JP2004051388A - Method of processing surface of optical element - Google Patents

Method of processing surface of optical element Download PDF

Info

Publication number
JP2004051388A
JP2004051388A JP2002208102A JP2002208102A JP2004051388A JP 2004051388 A JP2004051388 A JP 2004051388A JP 2002208102 A JP2002208102 A JP 2002208102A JP 2002208102 A JP2002208102 A JP 2002208102A JP 2004051388 A JP2004051388 A JP 2004051388A
Authority
JP
Japan
Prior art keywords
glass substrate
optical element
overcoat layer
light
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208102A
Other languages
Japanese (ja)
Inventor
Junji Nishii
西 井 準 治
Kenji Kanetaka
金 高 健 二
Yasushi Kawamoto
川 本   泰
Hisao Kikuta
菊 田 久 雄
Akio Mizutani
水 谷 彰 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Moritex Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Moritex Corp
Priority to JP2002208102A priority Critical patent/JP2004051388A/en
Publication of JP2004051388A publication Critical patent/JP2004051388A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve light transmittance by reducing reflection occurring at the interface when light transmits through an optical element. <P>SOLUTION: In a patterning process (S<SB>1</SB>), a resist film (5) coated on the surface of a glass base material (2) is exposed to light to form a lattice pattern having a period of the wavelength level of light, and the pattern is developed. Then, in a dry etching process (S<SB>2</SB>), periodical projections (3) are formed in gaps of the lattice pattern by subjecting the surface of the glass base material (2) to dry etching, and in a coating process (S<SB>3</SB>), an overcoat layer (4) is formed by using a material at least whose refractive index is equal to that of the base material. Further, in a heat treating process (S<SB>4</SB>), the overcoat layer (4) and the glass base material (2) are heated to a temperature at which the overcoat layer (4) is closely adhered to the base material (2), and finally, in a wet-etching process (S<SB>5</SB>), the surface of the overcoat layer (4) is immersed in an etching solution so as to finish the surface smoothly. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレイパネル、回折格子、レンズ、プリズムなどの光学素子の表面の反射率を低下させて透過率を向上させる光学素子の表面加工方法に関する。
【0002】
【従来の技術】
光通信の分野においては、より多くの情報をより高効率で伝送することが望まれており、そのために、通信波長帯の広帯域化と各光学素子の高透過率化が不可欠である。
【0003】光学素子の透過率を向上させるために光透過面を無反射化することが有効であり、その手段として、光透過面に誘電体多層膜を形成することが知られているが、誘電体多層膜は大きな波長依存性があるため、広帯域WDM通信には使用できない。
また、誘電体多層膜をディスプレイパネルなどに使用した場合には、角度依存性があるために視野角が狭くなってしまう。
【0004】広い波長範囲で高い透過率を得るために、「Moth Eye」と称する表面構造が知られている。これは、光学素子の表面(光透過面)に光の波長レベル又はそれ以下の周期でピラミッド型の微小突起を縦横に配列形成したものである。
【0005】これは、石英基板の表面に塗布形成された感光性レジスト膜に、光の波長レベル又はそれ以下の直交格子パターンを露光し、レジスト膜を現像した後に、レジスト膜をマスクとして、そのマスクと石英基板のエッチング速度の差を利用して、石英基板に直交格子パターンに応じた格子溝を形成することにより、その格子溝間に周期的な微小突起を形成するようにしている。
これによれば、光が透過するときにその境界面に微小突起が形成されていることから、光が反射しにくく、平滑面よりも高い透過率が得られる。
【0006】
【発明が解決しようとする課題】
しかしながら、このようにドライエッチングにより形成された石英基板の表面は、電子顕微鏡により拡大して見ると、格子パターンの周期に応じた滑らかな曲面になっているわけではなく、荒削りされたような肌荒面になっていることが判明した。
そして、光学素子の表面がこのような肌荒面に形成されていると、光が透過する際に反射は生じなくても、光散乱を生じてしまうため、その分だけ、光透過率がロスされることになる。
【0007】このため本出願人らは、光学素子の材料となるガラス基材の表面に、光の波長レベル又はそれ以下の周期で微小突起を配列形成し、その微小突起の周期形状に沿ってガラス基材と少なくとも屈折率の等しいオーバーコート層を形成した後に、そのガラス転移点温度の2/3以上、軟化点以下の温度で加熱処理を行う表面加工方法を提案した(特願2001−321501)。
【0008】この表面加工方法により、シリカガラスの片面に周期1000nm、高さ1000nmの微小突起…を形成して無反射化したときの透過率は、未処理のシリカガラスの比透過率より1.7%高く95.1%に達した。
【0009】さらに、その微小突起にシリカガラスからなる220〜350nmの膜厚のオーバーコート層4を形成し、これを管状炉に入れ、酸素雰囲気中700℃で1時間熱処理したところ、透過率がさらに0.9%上昇して96.0%に達した。
しかし、シリカガラスの片面が無反射であるときの理論透過率96.8であることから、さらなる改善の余地がある。
【0010】そこで本発明では、光学素子の表面の反射率を抑えることにより、その透過率を理論透過率に極限まで近付けるようにすることを技術的課題としている。
【0011】
【課題を解決するための手段】
この課題を解決するために、本発明は、ガラス基材により形成される光学素子の表面の反射率を低下させて透過率を向上させる光学素子の表面加工方法であって、ガラス基材の表面に塗布形成された感光性レジスト膜に光の波長レベル又はそれ以下の周期の格子パターンを露光するパターニング工程と、現像したレジスト膜の上からガラス基材の表面にドライエッチングを施して前記格子パターンのピッチに応じた周期的な微小突起を形成するドライエッチング工程と、前記微小突起の表面に前記ガラス基材と少なくとも屈折率が等しい材料でオーバーコート層を形成するコーティング工程と、該オーバーコート層とガラス基材をこれらが密着する温度まで加熱する熱処理工程と、熱処理が完了したガラス基材の表面をエッチング液に浸してその表面を円滑に仕上るウェットエッチング工程とからなることを特徴とする。
【0012】本発明方法によれば、光の波長レベル又はそれ以下の周期の格子パターンを露光した後、レジスト膜を現像すると、未露光部が覆われたまま、露光部のレジスト膜が除去されてそこにガラス基材が露出されることとなる。
【0013】次いで、ECRプラズマエッチングやICPプラズマエッチングなどのドライエッチングを行うと、レジスト膜をマスクとして、そのマスクと基材のエッチング速度の差により、基材表面に前記格子パターンに応じた格子溝が形成されるので、その格子溝間に周期的な微小突起が形成される。
【0014】この場合に、ドライエッチングにより形成された基材表面は肌荒れしているので、基材と同一材料等の屈折率の等しい材料でオーバーコート層を形成することにより肌荒れした表面が覆われて滑らかになり、透過光の乱反射による光損失が少なくなる。
【0015】また、パターニング工程において、二光束干渉露光法を用いればその干渉光は平行干渉パターンとなるので、格子パターンが平行格子である場合には干渉光を露光し、前記格子パターンが直交格子である場合には干渉光を露光した後、ガラス基材を90度回転させて再度露光するだけで、それぞれの格子パターンを露光することができるので、露光が極めて簡単で、露光用のマスクパターンを形成する必要もない。
【0016】そして、コーティング工程で、ガラス基材と少なくとも屈折率の等しい材料でオーバーコート層を形成した後に、形成されたオーバーコート層をガラス基材に密着させる温度までオーバーコート層を加熱すると、オーバーコート層の密着性が向上すると同時に、その表面が平滑化されて、さらに光損失が低下する
【0017】すなわち、オーバーコート層はもともと肌荒れされた表面に形成されるので、荒れた表面形状がそのまま反映されているが、熱処理することにより、ガラス基材に形成された微小突起とオーバーコート層が確実に融合して一体化するだけでなく、オーバーコート層の表面をさらに滑らかにすることができるので、反射や散乱による光損失がさらに低下する。
【0018】そして最後に、熱処理が完了したガラス基材2の表面をエッチング液に浸すと、その微小突起の表面が徐々に浸食されてより滑らかになり、理想的な円錐形状に近づくので、反射率がさらに低下して透過率が向上する。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明に係る光学素子を示す説明図、図2は本発明方法を示す説明図、図3は二光束干渉露光法を示す説明図、図4は光透過率と波長の関係を示すグラフ、図5は光反射率と入射角の関係を示すグラフ、図6及び図7は他の実施形態を示すグラフである。
【0020】本例の光学素子1は、光通信用の光学素子に用いられるもので、シリカガラスからなるガラス基材2の表面に、光の波長レベル又はそれ以下の周期で微小突起3…が縦横に配列形成されると共に、前記突起3…による表面の周期形状に沿って、前記基材2と少なくとも屈折率の等しい材料(例えば同一材料)でオーバーコート層4が形成されて成る。
【0021】この光学素子1を製造する場合、まず、パターニング工程Sで、ガラス基材2の表面に塗布形成された感光性レジスト膜5に、二光束干渉露光法により直交格子パターンを露光する(図2(a)〜(c))。
【0022】図3は二光束干渉露光法を行う光学系を示すもので、波長λのHe−Cdレーザ6から照射された波長λnmのレーザ光をハーフミラー7で二つの光路に分け、これをガラス基材2の表面に立てた垂線を挟んで両側から角度θで照射すると、ガラス基材2表面で二つの光束が干渉し合い、干渉光は周期Λ=λ/(2sinθ)の平行格子パターンとなる。
【0023】したがって、ガラス基材2をターンテーブル8に固定して干渉光を照射すると、感光性レジスト膜5に平行格子パターンが露光され、次いで、ターンテーブル8を90°回転させて、再び干渉光を照射すれば、同じ平行格子パターンが、先に露光された平行格子パターンに直交して露光されるので、直交格子パターンが感光性レジスト膜5に焼付けられることになる。
【0024】このレジスト膜5を現像すると、未露光部が覆われたまま、露光部のレジスト膜が除去されてそこにガラス基材が露出されるので、本例の場合、点状のマスクが縦横に配列形成されることとなる。
【0025】次いで、ドライエッチング工程Sで、ガラス基材2の表面に、ECRプラズマエッチングやICPプラズマエッチングなどのドライエッチングを施せば、残ったレジスト膜5がマスクとなって、そのマスクと基材2のエッチング速度の差により、基材2の表面に前記格子パターンに応じた格子溝9…が形成され、その結果、夫々の格子溝9…間には周期的な微小突起3…が形成される(図2(d)〜(e))。
【0026】このとき、微小突起3…の周期及び高さが100〜2000nmに形成されると共に、高さ/周期で定義されるアスペクト比=1〜3の範囲に選定されている。
微小突起3がこれより低いと、低反射の効果が少なくなり、これより高いと成形が困難だからである。
【0027】ドライエッチング工程Sが終了すると、コーティング工程Sでドライエッチングが施されたガラス基材2の表面に対しプラズマCVDやRFスパッタ装置を用いて、微小突起3…による表面の周期形状に沿って前記基材2と同一材料でオーバーコート層4を形成し、エッチングにより生じた表面の肌荒れを滑らかにする(図2(f))。
【0028】このオーバーコート層4の膜厚が100〜1000nmに形成されると共に、前記微小突起3の高さの0.1〜5倍に選定されている。
膜厚がこれより薄いと、エッチングによる肌荒れをカバーすることができず、これより厚いと微小突起3の形状がなまって、アスペクト比が前述の下限値を下回るおそれがあるからである。
【0029】このようにして、ガラス基材2と同一の材料でオーバーコート層を形成した後、熱処理工程Sでそのガラス転移点温度の2/3以上、軟化点以下の温度に加熱する熱処理を行う(図2(g))。
これにより、オーバーコート層4の表面をさらに滑らかにすることができるだけでなく、ガラス基材2とオーバーコート層4が融合して確実に一体化するので、内部反射や内部散乱による光損失を生じるおそれもない。
【0030】そして最後に、熱処理が完了したガラス基材2の表面を、ウェットエッチング工程Sでフッ酸などのエッチング液に浸すと、微小突起3の表面が徐々に浸食されてより滑らかになり、微小突起3…は理想的な円錐形状に近づくので、反射率がさらに低下して透過率が向上する(図2(h))。
【0031】
【実験例】
まず、パターニング工程Sで、シリカガラスからなるガラス基材2の表面に形成された膜厚1μmの感光性レジスト膜5を波長λ=325nm、ハーフミラー7で分けられた光路の片側の出力が8.0mW/cmのHe−Cdレーザ6を用いて露光する。
このとき、夫々の入射角θ=9.35°で照射させると、ガラス基材2の表面上にピッチΛ=1000nmの干渉光が形成される。
ここで、ターンテーブル8を0°にセットして干渉光を15秒照射した後、ターンテーブル8を90°回転させてさらに15秒照射することにより感光性レジスト膜5を露光して、現像するとピッチ1000nmの直交格子パターンが得られる。
【0032】次いで、ドライエッチング工程Sに移行し、そのレジスト膜5の上からガラス基材2の表面にECRプラズマエッチング装置によりドライエッチングを施すと前記格子パターンのピッチに応じた周期的な微小突起3が形成される。
【0033】その後、ガラス基材2に残るレジスト膜をアセトン洗浄し、さらに酸素プラズマアッシングにより表面を洗浄した。
微小突起3…は、深さ1000nmまでエッチングした時点で、頂点が直径250nmの平面部分を残す円錐台形状に形成され、透過率は95.1%であり、未処理のシリカガラスより1.7%高かった。
【0034】さらに、コーティング工程Sでガラス基材2の表面にCVD法によりシリカガラスからなる220〜350nmの膜厚のオーバーコート層4を形成した後、熱処理工程Sでガラス基材2を管状炉に入れ、700℃で1時間熱処理したところ、透過率がさらに0.9%上昇して96.0%に達した。
【0035】そして最後に、ウェットエッチング工程Sでエッチング液となるフッ酸(5%)に浸して浸食させるウェットエッチングを行えば、微小突起3の表面が徐々に浸食されてより滑らかになり、各突起3…は理想的な円錐形状に近づくので、反射率がさらに低下して透過率が向上する。
このとき、エッチング液に1分間浸しては透過光強度を測定するという操作を繰り返しながら、透過光強度が最も高くなるように形状制御し、本例では合計6分間ウェットエッチングを施した。
【0036】これにより、さらに透過率が向上し、シリカガラスの片面を無反射にしたときの理論透過率96.8%に極めて近い透過率96.7%となり、略無反射の状態なった。
【0037】図4はこのようにして光学素子1の片面を表面加工して、微小突起3を形成したときの波長−透過光強度線図を示す。
ウェットエッチングを施した光学素子1の透過率は、未処理のシリカガラスの透過率93.4%に比して3〜4%高い96.7%となり、理論透過率96.8%の99.9%に達する。
また、本例によれば、波長1400nm以下の領域では光が回折を起こすために透過率が低下しているが、光通信に用いられる波長1500nmの帯域が全てカバーされる波長1400nm以上の広範な領域で無反射化が達成されている。
【0038】また、図5は、入射角−反射率線図であって、これより、入射角が0〜30°の範囲では略無反射であり、入射角が45°まで反射率が1%以内という極めて良好な低反射率を示していることがわかる。
【0039】なお、上述の説明では、ガラス基材2の表面に微小突起を形成したものをそのまま光学素子として使用する場合について説明したが、このように表面加工されたガラス基材2の表面形状を転写したポリマーフィルムを光学素子として使用する場合であっても良い。
【0040】この場合、前述と同じ方法でパターニング工程Sからウェットエッチング工程Sまでの表面加工を施した後、図6(a)及び(b)に示す転写工程Sにより、そのガラス基材2の表面形状を樹脂フィルム10へ転写し、これを光学素子として用いる。
【0041】転写工程Sでは、片面に微小突起3…を形成したガラス基材2の表面に金属を流して微小突起3の形状が反転して転写された金型11を形成し(図6(a)、図7)、この金型11を用いて注型成型又は射出成型などにより樹脂を流せば(図6(b))、その表面にガラス基材2の表面形状が転写された樹脂フィルム10が製造される。
【0042】さらに、金型11を作ることなく、片面に微小突起3…を形成したガラス基材2をそのまま型として用い、その表面に樹脂を流し込めば、図7に示すように、ガラス基材2の微小突起3の形状が反転して転写され、円錐上の微小凹部12が多数形成された樹脂フィルム13が製造され、この樹脂フィルム13を光学素子として用いても同様に無反射面が得られる。
【0043】
【発明の効果】
以上述べたように、本発明によれば、ガラス基材の表面に光の波長レベル又はそれ以下の周期の微小突起を配列形成したので、光が透過する際にその境界面で反射を起すことがなく、反射による透過率のロスを減少させることができるだけでなく、その表面の周期形状に沿って基材と同一材料のオーバーコート層を形成して熱処理したので、微小突起の表面の肌荒れが無くなり、透過光の散乱による透過率のロスを減少させて透過率を向上させることができ、さらに、ウェットエッチングを施すことにより微小突起を理想的な円錐形状により近付けることができ、これにより略無反射状態を達成して理想透過率に近い透過率を得ることができるという大変優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明方法により表面加工された光学素子を示す説明図。
【図2】本発明方法を示す説明図。
【図3】二光束干渉露光法を示す説明図。
【図4】透過率と波長の関係を示すグラフ。
【図5】反射率と入射角の関係を示すグラフ。
【図6】他の実施形態を示す説明図。
【図7】他の実施形態を示す説明図。
【符号の説明】
1………光学素子
2………ガラス基材
3………突起
4………オーバーコート層
5………感光性レジスト膜
9………格子溝
……パターニング工程
……ドライエッチング工程
……コーティング工程
……熱処理工程
……ウェットエッチング工程
……転写工程
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface processing method for an optical element, such as a liquid crystal display panel, a diffraction grating, a lens, a prism, or the like, that reduces the reflectance of the surface of the optical element and improves the transmittance.
[0002]
[Prior art]
In the field of optical communication, it is desired to transmit more information with higher efficiency. For this purpose, it is indispensable to broaden the communication wavelength band and increase the transmittance of each optical element.
It is effective to make the light transmitting surface non-reflective in order to improve the transmittance of the optical element. As a means for this, it is known to form a dielectric multilayer film on the light transmitting surface. The dielectric multilayer film has a large wavelength dependence and cannot be used for wideband WDM communication.
Further, when a dielectric multilayer film is used for a display panel or the like, the viewing angle becomes narrow due to the angle dependence.
[0004] In order to obtain high transmittance in a wide wavelength range, a surface structure called "Moth Eye" is known. This is one in which pyramid-shaped minute projections are arrayed vertically and horizontally on the surface (light transmitting surface) of an optical element at a wavelength level of light or at a period shorter than that.
[0005] In this method, a photosensitive resist film formed on the surface of a quartz substrate is exposed to an orthogonal lattice pattern having a wavelength of light or less, and after developing the resist film, the resist film is used as a mask. By utilizing the difference in the etching rate between the mask and the quartz substrate, grating grooves are formed in the quartz substrate in accordance with the orthogonal grating pattern, so that periodic minute projections are formed between the grating grooves.
According to this, since the minute projections are formed on the boundary surface when the light is transmitted, the light is hardly reflected, and a higher transmittance than the smooth surface can be obtained.
[0006]
[Problems to be solved by the invention]
However, when the surface of the quartz substrate formed by the dry etching is magnified by an electron microscope, the surface does not necessarily have a smooth curved surface corresponding to the period of the lattice pattern. It turned out to be rough.
If the surface of the optical element is formed on such a rough surface, light is scattered even if there is no reflection when light is transmitted, so that the light transmittance is reduced by that much. Will be done.
[0007] For this reason, the present applicant arranges and forms minute projections on the surface of a glass substrate as a material of an optical element at a cycle of light wavelength level or less, and follows the periodic shape of the minute projections. After forming an overcoat layer having at least the same refractive index as the glass substrate, a surface processing method in which a heat treatment is performed at a temperature equal to or higher than / of the glass transition temperature and equal to or lower than the softening point has been proposed (Japanese Patent Application No. 2001-321501). ).
According to this surface processing method, the transmittance when non-reflective is formed by forming minute protrusions having a period of 1000 nm and a height of 1000 nm on one side of the silica glass is 1. It reached 75.1%, 7% higher.
Further, an overcoat layer 4 made of silica glass and having a thickness of 220 to 350 nm is formed on the fine projections, and this is placed in a tubular furnace and heat-treated at 700 ° C. for 1 hour in an oxygen atmosphere. It further rose by 0.9% to 96.0%.
However, since the theoretical transmittance is 96.8 when one side of the silica glass is non-reflective, there is room for further improvement.
In view of the above, an object of the present invention is to suppress the reflectance of the surface of an optical element so that the transmittance is close to the theoretical transmittance as much as possible.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the present invention is a method for processing the surface of an optical element for improving the transmittance by lowering the reflectance of the surface of an optical element formed by a glass substrate, comprising: A patterning step of exposing a photosensitive resist film formed on the photosensitive resist film to a lattice pattern having a wavelength level of light or less than the periodicity thereof, and performing the dry etching on the surface of the glass substrate from above the developed resist film to form the lattice pattern. A dry etching step of forming periodic fine protrusions according to the pitch of the glass substrate; a coating step of forming an overcoat layer on the surface of the fine protrusions with a material having at least the same refractive index as the glass substrate; And a heat treatment step of heating the glass substrate to a temperature at which they adhere to each other, and immersing the surface of the heat-treated glass substrate in an etchant. Finished surface of the smooth, characterized in that it consists of a wet etching process.
According to the method of the present invention, when the resist film is developed after exposing the lattice pattern having a period equal to or lower than the wavelength of light, the resist film in the exposed portion is removed while the unexposed portion is covered. The glass substrate is exposed there.
Next, when dry etching such as ECR plasma etching or ICP plasma etching is performed, the resist film is used as a mask, and a difference in the etching rate between the mask and the substrate causes a lattice groove corresponding to the lattice pattern to be formed on the substrate surface. Are formed, periodic fine protrusions are formed between the lattice grooves.
In this case, since the surface of the substrate formed by dry etching is rough, the rough surface is covered by forming an overcoat layer with a material having the same refractive index as the base material, such as the same material. And light loss due to irregular reflection of transmitted light is reduced.
In the patterning step, if the two-beam interference exposure method is used, the interference light becomes a parallel interference pattern. Therefore, when the grating pattern is a parallel grating, the interference light is exposed, and In the case of, each grid pattern can be exposed simply by rotating the glass substrate by 90 degrees and exposing again after exposing the interference light, so that the exposure is extremely simple, and the exposure mask pattern is used. Need not be formed.
In the coating step, after forming the overcoat layer with a material having at least the same refractive index as the glass substrate, heating the overcoat layer to a temperature at which the formed overcoat layer is brought into close contact with the glass substrate, At the same time as the adhesion of the overcoat layer is improved, the surface is smoothed and the light loss is further reduced. That is, since the overcoat layer is originally formed on the rough surface, the rough surface shape is reduced. Although it is reflected as it is, heat treatment not only ensures that the minute protrusions formed on the glass substrate and the overcoat layer fuse and integrate, but also makes the surface of the overcoat layer smoother. As a result, light loss due to reflection and scattering is further reduced.
Finally, when the surface of the glass substrate 2 which has been subjected to the heat treatment is immersed in an etching solution, the surface of the minute projections is gradually eroded to become smoother and closer to an ideal conical shape. The transmittance further decreases and the transmittance increases.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is an explanatory diagram showing an optical element according to the present invention, FIG. 2 is an explanatory diagram showing a method of the present invention, FIG. 3 is an explanatory diagram showing a two-beam interference exposure method, and FIG. 4 shows a relationship between light transmittance and wavelength. FIG. 5 is a graph showing the relationship between the light reflectance and the incident angle, and FIGS. 6 and 7 are graphs showing another embodiment.
The optical element 1 of this embodiment is used for an optical element for optical communication, and has fine projections 3... At the wavelength of light or at a period less than that on the surface of a glass substrate 2 made of silica glass. The overcoat layer 4 is formed of a material (for example, the same material) having at least the same refractive index as the substrate 2 along the periodic shape of the surface formed by the protrusions 3.
[0021] When producing the optical element 1, first, in the patterning step S 1, the photosensitive resist film 5 coated on the surface of the glass substrate 2, to expose a rectangular grid pattern by two-beam interference exposure method (FIGS. 2A to 2C).
FIG. 3 shows an optical system for performing the two-beam interference exposure method. The laser beam having a wavelength of λ nm emitted from a He—Cd laser 6 having a wavelength of λ is divided into two optical paths by a half mirror 7 and is divided into two optical paths. When illuminated at an angle θ from both sides with a vertical line standing on the surface of the glass substrate 2, two light beams interfere with each other on the surface of the glass substrate 2, and the interference light has a parallel lattice pattern with a period Λ = λ / (2 sin θ). It becomes.
Therefore, when the glass substrate 2 is fixed to the turntable 8 and irradiated with interference light, the photosensitive resist film 5 is exposed to a parallel lattice pattern, and then the turntable 8 is rotated by 90 ° to cause interference again. When the light is irradiated, the same parallel lattice pattern is exposed orthogonally to the previously exposed parallel lattice pattern, so that the orthogonal lattice pattern is printed on the photosensitive resist film 5.
When the resist film 5 is developed, the resist film in the exposed portion is removed and the glass base material is exposed while the unexposed portion is covered. In this case, a dot-shaped mask is used. They will be arranged vertically and horizontally.
[0025] Then, in the dry etching process S 2, on the surface of the glass substrate 2, if Hodokose dry etching such as ECR plasma etching or ICP plasma etching, the remaining resist film 5 serves as a mask, the mask and the base Due to the difference in the etching rate of the material 2, lattice grooves 9 are formed on the surface of the base material 2 according to the lattice pattern. As a result, periodic minute projections 3 are formed between the lattice grooves 9. (FIGS. 2D to 2E).
At this time, the period and height of the minute projections 3 are formed in the range of 100 to 2000 nm, and the aspect ratio defined by the height / period is selected in the range of 1 to 3.
If the minute projections 3 are lower than this, the effect of low reflection is reduced, and if it is higher than this, molding is difficult.
[0027] Dry etching process S 2 is finished, the coating step using the S 3 plasma CVD or RF sputtering apparatus to the surface of the glass substrate 2 which dry etching was performed in the period of the minute projections 3 ... due to the surface shape The overcoat layer 4 is formed of the same material as that of the base material 2 to smooth the surface roughness caused by etching (FIG. 2 (f)).
The thickness of the overcoat layer 4 is set to 100 to 1000 nm, and is selected to be 0.1 to 5 times the height of the fine projections 3.
If the film thickness is smaller than this, it is not possible to cover the rough surface due to etching, and if the film thickness is larger than this, the shape of the fine projections 3 becomes blunt, and the aspect ratio may fall below the lower limit described above.
[0029] Thus, after forming the overcoat layer of the same material as the glass substrate 2, a heat treatment step S 4 in the glass transition temperature of more than 2/3, heat treatment of heating to a temperature below the softening point (FIG. 2 (g)).
As a result, not only can the surface of the overcoat layer 4 be further smoothed, but also the glass substrate 2 and the overcoat layer 4 are fused and integrated reliably, so that light loss due to internal reflection and internal scattering occurs. There is no fear.
[0030] Finally, the surface of the glass substrate 2 that the heat treatment is completed, dipped in an etching solution such as hydrofluoric acid wet etching process S 5, are gradually eroded surface of the microprojection 3 becomes smoother , The minute projections 3 approach an ideal conical shape, so that the reflectance is further reduced and the transmittance is improved (FIG. 2 (h)).
[0031]
[Experimental example]
First, in the patterning step S 1, a photosensitive film thickness 1μm formed on the surface of the glass substrate 2 made of silica glass resist film 5 a wavelength lambda = 325 nm, the output of one side of the optical path divided by the half mirror 7 Exposure is performed using a 8.0 mW / cm 2 He-Cd laser 6.
At this time, when irradiation is performed at each incident angle θ = 9.35 °, interference light having a pitch Λ = 1000 nm is formed on the surface of the glass substrate 2.
Here, after the turntable 8 is set at 0 ° and the interference light is irradiated for 15 seconds, the photosensitive resist film 5 is exposed and developed by rotating the turntable 8 by 90 ° and irradiating for another 15 seconds. An orthogonal lattice pattern with a pitch of 1000 nm is obtained.
[0032] Then, dry etching proceeds to step S 2, periodic minute in accordance with the pitch of the grating pattern and dry etched by an ECR plasma etching apparatus on the surface of the glass substrate 2 from the top of the resist film 5 The projection 3 is formed.
Thereafter, the resist film remaining on the glass substrate 2 was washed with acetone, and the surface was further washed by oxygen plasma ashing.
When the microprojections 3 are etched to a depth of 1000 nm, the vertices are formed in a truncated cone shape leaving a flat portion with a diameter of 250 nm, the transmittance is 95.1%, and 1.7 times higher than that of untreated silica glass. %it was high.
Furthermore, after forming the overcoat layer 4 having a thickness of 220~350nm of silica glass by a CVD method on the surface of the glass substrate 2 in the coating step S 3, the glass substrate 2 in the heat treatment step S 4 When placed in a tube furnace and heat-treated at 700 ° C. for 1 hour, the transmittance further increased by 0.9% and reached 96.0%.
[0035] Finally, by performing the wet etching to erode immersed in the wet etching process S 5 as an etching solution in hydrofluoric acid (5%), becomes smoother surface microprotrusion 3 is gradually eroded, Since each projection 3 approaches an ideal conical shape, the reflectance is further reduced and the transmittance is improved.
At this time, the shape was controlled so that the transmitted light intensity was maximized while repeating the operation of measuring the transmitted light intensity after immersion in the etchant for 1 minute, and in this example, wet etching was performed for a total of 6 minutes.
As a result, the transmittance was further improved, and the transmittance became 96.7%, which was extremely close to the theoretical transmittance of 96.8% when one surface of the silica glass was made non-reflective, and became substantially non-reflective.
FIG. 4 is a wavelength-transmitted light intensity diagram when the fine projections 3 are formed by processing one surface of the optical element 1 in this manner.
The transmittance of the optical element 1 subjected to the wet etching is 96.7%, which is 3-4% higher than the transmittance of the untreated silica glass of 93.4%, which is 96.7% of the theoretical transmittance of 96.8%. Reaches 9%.
Further, according to this example, the transmittance is reduced in the region of wavelength 1400 nm or less due to the diffraction of light, but the wide range of wavelength 1400 nm or more is used to cover the entire 1500 nm wavelength band used for optical communication. Antireflection is achieved in the region.
FIG. 5 is a graph showing the relationship between the incident angle and the reflectivity. From this, it is substantially non-reflective when the incident angle is in the range of 0 to 30 °, and the reflectivity is 1% up to the incident angle of 45 °. It can be seen that a very good low reflectance within the range is shown.
In the above description, the case where the microprojections formed on the surface of the glass substrate 2 are used directly as the optical element has been described, but the surface shape of the glass substrate 2 thus surface-processed is described. May be used as an optical element using a polymer film to which the above has been transferred.
[0040] In this case, after being subjected to surface treatment from patterning steps S 1 in the same manner as described above to a wet etching process S 5, the transfer step S 6 shown in FIG. 6 (a) and (b), the glass substrate The surface shape of the material 2 is transferred to the resin film 10 and used as an optical element.
The transfer in step S 6, to form fine protrusions 3 ... die 11 on the surface of the glass substrate 2 by flowing a metal shape of the minute projections 3 are transferred inverted forming a one side (FIG. 6 (A), FIG. 7), if the resin is poured by casting or injection molding using the mold 11 (FIG. 6 (b)), the resin on which the surface shape of the glass substrate 2 is transferred is obtained. The film 10 is manufactured.
Further, without using the mold 11, the glass substrate 2 having the fine projections 3 formed on one side is used as a mold as it is, and a resin is poured into the surface thereof, as shown in FIG. The shape of the minute projections 3 of the material 2 is inverted and transferred to produce a resin film 13 in which a large number of conical minute concave portions 12 are formed. Even when this resin film 13 is used as an optical element, the non-reflective surface is similarly formed. can get.
[0043]
【The invention's effect】
As described above, according to the present invention, minute projections having a wavelength level of light or less are arranged and formed on the surface of the glass substrate, so that when light is transmitted, reflection occurs at the boundary surface. Not only can reduce the loss of transmittance due to reflection, but also form an overcoat layer of the same material as the base material along the periodic shape of the surface and heat-treated, so that the surface roughness of the fine projections can be reduced. It is possible to improve the transmittance by reducing the loss of the transmittance due to the scattering of the transmitted light. Further, by performing the wet etching, the minute projections can be made closer to the ideal conical shape, thereby making it almost impossible This is a very excellent effect that a reflection state can be achieved and a transmittance close to the ideal transmittance can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an optical element whose surface has been processed by the method of the present invention.
FIG. 2 is an explanatory view showing the method of the present invention.
FIG. 3 is an explanatory view showing a two-beam interference exposure method.
FIG. 4 is a graph showing a relationship between transmittance and wavelength.
FIG. 5 is a graph showing a relationship between a reflectance and an incident angle.
FIG. 6 is an explanatory view showing another embodiment.
FIG. 7 is an explanatory view showing another embodiment.
[Explanation of symbols]
1 Optical element 2 Glass substrate 3 Projection 4 Overcoat layer 5 Photosensitive resist film 9 Lattice groove S 1 Patterning step S 2 Dry Etching step S 3 Coating step S 4 Heat treatment step S 5 Wet etching step S 6 Transfer step

Claims (2)

ガラス基材(2)により形成される光学素子の表面の反射率を低下させて透過率を向上させる光学素子の表面加工方法であって、ガラス基材(2)の表面に塗布形成された感光性レジスト膜(5)に光の波長レベル又はそれ以下の周期の格子パターンを露光するパターニング工程(S)と、現像したレジスト膜(5)の上からガラス基材(2)の表面にドライエッチングを施して前記格子パターンのピッチに応じた周期的な微小突起(3)を形成するドライエッチング工程(S)と、前記微小突起(3)の表面に前記ガラス基材(2)と少なくとも屈折率が等しい材料でオーバーコート層(4)を形成するコーティング工程(S)と、該オーバーコート層(4)とガラス基材(2)をこれらが密着する温度まで加熱する熱処理工程(S)と、熱処理完了後、オーバーコート層(4)の表面をエッチング液に浸してその表面を円滑に仕上るウェットエッチング工程(S)とからなることを特徴とする光学素子の表面加工方法。What is claimed is: 1. A method for processing a surface of an optical element, comprising: reducing the reflectance of the surface of an optical element formed by a glass substrate (2) to improve the transmittance; Patterning step (S 1 ) of exposing the conductive resist film (5) to a lattice pattern having a period equal to or lower than the wavelength of light and drying the resist film (5) on the surface of the glass substrate (2). A dry etching step (S 2 ) of forming periodic fine protrusions (3) in accordance with the pitch of the lattice pattern by performing etching; and forming the glass substrate (2) at least on the surface of the fine protrusions (3). heat treatment step of heating the coating to form an overcoat layer with a refractive index equal material (4) (S 3), the overcoat layer (4) and the glass substrate (2) to a temperature to which they are in close contact S 4 and), after heat treatment completion, surface processing method of the optical element characterized by consisting of a wet etching process honed the surface smooth (S 5) an overcoat layer of the surface (4) is immersed in an etching solution . 表面の反射率を低下させて透過率を向上させる光学素子の表面加工方法であって、ガラス基材(2)の表面に塗布形成された感光性レジスト膜(5)に光の波長レベル又はそれ以下の周期の格子パターンを露光するパターニング工程(S)と、現像したレジスト膜(5)の上からガラス基材(2)の表面にドライエッチングを施して前記格子パターンのピッチに応じた周期的な微小突起(3)を形成するドライエッチング工程(S)と、前記微小突起(3)の表面に前記ガラス基材(2)と少なくとも屈折率が等しい材料でオーバーコート層(4)を形成するコーティング工程(S)と、該オーバーコート層(4)とガラス基材(2)をこれらが密着する温度まで加熱する熱処理工程(S)と、熱処理完了後、オーバーコート層(4)の表面をエッチング液に浸してその表面を円滑に仕上るウェットエッチング工程(S)と、その表面形状を転写した樹脂製光学素子を成形する転写工程(S)からなることを特徴とする光学素子の表面加工方法。What is claimed is: 1. A method of processing a surface of an optical element for improving transmittance by lowering the reflectance of a surface, wherein a light-sensitive level or a light wavelength level is applied to a photosensitive resist film (5) applied and formed on a surface of a glass substrate (2). A patterning step (S 1 ) of exposing a lattice pattern having the following period, and a period corresponding to the pitch of the lattice pattern by performing dry etching on the surface of the glass substrate (2) from above the developed resist film (5). Dry etching step (S 2 ) for forming typical microprojections (3), and forming an overcoat layer (4) on the surface of the microprojections (3) with a material having at least the same refractive index as the glass substrate (2). and forming coating step (S 3), and a heat treatment step of heating the overcoat layer (4) and the glass substrate (2) to a temperature to which they are in close contact (S 4), after heat treatment completion, overcoat Wherein the surface (4) and the wet etching step is immersed in an etchant finished the surface smooth (S 5), in that it consists transfer step of molding a plastic optical element by transferring the surface shape (S 6) Surface processing method for an optical element.
JP2002208102A 2002-07-17 2002-07-17 Method of processing surface of optical element Pending JP2004051388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208102A JP2004051388A (en) 2002-07-17 2002-07-17 Method of processing surface of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208102A JP2004051388A (en) 2002-07-17 2002-07-17 Method of processing surface of optical element

Publications (1)

Publication Number Publication Date
JP2004051388A true JP2004051388A (en) 2004-02-19

Family

ID=31932340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208102A Pending JP2004051388A (en) 2002-07-17 2002-07-17 Method of processing surface of optical element

Country Status (1)

Country Link
JP (1) JP2004051388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322980A (en) * 2006-06-05 2007-12-13 Hoya Corp Method of manufacturing spectacle lens, and spectacle lens
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2009175481A (en) * 2008-01-25 2009-08-06 Sumitomo Electric Ind Ltd Antireflection optical member and optical module
KR101277439B1 (en) 2010-10-28 2013-06-20 노바테크인더스트리 주식회사 High Efficiently Light Extractable Glass Substrate and Manufacturing Method thereof
KR101324841B1 (en) * 2013-01-17 2013-11-01 노바테크인더스트리 주식회사 High Efficiently Light Extractable Glass Substrate and Manufacturing Method thereof
JP2020117418A (en) * 2019-01-24 2020-08-06 日亜化学工業株式会社 Method for manufacturing optical member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322980A (en) * 2006-06-05 2007-12-13 Hoya Corp Method of manufacturing spectacle lens, and spectacle lens
WO2007142136A1 (en) * 2006-06-05 2007-12-13 Hoya Corporation Process for manufacturing spectacle lens, and spectacle lens
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2009175481A (en) * 2008-01-25 2009-08-06 Sumitomo Electric Ind Ltd Antireflection optical member and optical module
KR101277439B1 (en) 2010-10-28 2013-06-20 노바테크인더스트리 주식회사 High Efficiently Light Extractable Glass Substrate and Manufacturing Method thereof
KR101324841B1 (en) * 2013-01-17 2013-11-01 노바테크인더스트리 주식회사 High Efficiently Light Extractable Glass Substrate and Manufacturing Method thereof
JP2020117418A (en) * 2019-01-24 2020-08-06 日亜化学工業株式会社 Method for manufacturing optical member

Similar Documents

Publication Publication Date Title
JP2988916B2 (en) Fabrication method of optical waveguide
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
CN113917605A (en) Preparation method of three-dimensional wedge-shaped lithium niobate thin film waveguide
JP2004051388A (en) Method of processing surface of optical element
US7635555B2 (en) Method for fabricating polymer ridged waveguides by using tilted immersion lithography
JP2000275456A (en) Optical waveguide and its manufacture
JPH11296918A (en) Manufacture of stamper for optical information recording medium
JP2023098802A (en) Grating, method for manufacturing the same, and optical waveguide
JPH0763904A (en) Compound spherical microlens array and its production
US20210302624A1 (en) Lithium niobate devices fabricated using deep ultraviolet radiation
JP2008216610A (en) Method of manufacturing optical component for laser beam machining
CN113534341B (en) Tunable waveguide grating filter based on femtosecond laser direct writing and manufacturing method thereof
JP2001296649A (en) Distributed density mask, method for manufacturing the same, and method for forming surface shape
JP6268137B2 (en) Manufacturing method of concave lens
JPH07113905A (en) Production of diffraction grating
JP3803307B2 (en) Manufacturing method of optical waveguide
JP3173803B2 (en) How to make a diffraction grating
JPS6041227A (en) Deformation preventive method of photo resist pattern
JPH0829608A (en) Production of photoresist pattern
JPS6079308A (en) Production of plane lens
JP2001005168A (en) Mask for near field exposure and its manufacture
JP2004354537A (en) Method for manufacturing master model for manufacture of fine structural body, master model for manufacture of fine structural body, and fine structural body
JP5890150B2 (en) Manufacturing method of concave lens
JPH027413A (en) Formation of contact hole
CN117148483A (en) Preparation method of helical grating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304