JPH05150103A - Production of aspherical microlens array - Google Patents

Production of aspherical microlens array

Info

Publication number
JPH05150103A
JPH05150103A JP3339986A JP33998691A JPH05150103A JP H05150103 A JPH05150103 A JP H05150103A JP 3339986 A JP3339986 A JP 3339986A JP 33998691 A JP33998691 A JP 33998691A JP H05150103 A JPH05150103 A JP H05150103A
Authority
JP
Japan
Prior art keywords
lens
etching
mask layer
microlens array
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3339986A
Other languages
Japanese (ja)
Inventor
Tomoyuki Shimizu
智之 清水
Toru Iseda
徹 伊勢田
Akira Tamamura
亮 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3339986A priority Critical patent/JPH05150103A/en
Publication of JPH05150103A publication Critical patent/JPH05150103A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the aspherical lens having excellent optical performance by adequately selecting the shape, preetching quantity and normal etching quantity of apertures. CONSTITUTION:A mask layer 1 which hinders chemical etching is formed on a flat plate surface to constitute a matrix. The fine circular apertures corresponding to the respective lenses to be produced and >=1 pieces of the apertures provided in the positions enclosing the circular apertures are provided on the mask layer 1. The flat plate surface is partially chemically etched (preetched) through these apertures and the mask layer 1 is removed. Further, the entire part of the flat plate surface is chemically etched (normal etched). A curved surface formed by the preetching is made into the compose shape of one ideal hemispherical surface and the hemispherical annular groove enclosing the circumference thereof. The depth of the central hemispherical surface is deeper than the depth of the annular groove around this surface. The aspherical lens having the radius of curvature which is smallest near the center of the lens and is gradually larger nearer the outer periphery is obtd. if the normal etching is executed in succession to the above-mentioned etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非球面マイクロレンズア
レイの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aspherical microlens array.

【0002】[0002]

【従来の技術】マイクロ単レンズの成形用の金型は、ダ
イヤモンド切削あるいは研磨等の機械的加工方法により
作製されている。しかしマイクロレンズが一次元的ある
いは二次元的に配列されたマイクロレンズアレイは形状
が複雑であり、大きさが微細なためその金型を機械的に
加工することは困難である。特殊な例として、端面を機
械的に加工した角材を多数個配列して形成した端面集合
面を母型として電鋳をとり、これを型とする方法が自転
車反射ミラーの製造において実用化されている。しか
し、この方法は1個のマイクロレンズが1mm径以下の
レンズアレイに適用するには精度や工程の繁雑さの点で
適さない。
2. Description of the Related Art A mold for molding a micro single lens is manufactured by a mechanical working method such as diamond cutting or polishing. However, a microlens array in which microlenses are arranged one-dimensionally or two-dimensionally has a complicated shape, and it is difficult to mechanically process the mold because the size is minute. As a special example, a method of electroforming using the end face aggregate surface formed by arranging a large number of square members with mechanically machined end faces as a master, and using this as a mold has been put to practical use in the manufacture of bicycle reflection mirrors. There is. However, this method is not suitable for application to a lens array in which one microlens has a diameter of 1 mm or less in terms of accuracy and complexity of steps.

【0003】そのため、従来マイクロレンズアレイは金
型を用いない方法で製造されていた。例として挙げれ
ば、塩浴中で電場を印加しながらガラス表面に設けられ
た開口部よりTlなどのイオンをガラス中に拡散させる
方法や、感光性ガラスの熱処理において未感光部が結晶
化して収縮する現象を利用して表面を膨らます方法が知
られている。これらの方法は、レンズ同志の間隔に比べ
レンズの開口径を充分大きくとれないとか、収差が小さ
く開口数(NA)の大きな非球面レンズとしての設計が
困難であるため、光ファイバーや半導体レーザからの出
射光のように拡がりの大きな光を集光するには不向きで
あるという欠点があった。
Therefore, conventionally, the microlens array has been manufactured by a method without using a mold. For example, a method of diffusing ions such as Tl into the glass through an opening provided on the glass surface while applying an electric field in a salt bath, or a heat treatment of photosensitive glass causes the unexposed area to crystallize and shrink. There is known a method of swelling the surface by utilizing the phenomenon that occurs. In these methods, the aperture diameter of the lens cannot be made sufficiently larger than the distance between the lenses, and it is difficult to design an aspherical lens with a small aberration and a large numerical aperture (NA). It has a drawback that it is not suitable for condensing light with a large spread such as emitted light.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術の
有していた前述の欠点を解消しようとするものである。
すなわち、本発明は非球面形状のマイクロレンズアレ
イ、特にレンズ同志の間隔に比べて充分大きな開口径を
有し、かつ収差が小さく開口数(NA)の大きな光学性
能を有する非球面形状のマイクロレンズアレイを提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to overcome the above-mentioned drawbacks of the prior art.
That is, the present invention relates to an aspherical microlens array, in particular, an aspherical microlens having an aperture diameter sufficiently larger than the distance between lenses, and having optical performance with a small aberration and a large numerical aperture (NA). It is intended to provide an array.

【0005】さらに、本発明はレンズ相互の特性的バラ
ツキが極力少ないマイクロレンズアレイを提供すること
を目的とするものである。
A further object of the present invention is to provide a microlens array in which characteristic variations among lenses are minimized.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、金型のもとになる母型
の表面のレンズ形状を化学的エッチング法により形成す
る、金型成形法によるマイクロレンズアレイの製造方法
において、(1)母型となる平板表面に化学的エッチン
グを妨げるマスク層を形成し、(2)作製する各レンズ
に対応した微細な円形開口部および該円形開口部をとり
まく位置に設けられた1個以上の開口部をマスク層に設
け、(3)これらの開口部を通してその平板表面を部分
的に化学エッチングし(プリエッチング)、(4)マス
ク層を取除き、(5)さらに平板表面全体を化学的にエ
ッチングする(本エッチング)、という母型作製工程を
有することを特徴とする非球面マイクロレンズアレイの
製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a method of forming a lens shape on the surface of a mother die, which is a base of a die, by a chemical etching method is used. In a method of manufacturing a microlens array by a die molding method, (1) a mask layer that prevents chemical etching is formed on a surface of a flat plate serving as a matrix, and (2) a fine circular opening corresponding to each lens to be manufactured and The mask layer is provided with one or more openings provided at positions surrounding the circular openings, and (3) the flat plate surface is partially chemically etched (pre-etching) through these openings, and (4) the mask layer. The present invention provides a method for manufacturing an aspherical microlens array, which comprises: (5) further chemically etching the entire surface of the flat plate (main etching). It is intended.

【0007】また本発明は、作製する各レンズに対応し
た微細な円形開口部をとりまく位置に設けられた1個以
上の開口部が1重以上のリング状開口であることを特徴
とする非球面マイクロレンズアレイの製造方法を提供す
るものである。
Further, the present invention is characterized in that one or more openings provided at positions surrounding the minute circular openings corresponding to each lens to be manufactured are ring-shaped openings of a single layer or more. A method for manufacturing a microlens array is provided.

【0008】さらにまた本発明は、作製する各レンズに
対応した微細な円形開口部をとりまく位置に設けられた
1個以上の開口部が、その円形開口部の1重以上の同心
円周上に配列された複数個の円形開口であることを特徴
とする非球面マイクロレンズアレイの製造方法を提供す
るものである。
Still further, according to the present invention, one or more openings provided at positions surrounding a fine circular opening corresponding to each lens to be manufactured are arranged on one or more concentric circles of the circular opening. The present invention provides a method for manufacturing an aspherical microlens array, which is characterized by a plurality of circular openings.

【0009】本発明のマイクロレンズアレイとしては片
凸レンズ、両凸レンズ、片凸凹レンズ、両凹レンズなど
が適用でき、その材質としてはガラス、プラスチックが
適用できる。本発明の母型材としてはガラス、単結晶の
他、Ni−P合金のような非晶質金属、微細結晶粒から
成るSi34 ,SiC,SiAlONなどのセラミッ
クス等が使用できる。なお、エッチング面の平滑さ、エ
ッチングの等方性の点で、ガラスを使用することが好ま
しい。
As the microlens array of the present invention, a single-convex lens, a double-convex lens, a single-convex concave lens, a double-concave lens or the like can be applied, and its material can be glass or plastic. As the matrix material of the present invention, glass, single crystal, amorphous metal such as Ni-P alloy, ceramics such as Si 3 N 4 , SiC and SiAlON having fine crystal grains can be used. It is preferable to use glass in terms of smoothness of the etching surface and isotropic etching.

【0010】本発明のマスク層の材質は母型材によって
異なり、母型の化学的エッチング時に侵食されにくい材
質、例えばガラス母型の場合はフッ酸系の薬液に侵され
にくいPt等の貴金属、Cr,Niあるいはそれらの合
金、または各種ポリマーが使用できる。本発明の化学エ
ッチング液としては、フッ酸水溶液、フッ酸と硫酸との
混合水溶液等がガラス母型の場合には適している。
The material of the mask layer of the present invention differs depending on the matrix material, and is a material that is not easily corroded during the chemical etching of the matrix, for example, in the case of a glass matrix, a noble metal such as Pt or Cr that is not easily corroded by a hydrofluoric acid-based chemical solution. , Ni or their alloys, or various polymers can be used. As the chemical etching solution of the present invention, an aqueous solution of hydrofluoric acid, an aqueous solution of a mixture of hydrofluoric acid and sulfuric acid, and the like are suitable when the glass matrix is used.

【0011】マスク層への開口部形成は、フォトリソグ
ラフィ法によって行い、マスク層開口部のエッチングは
浸漬エッチングあるいはドライエッチングによって行
う。本発明の金型としては、母型材として非晶質金属、
セラミックス等を用いる場合は、母型がそのまま金型と
して使用できる。ガラス、単結晶等を母型材として用い
る場合は、電鋳法により例えば、Ni父型を作製し、次
にこれを型としてNi金型を作製する。金型の材質とし
てはNiの他、Ni−Co合金、Ni−P合金等が使用
できるが、これに限定されるものではない。
The opening of the mask layer is formed by photolithography, and the opening of the mask layer is etched by immersion etching or dry etching. The mold of the present invention includes an amorphous metal as a matrix material,
When ceramics or the like is used, the mother die can be used as it is as a die. When glass, single crystal, or the like is used as a matrix material, for example, a Ni father mold is manufactured by an electroforming method, and then this is used as a mold to manufacture a Ni mold. In addition to Ni, Ni-Co alloy, Ni-P alloy and the like can be used as the material of the mold, but the material is not limited to this.

【0012】本発明におけるマスク層の円形開口の直径
は2〜70μm、好ましくは2〜20μmがレンズ中心
(光軸)付近における曲率半径が小さく設定でき、か
つ、各レンズ間のバラツキを小さくするため好ましい。
In the present invention, the diameter of the circular opening of the mask layer is 2 to 70 μm, preferably 2 to 20 μm so that the radius of curvature near the lens center (optical axis) can be set small and the variation between the lenses can be reduced. preferable.

【0013】本発明におけるマスク層のリング状開口の
巾または同心円周上に配置される円形開口の直径は、円
形開口の直径の10%〜50%がレンズ周辺部の曲率半
径を、光学的に理想的な非球面の半径に近づけるため
に、かつ、各レンズ間のバラツキを小さくするために好
ましい。
In the present invention, the width of the ring-shaped opening of the mask layer or the diameter of the circular opening arranged on the concentric circumference is such that 10% to 50% of the diameter of the circular opening is the radius of curvature of the lens peripheral portion optically. This is preferable in order to approach the ideal radius of the aspherical surface and to reduce the variation between the lenses.

【0014】[0014]

【作用】本発明において、プリエッチングは微細な開口
部からエッチング液が侵入、拡散して行われる、比較的
浅いエッチングである。プリエッチングにおいては、図
3に示す如く、開口部の径が小さい程エッチング深さが
浅くなることが本発明に先立つ実験の結果からわかって
いる。
In the present invention, the pre-etching is a relatively shallow etching which is carried out by invading and diffusing the etching solution through the fine opening. In the pre-etching, as shown in FIG. 3, it is known from the results of the experiment preceding the present invention that the smaller the diameter of the opening, the shallower the etching depth.

【0015】一般に、光学性能のよい非球面レンズは、
レンズの中心付近の曲率半径が小さく、外周にいくほど
曲率半径が大きくなる。プリエッチングの際の円形開口
部の径を、それを取りまく位置に設けられたリング状の
開口部の径よりも大きく選ぶと、プリエッチングによっ
て形成される曲面は、図1(d)に示す如く、1つの理
想半球面とその周囲を取りまく半球面状のリング溝との
複合形状となり、中心の半球面の深さは、その周囲のリ
ング溝の深さよりも深くなる。
Generally, an aspherical lens having good optical performance is
The radius of curvature near the center of the lens is small, and the radius of curvature increases toward the outer periphery. If the diameter of the circular opening at the time of pre-etching is selected to be larger than the diameter of the ring-shaped opening provided at the position surrounding it, the curved surface formed by pre-etching is as shown in FIG. 1 (d). It has a composite shape of one ideal hemisphere and a hemispherical ring groove surrounding it, and the depth of the central hemisphere is deeper than the depth of the ring grooves around it.

【0016】続いて、マスク層を取り除き、本エッチン
グを行うと、図1(f)に示す如く、レンズ中心付近の
曲率半径が最も小さく、外周にいくほど曲率半径の大き
な非球面レンズが得られる。周囲を取りまく開口部の
数、それらの径、及びそれらの間隔は、求められる非球
面レンズの設計値に従って、実験的に決定される。ま
た、本エッチング量を適切に選ぶことにより、レンズの
平均曲率半径を任意に選ぶことができる。
Subsequently, when the mask layer is removed and main etching is performed, an aspherical lens having a smallest radius of curvature near the center of the lens and a larger radius of curvature toward the outer periphery is obtained, as shown in FIG. 1 (f). . The number of openings surrounding the circumference, their diameters, and their intervals are experimentally determined according to the required design value of the aspherical lens. Further, by properly selecting the main etching amount, the average radius of curvature of the lens can be arbitrarily selected.

【0017】以上のように、開口部の形状、プリエッチ
ング量、及び本エッチング量を適切に選ぶことにより、
すぐれた光学性能を有する非球面レンズを作製すること
ができる。
As described above, by appropriately selecting the shape of the opening, the amount of pre-etching, and the amount of main etching,
It is possible to manufacture an aspherical lens having excellent optical performance.

【0018】[0018]

【実施例】以下に図面に従って本発明の実施例を示す。
洗浄された厚さ2mmのソーダライムシリカガラス表面
に、真空蒸着法で厚さ0.1μmの金属クロム膜2を形
成し、ポジ形フォトレジストをスピン法で塗布しレジス
ト膜(マスク層)1を形成した(図1(a))。
Embodiments of the present invention will be described below with reference to the drawings.
A 0.1 μm thick metallic chromium film 2 is formed on the surface of the cleaned soda lime silica glass having a thickness of 2 mm by a vacuum deposition method, and a positive photoresist is applied by a spin method to form a resist film (mask layer) 1. Formed (FIG. 1 (a)).

【0019】また、図2(a),(b)においてA=2
0μm、B=20μm、C=5μmである開口部が、縦
・横にそれぞれ250μmの間隔で34×34個形成さ
れたフォトマスクを用意し、上記ガラスの上に密着させ
て水銀ランプ下でフォトレジストを露光し、現像液で感
光された部分のフォトレジストを除去する(図1
(b))。続いて、CCl4 ガスを含む雰囲気中で露出
した部分のクロム膜をドライエッチングによって取り除
き、上記フォトマスク上の開口部とほとんど同様な開口
部を形成する(図1(c))。
Further, in FIGS. 2A and 2B, A = 2
Prepare a photomask in which 34 × 34 openings with 0 μm, B = 20 μm, and C = 5 μm are formed vertically and horizontally at intervals of 250 μm each, and they are brought into close contact with the above glass and are exposed under a mercury lamp. The resist is exposed to light and the photoresist in the portion exposed to the developing solution is removed (see FIG. 1).
(B)). Then, the exposed portion of the chromium film in the atmosphere containing CCl 4 gas is removed by dry etching to form an opening almost similar to the opening on the photomask (FIG. 1C).

【0020】次に20%HFと20%H2 SO4 から成
る水溶液をこのガラスに3分間当てて、上記開口部を通
してガラスをエッチングすると、深さ30μmの半円球
状のピットとその周囲をとりまく深さ10μmの半球面
状のリング溝が形成された(図1(d))。
Next, an aqueous solution of 20% HF and 20% H 2 SO 4 was applied to this glass for 3 minutes, and the glass was etched through the above-mentioned opening. As a result, hemispherical pits with a depth of 30 μm and their surroundings were surrounded. A hemispherical ring groove having a depth of 10 μm was formed (FIG. 1D).

【0021】水洗後これを硝酸セリウムアンモニウムと
過塩素酸の混合溶液中に浸漬してフォトレジスト層とク
ロム膜を完全に取除き(図1(e))、水洗後、再び上
記弗硫酸混液のスプレー液を12分間かけてガラス表面
を155μmエッチングする(図1(f))。
After washing with water, it is immersed in a mixed solution of cerium ammonium nitrate and perchloric acid to completely remove the photoresist layer and the chromium film (FIG. 1 (e)), and after washing with water, the mixed solution of the above-mentioned fluorosulfuric acid is again added. The glass surface is etched by 155 μm for 12 minutes with the spray liquid (FIG. 1 (f)).

【0022】こうしてできたガラス母型にNi蒸着膜を
形成し、さらに電気メッキ法で1mm厚のNiメッキを
施した後、Niをガラス母型からはがし、Niメッキ体
にNiメッキを施して1mm厚のNi製金型を作製す
る。
A Ni vapor deposition film is formed on the glass mother die thus formed, and Ni plating of 1 mm thickness is further applied by an electroplating method. Then, Ni is peeled from the glass mother die, and the Ni plated body is plated with Ni to 1 mm. A thick Ni mold is prepared.

【0023】この金型表面に蒸着法でPtを被覆し、シ
ート状の鉛ガラス(重量%で組成がSiO2 :26.9
%、PbO:71.3%、K2O:1.0%,Na2
O:0.5%,As23:0.3%)を窒素雰囲気下
500℃でプレスして、厚さ0.6mm、大きさ15×
15mmのガラス板を作製した。
The mold surface was coated with Pt by a vapor deposition method to obtain a sheet of lead glass (weight% of composition: SiO 2 : 26.9).
%, PbO: 71.3%, K 2 O: 1.0%, Na 2
O: 0.5%, As 2 O 3 : 0.3%) was pressed at 500 ° C. in a nitrogen atmosphere to give a thickness of 0.6 mm and a size of 15 ×.
A 15 mm glass plate was prepared.

【0024】このガラス板の片面には凸状の微細なレン
ズが34×34個、ピッチ:250μm、有効径:25
0μmで形成されている。波長630nmにおける、こ
れらのレンズの光学性能を評価したところ、開口数(N
A):0.5、集光スポット径:8μm、焦点距離:1
70μm、球面収差:40μmと良好な特性を示す非球
面レンズアレイを得た。また34×34個のレンズの特
性のバラツキもほとんど認められなかった。
34 × 34 convex fine lenses are provided on one surface of this glass plate, pitch: 250 μm, effective diameter: 25
It is formed with 0 μm. When the optical performance of these lenses at a wavelength of 630 nm was evaluated, the numerical aperture (N
A): 0.5, focused spot diameter: 8 μm, focal length: 1
An aspherical lens array having good characteristics of 70 μm and spherical aberration of 40 μm was obtained. Further, almost no variation in the characteristics of 34 × 34 lenses was observed.

【0025】[0025]

【発明の効果】本発明は、マスク層の開口部を通したエ
ッチング(プリエッチング)の後、マスク層を取除いて
エッチング(本エッチング)をするという2段エッチン
グ方式であるので、それぞれのエッチング量の組み合せ
により任意の平均曲率半径を有する非球面レンズアレイ
を作製できる優れた特徴を有する。特にレンズ同志の間
隔よりも大きな曲率半径を有し、かつレンズ有効径の大
きな(最大でレンズ間隔と同じ有効径の)レンズアレイ
を容易に作製できる。
The present invention is a two-step etching method in which the mask layer is removed and then etching (main etching) is performed after etching through the opening of the mask layer (pre-etching). It has an excellent feature that an aspherical lens array having an arbitrary average radius of curvature can be manufactured by combining quantities. In particular, it is possible to easily manufacture a lens array having a radius of curvature larger than the distance between lenses and having a large lens effective diameter (maximum effective diameter equal to the lens distance).

【0026】また本発明によれば、レンズ部とレンズが
形成されていない平坦部がほぼ同一平面上に作れるた
め、外観も良く、マウントしやすいレンズアレイが作
れ、小型化も可能である。また本発明は、母型表面を一
括にエッチングする方式であるのでレンズ個々の特性の
バラツキの少ないレンズアレイを作製することができ
る。
Further, according to the present invention, since the lens portion and the flat portion where the lens is not formed can be formed on substantially the same plane, a lens array having a good appearance and easy to mount can be formed, and the size can be reduced. Further, according to the present invention, since the surface of the mother die is collectively etched, it is possible to fabricate a lens array with less variation in characteristics of individual lenses.

【0027】本発明はまた、開口部の形状を適切に選ぶ
ことにより、すぐれた光学性能を有する非球面レンズア
レイを作製することができる。また本発明による非球面
レンズアレイは品質的にバラツキが少なく、本発明によ
れば低コストの非球面レンズアレイが供給できる。
The present invention can also produce an aspherical lens array having excellent optical performance by appropriately selecting the shape of the opening. Further, the aspherical lens array according to the present invention has little variation in quality, and according to the present invention, a low-cost aspherical lens array can be supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の母型の製造方法の実施例の工程図。FIG. 1 is a process drawing of an embodiment of a method for manufacturing a mother die of the present invention.

【図2】(a)は本発明の実施例のマスク層のリング状
開口部の平面図、(b)は本発明の実施例のマスク層の
リング状開口部のY−Y断面図。
2A is a plan view of a ring-shaped opening of a mask layer according to an embodiment of the present invention, and FIG. 2B is a sectional view taken along line YY of the ring-shaped opening of a mask layer according to the embodiment of the present invention.

【図3】マスク層の開口部の径とプリエッチング深さの
関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the diameter of the opening of the mask layer and the pre-etching depth.

【符号の説明】[Explanation of symbols]

1:フォトレジスト膜(マスク層) 2:Cr膜 3:ガラス 1: Photoresist film (mask layer) 2: Cr film 3: Glass

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金型のもとになる母型の表面のレンズ形状
を化学的エッチング法により形成する、金型成形法によ
るマイクロレンズアレイの製造方法において、 (1)母型となる平板表面に化学的エッチングを妨げる
マスク層を形成し、 (2)作製する各レンズに対応した微細な円形開口部お
よび該円形開口部をとりまく位置に設けられた1個以上
の開口部をマスク層に設け、 (3)これらの開口部を通してその平板表面を部分的に
化学エッチングし、 (4)マスク層を取除き、 (5)さらに平板表面全体を化学的エッチングする、 という母型作製工程を有することを特徴とする非球面マ
イクロレンズアレイの製造方法。
1. A method of manufacturing a microlens array by a die molding method, wherein a lens shape on the surface of a die which is a base of the die is formed by a chemical etching method. (2) A fine circular opening corresponding to each lens to be produced and one or more openings provided at positions surrounding the circular opening are provided in the mask layer. , (3) Partially chemically etching the flat plate surface through these openings, (4) Removing the mask layer, and (5) Further chemically etching the entire flat plate surface. And a method for manufacturing an aspherical microlens array.
【請求項2】作製する各レンズに対応した微細な円形開
口部をとりまく位置に設けられた1個以上の開口部が1
重以上のリング状開口であることを特徴とする請求項1
に記載の非球面マイクロレンズアレイの製造方法。
2. One or more openings provided at positions surrounding a fine circular opening corresponding to each lens to be manufactured
2. A ring-shaped opening having a weight equal to or more than that of the stack.
A method for manufacturing an aspherical microlens array according to item 1.
【請求項3】作製する各レンズに対応した微細な円形開
口部をとりまく位置に設けられた1個以上の開口部が、
その円形開口部の1重以上の同心円周上に配列された複
数個の円形開口であることを特徴とする請求項1記載の
非球面マイクロレンズアレイの製造方法。
3. One or more apertures provided at positions surrounding a fine circular aperture corresponding to each lens to be manufactured,
2. The method for manufacturing an aspherical microlens array according to claim 1, wherein the circular openings are a plurality of circular openings arranged on one or more concentric circles.
JP3339986A 1991-11-29 1991-11-29 Production of aspherical microlens array Withdrawn JPH05150103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339986A JPH05150103A (en) 1991-11-29 1991-11-29 Production of aspherical microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339986A JPH05150103A (en) 1991-11-29 1991-11-29 Production of aspherical microlens array

Publications (1)

Publication Number Publication Date
JPH05150103A true JPH05150103A (en) 1993-06-18

Family

ID=18332656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339986A Withdrawn JPH05150103A (en) 1991-11-29 1991-11-29 Production of aspherical microlens array

Country Status (1)

Country Link
JP (1) JPH05150103A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098313A (en) * 2001-09-20 2003-04-03 Optonix Seimitsu:Kk Aspheric lens array, method for manufacturing die and method for manufacturing aspheric lens array
JP2003279949A (en) * 2002-03-20 2003-10-02 Seiko Epson Corp Manufacturing method for substrate with recessed part for microlens, substrate with recessed part for microlens, microlens substrate, opposed substrate for liquid crystal panel, liquid crystal panel and projection type display device
US6653705B2 (en) 2000-10-13 2003-11-25 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
JP2008023627A (en) * 2006-07-19 2008-02-07 Denso Corp Optical gas concentration detector and manufacturing method of microstructure used therefor
US7329372B2 (en) * 2002-01-18 2008-02-12 Nippon Sheet Glass Co., Ltd. Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
KR100815221B1 (en) * 2006-02-17 2008-03-19 가부시키가이샤 히타치세이사쿠쇼 Method for producing for the microlens mold
KR100895367B1 (en) * 2005-11-10 2009-04-29 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing frame mold for micro lenses
US7566405B2 (en) * 2003-11-26 2009-07-28 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
US9354467B2 (en) 2012-12-03 2016-05-31 Seiko Epson Corporation Electro-optical device and electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653705B2 (en) 2000-10-13 2003-11-25 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
US6876051B2 (en) 2000-10-13 2005-04-05 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
JP4744749B2 (en) * 2001-09-20 2011-08-10 株式会社オプトニクス精密 Aspheric lens array, mold manufacturing method, and aspheric lens array manufacturing method
JP2003098313A (en) * 2001-09-20 2003-04-03 Optonix Seimitsu:Kk Aspheric lens array, method for manufacturing die and method for manufacturing aspheric lens array
US7329372B2 (en) * 2002-01-18 2008-02-12 Nippon Sheet Glass Co., Ltd. Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
JP2003279949A (en) * 2002-03-20 2003-10-02 Seiko Epson Corp Manufacturing method for substrate with recessed part for microlens, substrate with recessed part for microlens, microlens substrate, opposed substrate for liquid crystal panel, liquid crystal panel and projection type display device
US8390931B2 (en) 2003-11-26 2013-03-05 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
US7566405B2 (en) * 2003-11-26 2009-07-28 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
KR100895367B1 (en) * 2005-11-10 2009-04-29 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing frame mold for micro lenses
KR100815221B1 (en) * 2006-02-17 2008-03-19 가부시키가이샤 히타치세이사쿠쇼 Method for producing for the microlens mold
US7807061B2 (en) * 2006-07-19 2010-10-05 Denso Corporation Optical gas concentration detector and method of producing structure used in the detector
JP2008023627A (en) * 2006-07-19 2008-02-07 Denso Corp Optical gas concentration detector and manufacturing method of microstructure used therefor
US9354467B2 (en) 2012-12-03 2016-05-31 Seiko Epson Corporation Electro-optical device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4845290B2 (en) Micro lens array, optical equipment and optical viewfinder
US7068433B2 (en) Focusing screen master and manufacturing method thereof
US20050093210A1 (en) Method for producing optical element having antireflection structure, and optical element having antireflection structure produced by the method
JP2002122707A (en) Aspheric microstructure and method for manufacturing the same
KR20160140598A (en) Methods of fabricating photoactive substrates for micro-lenses and arrays
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
JPH05150103A (en) Production of aspherical microlens array
JP2005132660A (en) Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
JPH0763904A (en) Compound spherical microlens array and its production
TWI293374B (en) Micro-lens and micro-lens fabrication method
CN110596905A (en) Random micro-lens array structure for light beam homogenization and manufacturing method thereof
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2006235195A (en) Method for manufacturing member with antireflective structure
JPH07104106A (en) Production of aspherical microlens array
JP2009128541A (en) Method for manufacturing antireflection structure
JP2005132679A (en) Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
JPH05150102A (en) Production of microlens array
JP2009128540A (en) Method for manufacturing antireflection structure
JPS6146408B2 (en)
JP2007017686A (en) Micro structural body and optical equipment device having the same
US7390531B2 (en) Method for producing a tool which can be used to create surface structures in the sub-μm range
JP2790076B2 (en) Glass substrate with minute recess and method of manufacturing the same
JP3726790B2 (en) Manufacturing method of micro lens array
JP2010044229A (en) Method for manufacturing forming die for micro-lens array sheet
JP3566331B2 (en) Optical device and optical device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204