (9)
A method for producing a composite spherical microlens array, which comprises a step of producing a master mold in which the entire flat plate surface is etched after removing all the mask layers.
JP23251593A 1993-08-25 1993-08-25 Compound spherical microlens array and its production Pending JPH0763904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23251593A JPH0763904A (en) 1993-08-25 1993-08-25 Compound spherical microlens array and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23251593A JPH0763904A (en) 1993-08-25 1993-08-25 Compound spherical microlens array and its production

Publications (1)

Publication Number Publication Date
JPH0763904A true JPH0763904A (en) 1995-03-10

Family

ID=16940543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23251593A Pending JPH0763904A (en) 1993-08-25 1993-08-25 Compound spherical microlens array and its production

Country Status (1)

Country Link
JP (1) JPH0763904A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023648A1 (en) * 1997-11-05 1999-05-14 Nikon Corporation Optical head, optical recorder, microlens and manufacture of microlens
JP2003264284A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Solid state imaging element and its manufacturing method
JP2003279949A (en) * 2002-03-20 2003-10-02 Seiko Epson Corp Manufacturing method for substrate with recessed part for microlens, substrate with recessed part for microlens, microlens substrate, opposed substrate for liquid crystal panel, liquid crystal panel and projection type display device
JP2006178160A (en) * 2004-12-22 2006-07-06 Hoya Corp Manufacturing method of substrate with microlens, manufacturing method of counter substrate of liquid crystal display panel, and manufacturing method of liquid crystal panel
US7110643B2 (en) 2004-02-06 2006-09-19 Victor Company Of Japan, Limited. Micro lens array and a method of manufacturing a replication mold for the same
JP2006317788A (en) * 2005-05-13 2006-11-24 Seiko Epson Corp Microlens array plate and its manufacturing method, etching method for substrate, optoelectronic device and its manufacturing method, and electronic device
KR100895367B1 (en) * 2005-11-10 2009-04-29 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing frame mold for micro lenses
JP2013050721A (en) * 2012-09-10 2013-03-14 Seiko Epson Corp Manufacturing method of screen
JP2016012150A (en) * 2015-10-06 2016-01-21 リコーインダストリアルソリューションズ株式会社 Method for manufacturing concave lens

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023648A1 (en) * 1997-11-05 1999-05-14 Nikon Corporation Optical head, optical recorder, microlens and manufacture of microlens
JP2003264284A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Solid state imaging element and its manufacturing method
JP2003279949A (en) * 2002-03-20 2003-10-02 Seiko Epson Corp Manufacturing method for substrate with recessed part for microlens, substrate with recessed part for microlens, microlens substrate, opposed substrate for liquid crystal panel, liquid crystal panel and projection type display device
US7110643B2 (en) 2004-02-06 2006-09-19 Victor Company Of Japan, Limited. Micro lens array and a method of manufacturing a replication mold for the same
US7359596B2 (en) 2004-02-06 2008-04-15 Victor Company Of Japan, Limited Micro lens array and a method of manufacturing a replication mold for the same
JP2006178160A (en) * 2004-12-22 2006-07-06 Hoya Corp Manufacturing method of substrate with microlens, manufacturing method of counter substrate of liquid crystal display panel, and manufacturing method of liquid crystal panel
JP2006317788A (en) * 2005-05-13 2006-11-24 Seiko Epson Corp Microlens array plate and its manufacturing method, etching method for substrate, optoelectronic device and its manufacturing method, and electronic device
JP4670468B2 (en) * 2005-05-13 2011-04-13 セイコーエプソン株式会社 Microlens array plate and manufacturing method thereof, substrate etching method, electro-optical device and manufacturing method thereof, and electronic apparatus
KR100895367B1 (en) * 2005-11-10 2009-04-29 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing frame mold for micro lenses
JP2013050721A (en) * 2012-09-10 2013-03-14 Seiko Epson Corp Manufacturing method of screen
JP2016012150A (en) * 2015-10-06 2016-01-21 リコーインダストリアルソリューションズ株式会社 Method for manufacturing concave lens

Similar Documents

Publication Publication Date Title
US20050046943A1 (en) Wire grid polarizer and method for producing same
JP3554228B2 (en) Microlens mold or mold master, and method for producing them
JP4845290B2 (en) Micro lens array, optical equipment and optical viewfinder
US7068433B2 (en) Focusing screen master and manufacturing method thereof
CN113703081A (en) Method for manufacturing micro-lens array structure
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
JPH0763904A (en) Compound spherical microlens array and its production
CN110596905A (en) Random micro-lens array structure for light beam homogenization and manufacturing method thereof
JPH05150103A (en) Production of aspherical microlens array
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2006235195A (en) Method for manufacturing member with antireflective structure
US20050069676A1 (en) Etched article, mold structure using the same and method for production thereof
JPH07174902A (en) Microlens array and its production
JPH06194502A (en) Microlens and microlens array and their production
JPH07104106A (en) Production of aspherical microlens array
JPH06148861A (en) Photomask and its production
JP3726790B2 (en) Manufacturing method of micro lens array
JPS6146408B2 (en)
JPH05150102A (en) Production of microlens array
JP4051436B2 (en) Concave lens, concave lens array and manufacturing method thereof
JP2004051388A (en) Method of processing surface of optical element
JP2790076B2 (en) Glass substrate with minute recess and method of manufacturing the same
US20090302193A1 (en) Mold core with deposition islands and method for manufacturing the same
JP2006137092A (en) Method for producing minute mold, minute mold and minute structure produced by the method
JPS6410169B2 (en)