JPH076025B2 - Method of manufacturing permanent magnet material - Google Patents

Method of manufacturing permanent magnet material

Info

Publication number
JPH076025B2
JPH076025B2 JP61064459A JP6445986A JPH076025B2 JP H076025 B2 JPH076025 B2 JP H076025B2 JP 61064459 A JP61064459 A JP 61064459A JP 6445986 A JP6445986 A JP 6445986A JP H076025 B2 JPH076025 B2 JP H076025B2
Authority
JP
Japan
Prior art keywords
powder
permanent magnet
atom
magnetic field
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61064459A
Other languages
Japanese (ja)
Other versions
JPS62222019A (en
Inventor
裕 松浦
克己 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61064459A priority Critical patent/JPH076025B2/en
Publication of JPS62222019A publication Critical patent/JPS62222019A/en
Publication of JPH076025B2 publication Critical patent/JPH076025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−R系永久磁石材料の製造方法に係
り、特に、原料粉末を流動性,搬送性等の粉末特性のす
ぐれた粉末となし、これを成形,焼結して、磁石特性が
すぐれ、かつ、ばらつきのないFe−B−R系永久磁石材
料を安定して得る製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a Fe—BR permanent magnet material, and in particular, a raw material powder is a powder having excellent powder characteristics such as fluidity and transportability. The present invention relates to a manufacturing method in which a Fe-BR permanent magnet material having excellent magnet characteristics and having no variation is stably obtained by molding and sintering the material.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求めら
れ、さらに資源的に豊富で、今後の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやCoを含有しない新しい高性能永久
磁石としてFe−B−R系(RはYを含む希土類元素のう
ち少なくとも1種)永久磁石を提案した(特開昭59−46
008号、特開昭59−64733号、特開昭59−89401号、特開
昭59−132104号)。この永久磁石は、RとしてNdやPrを
中心とする資源的に豊富な軽希土類を用い、Feを主成分
として20MGOe以上の極めて高いエネルギー積を示す、す
ぐれた永久磁石である。
BACKGROUND ART At present, there is a demand for a permanent magnet material that has high magnetic properties and is inexpensive, and there is a strong demand for a permanent magnet material that is rich in resources and that can be stably supplied in the future with a composition element. In addition, as a new high-performance permanent magnet containing no expensive Sm or Co, an Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) is proposed (JP-A-59-46).
008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104). This permanent magnet is an excellent permanent magnet that uses a resource-rich light rare earth centering on Nd and Pr as R and has an extremely high energy product of 20 MGOe or more with Fe as a main component.

上記の新規なFe−B−R系、Fe−Co−B−R系永久磁石
材料を、製造するための出発原料の希土類金属は、一般
にCa還元法、電解法により製造され、例えば、以下の工
程により製造される。
The rare earth metal as a starting material for producing the above novel Fe-B-R type and Fe-Co-B-R type permanent magnet materials is generally produced by a Ca reduction method or an electrolytic method. It is manufactured by the process.

出発原料として、希土類金属、電解鉄、フェロボロン
合金あるいはさらに電解Coを高周波溶解して鋳塊を鋳造
する。
As a starting material, a rare earth metal, electrolytic iron, ferroboron alloy, or electrolytic Co is further high-frequency melted to cast an ingot.

鋳塊をスタンプミルにより粗粉砕後、ボールミルによ
り湿式粉砕して、1.5μm〜10μmの微細粉原料粉末と
する。
The ingot is roughly crushed by a stamp mill and then wet crushed by a ball mill to obtain a fine powder raw material powder having a size of 1.5 μm to 10 μm.

磁界中配向にて成型する。Mold in an oriented magnetic field.

真空中にて焼結後放冷する。Sinter in vacuum and allow to cool.

Ar雰囲気中にて時効処理する。Aging treatment in Ar atmosphere.

あるいは、 希土類酸化物のうち少なくとも1種、鉄粉及び純ボロ
ン粉、フェロボロン粉及び硼素酸化物のうち少なくとも
1種あるいは上記構成元素の合金粉または混合酸化物を
所要組成に配合した混合粉に、金属Ca及びCaCl2を混合
して、不活性ガス雰囲気中にて、還元拡散を行なって得
られた反応生成物をスラリー化し、水処理する。
Alternatively, at least one kind of rare earth oxide, iron powder and pure boron powder, at least one kind of ferroboron powder and boron oxide, or an alloy powder or a mixed oxide of the above constituent elements is added to a mixed powder in a required composition, Metal Ca and CaCl 2 are mixed, and the reaction product obtained by reducing and diffusing in an inert gas atmosphere is slurried and treated with water.

前記処理物をボールミルにより、0.5μm〜5μmの
微細粉にし、原料粉末とする。
The treated product is made into a fine powder of 0.5 μm to 5 μm by a ball mill and used as a raw material powder.

磁界中配向にて成型する。Mold in an oriented magnetic field.

真空中にて焼結後放冷する。Sinter in vacuum and allow to cool.

Ar雰囲気中にて時効処理する。Aging treatment in Ar atmosphere.

上述の如く、鋳塊粉砕原料粉及びCa還元原料粉のいずれ
も粉末粒度が数μm程度の微細粉末であるため、上記
工程の磁化中配向成型の際に、成形ダイス空間部への原
料粉末の給粉性が悪く、プレス能率が低下し、また低流
動性のため、プレス単位当り重量のばらつきが発生し易
く、焼結体の寸法的ばらつき及び割れや亀裂等を生じ易
い問題があり、さらには、粉末の搬送性が悪く、給粉の
自動化が困難で、プレス生産性,省力化向上を阻害する
問題があった。
As described above, since both the ingot crushed raw material powder and the Ca reducing raw material powder are fine powders having a powder particle size of about several μm, the raw material powder to the molding die space portion is not subjected to the magnetization middle orientation molding in the above step. Poor powder feedability, reduced press efficiency, and low fluidity tend to cause variations in weight per press unit, which tends to cause dimensional variations in the sintered body and cracks and cracks. Has a problem in that the powder is not easily conveyed and it is difficult to automate the powder feeding, which hinders improvement in press productivity and labor saving.

そこで、出願人は、先に、かかる問題を解決するため、
粉砕微粉末を磁場中にて加圧し、加圧体を所要の粉末粒
径に破砕整粒後、該整粒粉を所要形状寸法に磁場中成形
し、その後焼結、時効処理する永久磁石の製造方法を提
案(特開昭60−19050号)した。
Therefore, in order to solve such a problem, the applicant first
The pulverized fine powder is pressed in a magnetic field, and the pressed body is crushed and sized to a required powder particle size, and then the sized powder is shaped into a required shape and dimension in a magnetic field, and then sintered and aged. A manufacturing method has been proposed (JP-A-60-19050).

前記製造方法により得られた原料粉末は、すぐれた粉末
特性を有し、プレス時のダイス空間への給粉性が改善さ
れ、プレス能率の向上に多大の効果を有するが、磁場中
加圧体を特定粒径に破砕整粒するため、原料粉末の配向
の乱れにより、得られる永久磁石の磁石特性にばらつき
を生じ易い問題があった。
The raw material powder obtained by the above-mentioned manufacturing method has excellent powder characteristics, the powder feeding property to the die space at the time of pressing is improved, and it has a great effect on the improvement of the pressing efficiency. Since the powder is crushed and sized to a specific particle size, there is a problem that the magnetic properties of the obtained permanent magnet are likely to vary due to the disorder of the orientation of the raw material powder.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする本出願
人提案の永久磁石材料の製造において、原料粉末の粉末
特性に基づく、プレス能率の低下や製品品質の低下を解
消でき、ばらつきがなく、かつ、すぐれた磁石特性のFe
−B−R系永久磁石材料を安定して得ることができる製
造方法を目的としている。
OBJECT OF THE INVENTION The present invention, in the production of the permanent magnet material of the present applicant mainly composed of rare earth, boron, iron, based on the powder characteristics of the raw material powder, it is possible to eliminate the deterioration of press efficiency and product quality, Fe with uniform and excellent magnet characteristics
An object of the present invention is to provide a manufacturing method capable of stably obtaining a BR permanent magnet material.

発明の構成と効果 発明者らは、原料粉末の流動性及び搬送性等の粉末特性
と共に安定した磁石特性を有する永久磁石材料を得る方
法について種々検討した結果、前記した鋳塊粉砕法ある
いはCa還元法により得られた微粉砕粉を、特定磁界中に
て加圧し、この加圧成形体を特定粒径範囲に破砕整粒し
て原料粉末となし、これをダイス等の密封容器内に収容
し、交流磁界内にて解砕し、この解砕粉を前述した従来
工程で、磁場中成形,焼結,磁石化することにより、従
来工程で得られた永久磁石材料と同等以上の特性を有す
る永久磁石材料が安定して得られ、また、該解砕原料粉
末がすぐれた粉末特性を有することから、プレス能率が
向上、製造上の磁石特性,形状,寸法的ばらつきが減少
し、製品歩留向上に多大の効果を有することを知見し
た。
Structure and Effect of the Invention The inventors have conducted various studies on a method for obtaining a permanent magnet material having stable magnet characteristics along with powder characteristics such as fluidity and transportability of raw material powder, and as a result, the ingot crushing method or Ca reduction described above. The finely pulverized powder obtained by the method is pressed in a specific magnetic field, and the pressure-molded body is crushed and sized into a specific particle size range to form a raw material powder, which is housed in a sealed container such as a die. By crushing in an alternating magnetic field, and crushing this crushed powder in the conventional process described above in a magnetic field, sintering, and magnetizing, it has the same or better characteristics as the permanent magnet material obtained in the conventional process. Since the permanent magnet material can be obtained stably and the crushed raw material powder has excellent powder characteristics, the press efficiency is improved, and the magnet characteristics, shape, and dimensional variation in manufacturing are reduced, and the product yield is improved. We found that it had a great effect on improvement

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種あるいは
さらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくと
も1種からなる) 10原子%〜30原子%、 B 2原子%〜28原子%、 Fe 65原子%〜80原子%、 を主成分とする粉砕微粉末を磁場中にて加圧し、加圧体
を粉末粒径0.1〜3mmに破砕整粒後、ダイス等の密封容器
内に上記整粒粉を収容し、交流磁界中で解砕した後、 該解砕粉を所要形状寸法に磁場中成形し、 その後焼結して永久磁石を得ることを特徴とする永久磁
石材料の製造方法である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y). (Comprising seeds) 10 atom% to 30 atom%, B 2 atom% to 28 atom%, Fe 65 atom% to 80 atom% as the main components, and pulverized fine powder is pressurized in a magnetic field to After crushing and sizing to a powder particle size of 0.1 to 3 mm, the above sizing powder is housed in a sealed container such as a die and crushed in an alternating magnetic field, and then the crushed powder is molded into a required shape and dimension in a magnetic field, After that, it is sintered to obtain a permanent magnet, which is a method for producing a permanent magnet material.

上記のこの発明による製造方法で得られる永久磁石材料
は、平均結晶粒径が1〜80μmの範囲にある正方晶系の
結晶構造を有する化合物を主相とし、体積比で1%〜50
%の非磁性相(酸化物相を除く)を含むことを特徴と
し、RとしてNdあるいはさらにPrを中心とする資源的に
豊富な軽希土類を主に用い、Fe,B,Rを主成分とすること
により、20MGOe以上の極めて高いエネルギー積並びに、
高残留磁束密度、高保磁力を有したFe−B−R系永久磁
石材料を安価に得ることができる。
The permanent magnet material obtained by the above-mentioned production method according to the present invention has a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a volume ratio of 1% to 50%.
% Non-magnetic phase (excluding oxide phase) is included, mainly Rd is used as a resource rich light rare earth mainly as Nd or Pr, and Fe, B, R as main components By doing, extremely high energy product of 20MGOe or more,
It is possible to inexpensively obtain an Fe-BR system permanent magnet material having a high residual magnetic flux density and a high coercive force.

発明の好ましい実施態様 この発明による製造方法は、まず、出発原料として、希
土類金属、電解鉄、フェロボロン合金あるいはさらに電
解Coを高周波溶解して鋳塊を鋳造し、この鋳塊をスタン
プミルにより粗粉砕後、ボールミルにより湿式粉砕し
て、微粉砕粉末を得る。
Preferred Embodiment of the Invention The production method according to the present invention is as follows: First, as a starting material, a rare earth metal, electrolytic iron, ferroboron alloy or further electrolytic Co is high frequency melted to cast an ingot, and the ingot is roughly crushed by a stamp mill. Then, it is wet pulverized by a ball mill to obtain a finely pulverized powder.

あるいは、希土類酸化物のうち少なくとも1種、鉄粉及
び純ボロン粉、フェロボロン粉及び硼素酸化物のうち少
なくとも1種あるいは上記構成元素の合金粉または混合
酸化物を所要組成に配合した混合粉に、金属Ca及びCaCl
2を混合して、不活性ガス雰囲気中にて、還元拡散を行
なつて得られた反応生成物をスラリー化し、水処理し、
この処理物をボールミルにより、微粉砕粉末を得る。
Alternatively, at least one kind of rare earth oxide, iron powder and pure boron powder, at least one kind of ferroboron powder and boron oxide, or an alloy powder or a mixed oxide of the above constituent elements in a mixed powder having a required composition, Metal Ca and CaCl
2 , the reaction product obtained by reducing and diffusion in an inert gas atmosphere is slurried, treated with water,
A finely pulverized powder is obtained from this treated product by a ball mill.

上記の微粉砕粉を原料とし、造粒粉内の結晶粒を特定方
向に揃えるため、8kOe〜20kOeの磁界中で、プレス圧力
0.5t/cm2〜3.0t/cm2にて、例えば、一対のロールにて加
圧するか、あるいは通常の磁界中プレス装置を用いて成
形し、その後、該成型体を破砕機にて、破砕整粒して、
粉末粒径を0.1mm〜3mmの範囲内に揃える。
Using the above-mentioned finely pulverized powder as a raw material, in order to align the crystal grains in the granulated powder in a specific direction, in a magnetic field of 8 kOe to 20 kOe, press pressure
At 0.5t / cm 2 ~3.0t / cm 2 , e.g., pressurized by a pair of rolls, or molded using conventional magnetic field during pressing device at after which the molded-type body crusher, crushing Sizing,
Make the powder particle size within the range of 0.1 mm to 3 mm.

その後、前記の整粒粉をダイス等の密封容器内に収容
し、1000Oe〜10000Oeの交流磁界中で、該整粒粉を解砕
する。
Then, the sized powder is stored in a sealed container such as a die, and the sized powder is crushed in an alternating magnetic field of 1000 Oe to 10000 Oe.

得られた解砕粉末を、前述した粉末冶金的製造工程、例
えば、磁界中配向にて所要形状,寸法に成型した後、真
空中にて焼結後放冷し、さらに、Ar雰囲気中にて時効処
理する工程を経て永久磁石材料を得る。
The obtained crushed powder is subjected to the powder metallurgical manufacturing process described above, for example, after being shaped into a required shape and dimensions by orientation in a magnetic field, sintered in a vacuum and then allowed to cool, and further in an Ar atmosphere. A permanent magnet material is obtained through a step of aging treatment.

この発明において、破砕整粒前の磁場中加圧条件におけ
る磁界は、8kOe未満では、粉末の配向性が充分でなく、
磁石特性の低下を生じ好ましくなく、また、20kOeを越
えると製造上の設備コストが嵩む問題を生じ好ましくな
い。
In the present invention, the magnetic field under the pressure condition in the magnetic field before crushing and sizing is less than 8 kOe, the orientation of the powder is not sufficient,
It is not preferable because the magnet characteristics are deteriorated, and when it exceeds 20 kOe, there is a problem that the manufacturing equipment cost increases.

また、プレス圧力は、0.5t/cm2未満では充分な強度を有
する整粒粉が得られず、粉末特性の改善を計ることがで
きないため好ましくなく、また、3.0t/cm2を越えるとロ
ールやダイス,パンチの摩耗がはなはだしく、連続作業
が困難となるため好ましくない。
Also, pressing pressure, 0.5 t / cm without sizing powder having sufficient strength can be obtained in less than 2 is not preferable because it can not improve the powder properties, also exceeds 3.0 t / cm 2 rolls It is not preferable because the abrasion of dies, dies and punches is severe and continuous work becomes difficult.

この発明において破砕整粒粉の粒度は、0.1mm未満で
は、流動性の低下の問題があり好ましくなく、また、3m
mを越えると、小物のプレスにおいて、給粉時のプレス
単位当り重量のばらつきを生じるため好ましくなく、整
粒粉の粒度は、0.1mm〜3.0mmとし、好ましくは0.3mmか
ら0.8mmの粒度である。
In this invention, the particle size of the crushed and sized powder is less than 0.1 mm, which is not preferable because of the problem of reduced fluidity, and 3 m
When it exceeds m, it is not preferable because the weight per press unit at the time of powder feeding varies in the pressing of small articles, and the particle size of the sized powder is 0.1 mm to 3.0 mm, preferably 0.3 mm to 0.8 mm. is there.

この発明の特徴である上記整粒粉の解砕は、ダイス等の
密封容器内に収容された整粒粉が、交流磁界中にて、相
互に移動運動及び回転運動して摩擦,衝突を繰り返すこ
とにより、その配向を乱すことなく、解砕される。
In the crushing of the sized powder, which is a feature of the present invention, the sized powder contained in a sealed container such as a die repeatedly moves and rotates in an alternating magnetic field, and repeats friction and collision. As a result, it is crushed without disturbing its orientation.

解砕時の交流磁場は、1000Oe未満では、所要粒度に解砕
するのに長時間を要して好ましくなく、また、1000Oeを
越えると磁界発生装置が大型化して、設備に多大の費用
を要するため、1000〜10000Oeの範囲が好ましく、解砕
時間は1分以下が望ましい。
If the AC magnetic field during crushing is less than 1000 Oe, it takes a long time to crush to the required particle size, which is not preferable, and if it exceeds 1000 Oe, the magnetic field generator becomes large and the facility requires a large amount of cost. Therefore, the range of 1000 to 10000 Oe is preferable, and the crushing time is desirably 1 minute or less.

また、この発明において、前記解砕原料粉を、所要形
状,寸法に磁場中成形する際の磁場条件は、7kOe〜20kO
eが好ましく、プレス条件は、0.5t/cm2〜8t/cm2が好ま
しい。
Further, in the present invention, the magnetic field conditions for molding the crushed raw material powder in a magnetic field into required shapes and dimensions are 7 kOe to 20 kO.
e is preferably, pressing conditions, 0.5t / cm 2 ~8t / cm 2 is preferred.

また、焼結における温度条件は900℃〜1200℃が好まし
く、さらに好ましくは、1000℃〜1100℃で、時間は30分
から8時間が好ましい。900℃未満では、焼結磁石体と
して充分な強度が得られず、1200℃を越えると、焼結体
がが変形し、配向が崩れ、磁束密度の低下、角型性の低
下を招来し、また結晶粒の粗大化が進行して保磁力を低
下するため好ましくない。
The temperature condition in sintering is preferably 900 ° C to 1200 ° C, more preferably 1000 ° C to 1100 ° C, and the time is preferably 30 minutes to 8 hours. If the temperature is lower than 900 ° C, sufficient strength cannot be obtained as a sintered magnet body, and if the temperature exceeds 1200 ° C, the sintered body is deformed, orientation is disturbed, magnetic flux density is lowered, and squareness is lowered. Further, the coarsening of the crystal grains proceeds and the coercive force decreases, which is not preferable.

また、この発明において、磁石材料の残留磁束密度、保
磁力、減磁曲線の角型性を改善向上させるため、350℃
〜焼結温度の時効処理することが好ましい。時効処理温
度が350℃未満では拡散速度低下のため効果がなく、焼
結温度を越えると再焼結が起り過焼結となる。
Further, in this invention, in order to improve and improve the residual magnetic flux density, coercive force, and squareness of the demagnetization curve of the magnet material,
~ Aging treatment at a sintering temperature is preferable. If the aging temperature is lower than 350 ° C, there is no effect because the diffusion rate decreases, and if it exceeds the sintering temperature, re-sintering occurs and oversintering occurs.

さらには、時効処理温度は、450℃〜800℃の範囲が好ま
しく、また、時効処理温度は5分〜40時間が好ましい。
5分未満では時効処理効果が少なく、得られる磁石材料
の磁石特性のばらつきが大きくなり、40時間を越えると
工業的に長時間を要しすぎ実用的でない。磁石特性の好
ましい発現と実用的な面から時効処理時間は30分から8
時間が好ましい。また、時効処理は2段以上の多段時効
処理を用いることもできる。
Furthermore, the aging treatment temperature is preferably in the range of 450 ° C. to 800 ° C., and the aging treatment temperature is preferably 5 minutes to 40 hours.
If it is less than 5 minutes, the effect of aging treatment is small, and the variation of the magnetic properties of the obtained magnet material becomes large. If it exceeds 40 hours, it takes a long industrial time and is not practical. Aging treatment time is 30 minutes to 8 from the viewpoint of favorable expression of magnet characteristics and practical use.
Time is preferred. Further, as the aging treatment, a multi-step aging treatment having two or more steps can be used.

また、多段時効処理に代えて、400℃〜1000℃の時効処
理温度から室温までを空冷あるいは水冷などの冷却方法
で、0.2℃/min〜20℃/minの冷却速度で冷却する方法に
よっても、上記時効処理と同等の磁石特性を有する永久
磁石材料を得ることができる。
Further, instead of the multi-step aging treatment, a cooling method such as air cooling or water cooling from the aging temperature of 400 ℃ ~ 1000 ℃ to room temperature, by a method of cooling at a cooling rate of 0.2 ℃ / min ~ 20 ℃ / min, It is possible to obtain a permanent magnet material having the same magnetic characteristics as those of the aging treatment.

永久磁石材料用原料粉末の成分限定理由 この発明の永久磁石材料用原料粉末に用いる希土類元素
Rは、組成の10原子%〜24原子%を占めるが、Nd,Pr,D
y,Ho,Tbのうち少なくとも1種、あるいはさらに、La,C
e,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種を含む
ものが好ましい。
Reasons for Limiting Components of Raw Material Powder for Permanent Magnet Material The rare earth element R used in the raw material powder for permanent magnet material of the present invention occupies 10 atom% to 24 atom% of the composition, but Nd, Pr, D
At least one of y, Ho, Tb, or even La, C
Those containing at least one of e, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種(好ましくはNd,Pr,Dy,Ho,Tb
等)をもって足りるが、実用上は2種以上の混合物(ミ
ッシュメタル,ジジム等)を入手上の便宜等の理由によ
り用いることができる。
Also, one of R is usually used (preferably Nd, Pr, Dy, Ho, Tb
Etc.) is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience of availability.

また、主相を構成するR中のSm,Laはできるだけ少ない
ほうが好ましく、例えば、Smは、1原子%以下、さらに
好ましくは0.5原子%以下である。
Further, it is preferable that Sm and La in R constituting the main phase are as small as possible, for example, Sm is 1 atom% or less, more preferably 0.5 atom% or less.

また、温度特性の向上のためには、R混合系として、N
d,Pr、または、これらに0.005原子%〜5原子%,好ま
しくは0.2原子%〜3原子%のDy,Ho,Tb等の組み合せが
望ましい。
In addition, in order to improve the temperature characteristics, as an R mixed system, N
Desirably, d, Pr, or a combination of 0.005 atom% to 5 atom%, preferably 0.2 atom% to 3 atom% of Dy, Ho, Tb, etc., is added.

さらに、特性,コスト,資源的観点から、Rとしては、
Nd,Prが、全Rの50%以上、さらには80%以上であるこ
とが好ましい。
Furthermore, from the viewpoint of characteristics, cost and resources, R is as follows:
Nd and Pr are preferably 50% or more, more preferably 80% or more of the total R.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料用原料粉末における、
必須元素であって、10原子%未満では、結晶構造がα−
鉄と同一構造の立方晶組織が析出するため、高磁気特
性、特に高保磁力が得られず、30原子%を越えると、R
リッチな非磁性相が多くなり、残留磁束密度(Br)が低
下して、すぐれた特性の永久磁石が得られない。よっ
て、希土類元素は、10原子%〜30原子%の範囲とする。
R is the raw material powder for the above new permanent magnet material,
It is an essential element, and if it is less than 10 atomic%, the crystal structure is α-
Since a cubic crystal structure having the same structure as iron is deposited, high magnetic properties, especially high coercive force, cannot be obtained.
The rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 10 atom% to 30 atom%.

Bは、この発明による永久磁石材料用原料粉末におけ
る、必須元素であって、2原子%未満では、菱面体構造
が主相となり、高い保磁力(iHc)は得られず、28原子
%を越えると、Bリッチな非磁性相が多くなり、残留磁
束密度(Br)が低下するため、すぐれた永久磁石が得ら
れない。よって、Bは、2原子%〜28原子%の範囲とす
る。
B is an essential element in the raw material powder for a permanent magnet material according to the present invention, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained and exceeds 28 atomic%. Then, the B-rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

Feは、新規な上記永久磁石材料用原料粉末において、必
須元素であり、65原子%未満では残留磁束密度(Br)が
低下し、80原子%を越えると、高い保磁力が得られない
ので、Feは65原子%〜80原子%の含有とする。
Fe is an essential element in the new raw material powder for permanent magnet materials, and if the content is less than 65 atom%, the residual magnetic flux density (Br) is reduced, and if it exceeds 80 atom%, a high coercive force cannot be obtained. Fe is contained at 65 atom% to 80 atom%.

また、この発明による永久磁石材料用原料粉末におい
て、Feの一部をCoで置換することは、得られる磁石の磁
気特性を損うことなく、温度特性を改善することができ
るが、Co置換量がFeの20%を越えると、逆に磁気特性が
劣化するため、好ましくない。Coの原子比率がFeとCoの
合計量で5%〜15%の場合は、(Br)は置換しない場合
に比較して増加するため、高磁束密度を得るためには好
ましい。
Further, in the raw material powder for a permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. Is more than 20% of Fe, the magnetic properties are deteriorated, which is not preferable. When the atomic ratio of Co is 5% to 15% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石材料は、R,B,Feの他、工
業的生産上不可避的不純物の存在を許容できるが、Bの
一部を4.0原子%以下のC、2.0原子%以下のP、2.0原
子%以下のS、2.0原子%以下のCuのうち少なくとも1
種、合計量で2.0原子%以下で置換することにより、永
久磁石の製造性改善、低価格化が可能である。
Further, the permanent magnet material according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atomic% or less of C and 2.0 atomic% or less of P. , S of 2.0 atomic% or less, Cu of 2.0 atomic% or less, at least 1
It is possible to improve the manufacturability of the permanent magnet and reduce the cost by substituting the total amount of the seeds by 2.0 at% or less.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石材料に対してその保磁力、減磁曲線の角型
性を改善あるいは製造性の改善、低価格化に効果がある
ため添加することができる。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet material because it is effective in improving the coercive force and the squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

5.0原子%以下のAl、3.0原子%以下のTi、 5.5原子%以下のV、4.5原子%以下のCr、 5.0原子%以下のMn、5.0原子%以下のBi、 9.0原子%以下のNb、7.0原子%以下のTa、 5.2原子%以下のMo、5.0原子%以下のW、 1.0原子%以下のSb、3.5原子%以下のGe、 1.5原子%以下のSn、3.3原子%以下のZr、 6.0原子%以下のNi、5.0原子%以下のSi、 1.1原子%以下のZn、3.3原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上とするには、
(Br)が少なくとも9kG以上必要となるため、該条件を
満す範囲とした。
5.0 atomic% or less Al, 3.0 atomic% or less Ti, 5.5 atomic% or less V, 4.5 atomic% or less Cr, 5.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.0 atomic% or less Nb, 7.0 Ta less than atomic%, Mo less than 5.2 atomic%, W less than 5.0 atomic%, Sb less than 1.0 atomic%, Ge less than 3.5 atomic%, Sn less than 1.5 atomic%, Zr less than 3.3 atomic%, 6.0 atomic % Or less Ni, 5.0 atomic% or less Si, 1.1 atomic% or less Zn, 3.3 atomic% or less Hf, at least one type is added. However, when two or more types are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet. In addition, the upper limit of the addition amount is to set the (BH) max of the magnet material to 20 MGOe or more,
Since (Br) is required to be at least 9 kG or more, the range was set to satisfy the condition.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石材料は、磁場中プレス成型す
ることにより磁気的異方性磁石が得られ、また、無磁界
中でプレス成型することにより、磁気的等方性磁石を得
ることができる。
In addition, the permanent magnet material of the present invention can be magnetically anisotropic magnet by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field. .

この発明による永久磁石材料は、保磁力iHc≧1kOe、残
留磁束密度Br>4kG、を示し、最大エネルギー積(BH)m
axは、20MGOe以上を示し、好ましい組成範囲では、最大
値は25MGOe以上に達する。
The permanent magnet material according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH) m
ax indicates 20 MGOe or more, and the maximum value reaches 25 MGOe or more in the preferable composition range.

また、この発明の永久磁石材料用原料粉末のRの主成分
がその50%以上をNd及びPrを主とする軽希土類金属が占
める場合で、R 12原子%〜15原子%、B 6原子%〜9原
子%、Fe 78原子%〜80原子%、の組成範囲のとき、(B
H)max 35MGOe以上のすぐれた磁気特性を示し、特に軽
希土類金属がNdの場合には、その最大値が45MGOe以上に
達する。
Further, when the main component of R of the raw material powder for permanent magnet material of the present invention is 50% or more of the light rare earth metal mainly composed of Nd and Pr, R 12 atom% to 15 atom%, B 6 atom% In the composition range of ~ 9 atomic% and Fe 78 atomic% -80 atomic%, (B
H) shows excellent magnetic properties of more than 35MGOe, especially when the light rare earth metal is Nd, the maximum value reaches more than 45MGOe.

実 施 例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNd及びDyを使用し、これらを配合
後高周波溶解し、その後水冷銅鋳型に鋳造し、14.5Nd 7
B 0.5Dy78Feなる組成の鋳塊を得た。
Example 1 As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy, Nd and Dy having a purity of 99.7% or more were used, and after mixing these, high-frequency melting was performed, and then cast in a water-cooled copper mold, and 14.5Nd 7
An ingot having a composition of B 0.5 Dy78Fe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕
し、次にボールミルにより微粉砕し、平均粒度3.0μm
の微粉末を得た。
After that, this ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain an average particle size of 3.0 μm.
Of fine powder was obtained.

この微粉末を磁界中プレス装置にて、10kOeの磁界中で
配向し、1.5t/cm2の圧力で加圧成形して、100mm×60mm
×50mm寸法の成型体となした。
This fine powder is oriented in a magnetic field of 10 kOe in a magnetic field press machine and pressure-molded at a pressure of 1.5 t / cm 2 to obtain 100 mm x 60 mm.
It was made into a molded body with a size of 50 mm.

得られた加圧体を、整粒機により、粉末粒径0.4mm〜0.6
mmとなるよう破砕整粒した。
The obtained pressurized body was sized by a particle sizer to give a powder particle size of 0.4 mm to 0.6 mm.
It was crushed and sized so that the particle size became mm.

上記の整粒粉を、15mm×20mm×20mm寸法のダイス内に装
入したのち、上下パンチにてダイス内空間に密閉し、40
00Oeの交流磁界を、5秒間印加して、該整粒粉を解砕し
た。
After charging the above-mentioned sized powder into a die with dimensions of 15 mm × 20 mm × 20 mm, close the space inside the die with the upper and lower punches,
An alternating magnetic field of 00 Oe was applied for 5 seconds to crush the sized powder.

この解砕粉末を同一の金型に装入し、12kOeの磁界中で
配向し、磁界に水平方向に、2t/cm2の圧力で成形して、
15mm×20mm×12mm寸法の成型体となした。
This crushed powder was charged into the same mold, oriented in a magnetic field of 12 kOe, and horizontally molded in a magnetic field at a pressure of 2 t / cm 2 ,
It is a molded body with dimensions of 15 mm × 20 mm × 12 mm.

得られた成形体を、1080℃,1.5時間,Ar雰囲気中、の条
件で焼結し、さらに、Ar雰囲気中で、800℃,1時間と630
℃,1.5時間の2段時効処理した。
The obtained compact is sintered under the conditions of 1080 ° C, 1.5 hours in Ar atmosphere, and further, in Ar atmosphere, 800 ° C, 1 hour and 630
Two-stage aging treatment was performed at ℃ for 1.5 hours.

得られた永久磁石材料の磁石特性を測定し、その結果を
プレス能率と共に第1表に示す。
The magnetic properties of the obtained permanent magnet material were measured, and the results are shown in Table 1 together with the press efficiency.

なお、第1表の比較例は、前述した磁場中加圧体を特定
粒度に整粒した粉を原料粉末とし、これをそのままダイ
ス内に入れ、磁界中成形し、焼結後時効処理を施した永
久磁石材料であり、他の製造条件は本発明例と同一であ
る。
In the comparative example of Table 1, powder obtained by sizing the above-mentioned pressed body in a magnetic field to a specific particle size is used as a raw material powder, which is directly placed in a die, molded in a magnetic field, and subjected to an aging treatment after sintering. It is a permanent magnet material, and other manufacturing conditions are the same as those of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D H01F 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/00 303 DH 01F 1/08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yの
うち少なくとも1種からなる) 10原子%〜30原子%、 B 2原子%〜28原子%、 Fe 65原子%〜80原子%、 を主成分とする粉砕微粉末を磁場中にて加圧し、加圧体
を粉末粒径0.1〜3mmに破砕整粒後、 密封容器内に上記整粒粉を収容し、交流磁界中で解砕し
た後、 該解砕粉を所要形状寸法に磁場中成形し、 その後焼結して永久磁石を得ることを特徴とする永久磁
石材料の製造方法。
1. R (R is at least one of Nd, Pr, Dy, Ho, Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y. 10 atom% to 30 atom%, B 2 atom% to 28 atom%, Fe 65 atom% to 80 atom%, as a main component, pulverized fine powder is pressed in a magnetic field to powder the pressed body. After crushing and sizing to a particle size of 0.1 to 3 mm, the above sizing powder is stored in a sealed container and crushed in an alternating magnetic field, and then the crushed powder is molded into the required shape and size in a magnetic field and then sintered. A method for producing a permanent magnet material, comprising:
JP61064459A 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material Expired - Lifetime JPH076025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064459A JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064459A JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Publications (2)

Publication Number Publication Date
JPS62222019A JPS62222019A (en) 1987-09-30
JPH076025B2 true JPH076025B2 (en) 1995-01-25

Family

ID=13258840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064459A Expired - Lifetime JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Country Status (1)

Country Link
JP (1) JPH076025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572673B2 (en) 2011-07-08 2014-08-13 昭和電工株式会社 R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor

Also Published As

Publication number Publication date
JPS62222019A (en) 1987-09-30

Similar Documents

Publication Publication Date Title
EP0633581A1 (en) R-Fe-B permanent magnet materials and process of producing the same
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
JPH0340082B2 (en)
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPH0424401B2 (en)
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JPH0917677A (en) Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH076025B2 (en) Method of manufacturing permanent magnet material
JPH0653909B2 (en) Method of manufacturing permanent magnet material
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0653910B2 (en) Method of manufacturing permanent magnet material
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JPH0745412A (en) R-fe-b permanent magnet material
JPH0745413A (en) Manufacture of raw material powder for r-fe-b permanent magnet and alloy powder for adjusting raw material powder
JPH0623401B2 (en) Heavy rare earth alloy powder
JPS61252604A (en) Manufacture of rare earth magnet
JPS61270313A (en) Production of rare earth alloy powder
JPH064884B2 (en) Manufacturing method of rare earth alloy powder

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term