JPS62222019A - Production of permanent magnet material - Google Patents

Production of permanent magnet material

Info

Publication number
JPS62222019A
JPS62222019A JP61064459A JP6445986A JPS62222019A JP S62222019 A JPS62222019 A JP S62222019A JP 61064459 A JP61064459 A JP 61064459A JP 6445986 A JP6445986 A JP 6445986A JP S62222019 A JPS62222019 A JP S62222019A
Authority
JP
Japan
Prior art keywords
powder
magnetic field
permanent magnet
granules
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61064459A
Other languages
Japanese (ja)
Other versions
JPH076025B2 (en
Inventor
Yutaka Matsuura
裕 松浦
Katsumi Okayama
克己 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61064459A priority Critical patent/JPH076025B2/en
Publication of JPS62222019A publication Critical patent/JPS62222019A/en
Publication of JPH076025B2 publication Critical patent/JPH076025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To stably produce a permanent magnet material having superior magnet characteristics with improved pressing power by compacting pulverized power consisting of rare earth elements, B and Fe in a magnetic field, crushing the formed green compact into granules, screening the granules, further crushing the screened granules into powder in an AC magnetic field in a hermetically sealed vessel, compacting the powder in a magnetic field and sintering it. CONSTITUTION:Pulverized powder consisting essentially of, by atom, 10-30% R (one or more among Nd, Pr, Dy, Ho and Tb and one or more among La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y), 2-38% B and 65-80% Fe is compacted in a magnetic field to orient the grains in a specified direction. The formed green compact is crushed into granules and the granules are screened. The screened granules of 0.1-3mm diameter are put in a hermetically sealed vessel and crushed into powder in an AC magnetic field. The powder is compacted to the required shape and size under orientation in a magnetic field and the formed green compact is sintered. By this method, a permanent magnet material having uniform magnet characterisitcs can be produced in a high yield.

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fil−B−R系永久磁石材料の製造方法
に係り、特に、原料粉末を流動性、Wl送性等の粉末特
性のすぐれた粉末となし、これを成形。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing Fil-B-R permanent magnet materials, and in particular, to a method for producing a Fil-B-R permanent magnet material, in particular a method for producing a raw material powder into a powder with excellent powder properties such as fluidity and Wl transportability. , mold this.

焼結して、磁石特性がすぐれ、がっ、ばらつきのないF
a  B−R系永久磁石材料を安定して得る製造方法に
関する。
F is sintered and has excellent magnetic properties with no variation.
a. The present invention relates to a manufacturing method for stably obtaining a BR-based permanent magnet material.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求められ
、ざらに資源的に豊富で、今後の安定供給が可能な組成
元素からなる永久磁石材料が切望されており、本出願人
は先に、高価な論やらを含有しない新しい高性能永久磁
石としてFe−B−R系(RはYを含む希土類元素のう
ち少なくとも1種)永久磁石を提案したく特開昭59−
46008号、特開昭59−64733@、特開昭59
−89401号、特開昭59−132104号)。この
永久磁石は、Rとして陶や円を中心とする資源的に豊富
な軽希土類を用い、「eを主成分として20MGOs以
上の極めて高いエネルギー積を示す、すぐれた永久磁石
である。
BACKGROUND ART Currently, there is a demand for permanent magnet materials that have high magnetic properties and are inexpensive, and there is a strong need for permanent magnet materials that are rich in resources and have compositional elements that can be stably supplied in the future. First, I would like to propose a Fe-BR-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive materials.
No. 46008, JP-A-59-64733@, JP-A-59
-89401, JP-A-59-132104). This permanent magnet uses resource-rich light rare earths such as ceramics and circles as R, and is an excellent permanent magnet that has e as its main component and exhibits an extremely high energy product of 20 MGOs or more.

上記の新規なFe −B −R系、Fe  Co  B
  R系永久磁石材料を、製造するための出発原料の希
土類金属は、一般にCa還元法、電解法により製造され
、例えば、以下の工程により製造される。
The above novel Fe-B-R system, FeCoB
Rare earth metals as starting materials for producing R-based permanent magnet materials are generally produced by a Ca reduction method or an electrolytic method, for example, by the following steps.

■出発原料として、希土類金属、電解鉄、フェロボロン
合金あるいはざらに電解6を高周波溶解して鋳塊を鋳造
する。
■ As starting materials, rare earth metals, electrolytic iron, ferroboron alloys, or electrolytic 6 are melted at high frequency and cast into ingots.

■鋳塊をスタンプミルにより粗粉砕後、ボールミルによ
り湿式粉砕して、1.5Atm〜10虜の微細粉原料粉
末とする。
(2) The ingot is coarsely pulverized using a stamp mill, and then wet pulverized using a ball mill to obtain a fine raw material powder of 1.5 Atm to 10 Atm.

■磁界中配向にて成型する。■Mold with orientation in a magnetic field.

■真空中にて焼結後放冷する。■After sintering in vacuum, let it cool.

■Ar雰囲気中にて時効処理する。■Aging treatment in an Ar atmosphere.

あるいは、 ■希土類酸化物のうち少なくとも1種、鉄粉及び純ボロ
ン粉、フェロボロン粉及び硼素酸化物のうち少なくとも
1種あるいは上記構成元素の合金粉または混合酸化物を
所要組成に配合した混合粉に、金JlCa及びCaCl
2を混合して、不活性ガス雰囲気中にて、還元拡散を行
なって得られた反応生成物をスラリー化し、水処理する
Or, ■ At least one of rare earth oxides, at least one of iron powder, pure boron powder, ferroboron powder, and boron oxide, or a mixed powder containing an alloy powder or mixed oxide of the above constituent elements to the required composition. , Gold JlCa and CaCl
2 are mixed and subjected to reductive diffusion in an inert gas atmosphere, and the resulting reaction product is made into a slurry and treated with water.

■前記処理物をボールミルにより、0.511m〜5A
Imの微細粉にし、原お1粉末とする。
■The above-mentioned processed material is processed by a ball mill from 0.511m to 5A.
Make a fine powder of Im and make 1 powder.

■磁界中配向にて成型する。■Mold with orientation in a magnetic field.

■真空中にて焼結後放冷する。■After sintering in vacuum, let it cool.

■Ar雰囲気中にて時効処理する。■Aging treatment in an Ar atmosphere.

上述の如く、鋳塊粉砕原11粉及びCa還元原料粉のい
ずれも粉末粒度が数ρ程度の微細粉末であるため、上記
■工程の磁化中配向成型の際に、成形ダイス空間部への
原料粉末の給粉性が悪く、プレス能率が低下し、また低
流動性のため、プレス単位当り型組のばらつきが発生し
易く、焼結体の寸法的ばらつき及び割れや亀裂等を生じ
易い問題があり、さらには、粉末の搬送性が悪く、給粉
の自動化が困難で、プレス生産性、省力化向上を阻害す
る問題がめった。
As mentioned above, both the ingot crushed raw material 11 powder and the Ca-reduced raw material powder are fine powders with a particle size of several ρ, so during the orientation molding during magnetization in the above step (2), the raw material into the molding die space is Powder feeding properties are poor, press efficiency is reduced, and due to low fluidity, variations in mold set per press unit are likely to occur, resulting in dimensional variations in the sintered body and problems such as cracks and cracks. In addition, powder conveyance is poor, and it is difficult to automate powder feeding, which frequently poses problems that impede improvements in press productivity and labor saving.

そこで、出願人は、先に、かかる問題を解決するため、
粉砕微粉末をia磁場中て加圧し、加圧体を所要の粉末
粒径に破砕整粒後、該整粒粉を所要形状寸法に磁場中成
形し、その後焼結、時効処理する永久磁石の製造方法を
提案(特願昭60−19050号)した。
Therefore, in order to solve this problem, the applicant first
Pulverized fine powder is pressurized in an IA magnetic field, the pressurized body is crushed and sized to the required powder particle size, the sized powder is formed into the required shape and size in the magnetic field, and then sintered and aged using a permanent magnet. A manufacturing method was proposed (Japanese Patent Application No. 60-19050).

前記製造方法により得られた原料粉末は、すぐれた粉末
特性を有し、プレス時のダイス空間への給粉性が改善さ
れ、プレス能率の向上に多大の効果を有するが、磁場中
加圧体を特定粒径に破砕整粒するため、原料粉末の配向
の乱れにより、得られる永久磁石の磁石特性にばらつき
を生じ易い問題があった。
The raw material powder obtained by the above manufacturing method has excellent powder properties, improves powder feeding into the die space during pressing, and has a great effect on improving press efficiency. Since the powder is crushed and sized to a specific particle size, there is a problem in that the magnetic properties of the resulting permanent magnet tend to vary due to disordered orientation of the raw material powder.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする本出願
人提案の永久磁石材料の製造において、原お1粉末の粉
末特性に基づく、プレス能率の低下や製品品質の低下を
解消でき、ばらつきがなく、かつ、すぐれた磁石特性の
Fe  B  R系永久磁石材料を安定して得ることが
できる製造方法を目的としている。
Purpose of the Invention The present invention eliminates the reduction in press efficiency and product quality based on the powder characteristics of raw powder in the production of permanent magnet materials proposed by the applicant whose main components are rare earth elements, boron, and iron. The object of the present invention is to provide a manufacturing method that can stably obtain a FeBR-based permanent magnet material that has excellent magnetic characteristics without any variation.

発明の構成と効果 発明者らは、原料粉末の流動性及び搬送性等の粉末特性
と共に安定した磁石特性を有する永久磁石材料を得る方
法について種々検討した結果、前記した鋳塊粉砕法ある
いはCa還元法により得られた微粉砕粉を、特定磁界中
にて加圧し、この加圧成形体を特定粒径範囲に破砕整粒
して原おl粉末となし、これをダイス等の密封容器内に
収容し、交流磁界内にて解砕し、この解砕粉を前述した
従来工程で、磁場中成形、焼結、磁石化することにより
、従来工程で得られた永久磁石材料と同等以上の特性を
有する永久磁石材料が安定して得られ、また、該解砕原
料粉末がすぐれた粉末特性を有することから、プレス能
率が向上、製造上の磁石特性、形状1寸法的ばらつきが
減少し、製品歩留向上に多大の効果を有することを知見
した。
Structure and Effects of the Invention The inventors investigated various methods of obtaining a permanent magnet material having stable magnetic properties as well as powder characteristics such as fluidity and transportability of the raw material powder, and found that the above-mentioned ingot crushing method or Ca reduction method was used. The finely pulverized powder obtained by this method is pressurized in a specific magnetic field, and this pressed compact is crushed and sized to a specific particle size range to form raw powder, which is then placed in a sealed container such as a die. The crushed powder is then crushed in an alternating magnetic field, formed in a magnetic field, sintered, and magnetized using the conventional process described above, resulting in properties equivalent to or better than permanent magnet materials obtained through the conventional process. A permanent magnet material having a 100% dimensional stability can be stably obtained, and the crushed raw material powder has excellent powder properties, which improves press efficiency, reduces magnetic property and shape dimensional variations during manufacturing, and improves product quality. It was found that this method has a great effect on improving yield.

すなわち、この発明は、 R(Rは陶、 Pr、 h、 Ho、 Tbのうち少な
くとも1種あるいはさらに、La、 Co、 Sm、 
Gd、 Er、 EIJ、 Tl1l。
That is, this invention provides R (R is ceramic, at least one of Pr, h, Ho, Tb, or furthermore, La, Co, Sm,
Gd, Er, EIJ, Tl1l.

Yb、 Lu、 Yのうち少なくとも1種からなる)1
0原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%、 を主成分とする粉砕微粉末を磁場中にて加圧し、加圧体
を粉末粒径0.1〜3mmに破砕整粒後、ダイス等の密
封容器内に上記整粒粉を収容し、交流磁界中で解砕した
俊、 久磁石材料の製造方法である。
consisting of at least one of Yb, Lu, and Y)1
A crushed fine powder whose main components are 0 at% to 30 at%, B2 at% to 28 at%, and Fe65 at% to 80 at% is pressurized in a magnetic field, and the pressurized body has a powder particle size of 0.1. This is a method for producing a magnetic material in which the sized powder is crushed and sized to ~3 mm, placed in a sealed container such as a die, and crushed in an alternating current magnetic field.

上記のこの発明による製造方法で得られる永久磁石材料
は、平均結晶粒径が1〜80.gmの範囲にある正方晶
系の結晶構造を有する化合物を主相とし、体積比で1%
〜50%の非磁性相(酸化物相を除く)を含むことを特
徴とし、RとしてMあるいはざらに円を中心とする資源
的に豊富な軽希土類を主に用い、Fe、B、R,を主成
分とすることにより、20MGOa以上の極めて高いエ
ネルギー積並びに、高残沼磁束密度、高保磁力を有した
Fs−B−R系永久磁石材料を安価に得ることができる
The permanent magnet material obtained by the above manufacturing method according to the present invention has an average crystal grain size of 1 to 80. The main phase is a compound with a tetragonal crystal structure in the range of gm, and the volume ratio is 1%.
It is characterized by containing ~50% of a non-magnetic phase (excluding the oxide phase), and mainly uses light rare earths, which are rich in resources, mainly M or rough circles, as R, Fe, B, R, By using Fs-B-R as a main component, it is possible to obtain an Fs-BR permanent magnet material having an extremely high energy product of 20 MGOa or more, a high residual magnetic flux density, and a high coercive force at a low cost.

発明の好ましい実施態様 この発明による製造方法は、まず、出発原料として、希
土類金属、電解鉄、フェロボロン合金あるいはさらに電
解らを高周波溶解して鋳塊を鋳造し、この鋳塊をスタン
プミルにより粗粉砕後、ボールミルにより湿式粉砕して
、微粉砕粉末を得る。
Preferred Embodiment of the Invention In the manufacturing method according to the present invention, first, a rare earth metal, electrolytic iron, ferroboron alloy, or further electrolysis is melted by high frequency as a starting material to cast an ingot, and this ingot is coarsely pulverized by a stamp mill. Thereafter, the mixture is wet-milled using a ball mill to obtain a finely ground powder.

あるいは、希土類酸化物のうち少なくとも1種、鉄粉及
び純ボロン粉、フェロボロン粉及び硼素酸化物のうち少
なくとも1種あるいは上記構成元素の合金粉または混合
酸化物を所要組成に配合した混合粉に、金属Ca及びC
aCN2を混合して、不活性ガス雰囲気中にて、還元拡
散を行なって得られた反応生成物をスラリー化し、水処
理し、この処理物をボールミルにより、微粉砕粉末を得
る。
Alternatively, a mixed powder containing at least one of rare earth oxides, at least one of iron powder, pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above-mentioned constituent elements in the required composition, Metal Ca and C
The reaction product obtained by mixing aCN2 and performing reductive diffusion in an inert gas atmosphere is made into a slurry, treated with water, and the treated product is ball milled to obtain finely pulverized powder.

上記の微粉砕粉を原料とし、造粒粉内の結晶粒を特定方
向に揃えるため、8 koe〜20 koeの磁界中で
、プレス圧力o、st、g〜3.Ot、Jにて、例えば
、一対のロールにて加圧するか、あるいは通常の磁界中
プレス装置を用いて成形し、その1麦、該成型体を破砕
機にて、破砕整粒して、粉末粒径を0.1mm〜3mm
の範囲内に揃える。
Using the above finely pulverized powder as a raw material, in order to align the crystal grains in the granulated powder in a specific direction, press pressures of o, st, g to 3. Ot, J, for example, pressurized with a pair of rolls or molded using a normal press device in a magnetic field, and the molded body is crushed and sized using a crusher to form a powder. Particle size from 0.1mm to 3mm
Align within the range.

その後、前記の整粒粉をダイス等の密封容器内に収容し
、10000a〜100000eの交流磁界中で、該整
粒粉を解砕する。
Thereafter, the sized powder is placed in a sealed container such as a die, and the sized powder is crushed in an alternating current magnetic field of 10,000 a to 100,000 e.

得られた解砕粉末を、前述した粉末冶金的製造工程、例
えば、磁界中配向にて所要形状1寸法に成型した1麦、
真空中にて焼結後放冷し、さらに、Ar雰囲気中にて時
効処理する工程を経て永久磁石材料を得る。
The obtained crushed powder is molded into a desired shape and one dimension through the powder metallurgy manufacturing process described above, for example, by orientation in a magnetic field.
After sintering in a vacuum, the material is left to cool, and then subjected to an aging treatment in an Ar atmosphere to obtain a permanent magnet material.

この発明において、破砕整粒前の磁場中加圧条件におけ
る磁界は、8 kOa未満では、粉末の配向性が充分で
なく、磁石特性の低下を生じ好ましくなく、また、20
 koaを越えると製造上の設備コストが嵩む問題を生
じ好ましくない。
In this invention, if the magnetic field under pressure in the magnetic field before crushing and grading is less than 8 kOa, the orientation of the powder will be insufficient and the magnetic properties will deteriorate, which is undesirable.
If it exceeds koa, it is not preferable because it causes the problem of increased manufacturing equipment cost.

また、プレス圧力は、0.5t4未満では充分な強度を
有する整粒粉が得られず、粉末特性の改善を計ることが
できないため好ましくなく、また、3.01着を越える
とロールやダイス、パンチの摩耗がはなはだしく、連続
作業が困難となるため好ましくない。
In addition, if the pressing pressure is less than 0.5t4, it is not possible to obtain a sized powder with sufficient strength, and it is not possible to improve the powder properties, which is undesirable. This is undesirable because the punch wears out excessively, making continuous work difficult.

この発明において破砕整粒粉の粒度は、0.1mm未満
では、流動性の低下の問題があり好ましくなく、また、
3mmを越えると、小物のプレスにおいて、給粉時のプ
レス単位当り重量のばらつきを生じるため好ましくなく
、整粒粉の粒度は、0.1mm〜3.0mmとし、好ま
しくは0.3mmから0.8mmの粒度である。
In this invention, if the particle size of the crushed sized powder is less than 0.1 mm, it is not preferable because there is a problem of decreased fluidity.
If it exceeds 3 mm, it is not preferable because it will cause variations in the weight per press unit during powder feeding in presses for small items, and the particle size of the sized powder should be 0.1 mm to 3.0 mm, preferably 0.3 mm to 0.3 mm. The particle size is 8 mm.

この発明の特徴である上記整粒粉の解砕は、ダイス等の
密封容器内に収容された整粒粉が、交流磁界中にて、相
互に移動運動及び回転運動して摩擦、衝突を繰り返すこ
とにより、その配向を乱すことなく、解砕される。
The above-mentioned crushing of the sized powder, which is a feature of this invention, involves the sized powder stored in a sealed container such as a die, moving and rotating against each other in an alternating magnetic field, causing repeated friction and collision. This allows the particles to be crushed without disturbing their orientation.

解砕時の交流磁場は、10000a未満では、所要粒度
に解砕するのに長時間を要して好ましくなく、また、1
00000sを越えると磁界発生装置が大型化して、設
備に多大の費用を要するため、1000〜100000
sの範囲が好ましく、解砕時間は1分以下が望ましい。
If the alternating current magnetic field during crushing is less than 10,000 a, it will take a long time to crush to the required particle size, which is undesirable.
If it exceeds 00,000 s, the magnetic field generator will become large and the equipment will require a lot of cost.
The range of s is preferable, and the crushing time is desirably 1 minute or less.

また、この発明において、前記解砕原料粉を、所要形状
2寸法に磁場中成形する際の1s場条件は、7 koa
〜20 koaが好ましく、プレス条件は、9.5t6
〜8 t4が好ましい。
Further, in this invention, the 1 s field condition when forming the crushed raw material powder into the required shape and 2 dimensions in a magnetic field is 7 koa.
~20 koa is preferable, and the press conditions are 9.5t6
~8t4 is preferred.

また、焼結における温度条件は900’C〜1200℃
が好ましく、ざらに好ましくは、1000℃〜1100
’Cで、時間は30分から8時間が好ましい。900’
Q未満では、焼結磁石体として充分な強度が得られず、
1200’Cを越えると、焼結体が変形し、配向が崩れ
、磁束密度の低下、角型性の低下を招来し、また結晶粒
の粗大化が進行して保磁力を低下するため好ましくない
In addition, the temperature conditions for sintering are 900'C to 1200°C.
is preferable, and more preferably from 1000°C to 1100°C
'C, the time is preferably 30 minutes to 8 hours. 900'
If it is less than Q, sufficient strength as a sintered magnet cannot be obtained,
If the temperature exceeds 1200'C, the sintered body will be deformed, the orientation will be destroyed, the magnetic flux density will decrease, the squareness will decrease, and the crystal grains will become coarser, which will reduce the coercive force, which is not preferable. .

また、この発明において、磁石材料の残留磁束密度、保
磁力、減磁曲線の角型性を改善向上させるため、350
℃〜焼結温度の時効処理することが好ましい。時効処理
温度が350℃未満では拡散速度低下のため効果がなく
、焼結温度を越えると再焼結が起り過焼結となる。
In addition, in this invention, in order to improve the residual magnetic flux density, coercive force, and squareness of the demagnetization curve of the magnet material, 350
It is preferable to carry out an aging treatment at a temperature of 0.degree. C. to a sintering temperature. If the aging temperature is less than 350° C., there is no effect because the diffusion rate decreases, and if it exceeds the sintering temperature, resintering occurs and oversintering occurs.

ざらには、時効処理温度は450℃〜800℃の範囲が
好ましく、また、時効処理時間は5分〜40時間が好ま
しい。5分未満では時効処理効果が少なく、得られる磁
石材料の磁石特性のばらつきが大きくなり、40時間を
越えると工業的に長時間を要しすぎ実用的でない。磁石
特性の好ましい発現と実用的な面から時効処理時間は3
0分から8時間が好ましい。また、時効処理は2段以上
の多段時効処理を用いることもできる。
In general, the aging treatment temperature is preferably in the range of 450°C to 800°C, and the aging treatment time is preferably 5 minutes to 40 hours. If the aging treatment is carried out for less than 5 minutes, the effect of the aging treatment will be small, and the magnetic properties of the obtained magnet material will vary greatly, and if it exceeds 40 hours, it will take too long for industrial use to be practical. The aging treatment time is 3 from the viewpoint of preferable development of magnetic properties and practical aspects.
Preferably 0 minutes to 8 hours. Moreover, multi-stage aging treatment of two or more stages can also be used for the aging treatment.

また、多段時効処理に代えて、400℃〜1000’C
の時効処理温度から室温までを空冷めるいは水冷などの
冷却方法で、0.2°C/min 〜20’C/min
の冷却速度で冷却する方法によっても、上記時効処理と
同等の磁石特性を有する永久磁石材料を得ることができ
る。
Also, instead of multi-stage aging treatment, 400℃~1000'C
0.2°C/min to 20'C/min by air cooling or water cooling from the aging treatment temperature to room temperature.
A permanent magnet material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment can also be obtained by a method of cooling at a cooling rate of .

永久磁石材お1用原料粉末の成分限定理由この発明の永
久磁石材おl川原お1粉末に用いる希土類元素Rは、組
成の10原子%〜24原子%を占めるが、陶、Pr、〜
、Ho、Tbのうち少なくとも1種、あるいはざらに、
La、 Ce、 Sm、 Cd、 Er、 Eu、 T
m。
Reason for limiting the ingredients of the raw material powder for permanent magnet material 1 The rare earth element R used in the powder of permanent magnet material 1 of this invention accounts for 10 to 24 atomic percent of the composition,
, Ho, and at least one of Tb, or roughly,
La, Ce, Sm, Cd, Er, Eu, T
m.

Yb、 10. Yのうち少なくとも1種を含むものが
好ましい。
Yb, 10. Those containing at least one type of Y are preferred.

また、通常Rのうち1種(好ましくはNd、Pr。Also, usually one type of R (preferably Nd or Pr).

Dν、Ho、Tb等)をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができる。
Dv, Ho, Tb, etc.) may suffice, but in practice, a mixture of two or more types (Mitsuhmetal, didymium, etc.) may be used for reasons such as convenience of availability.

また、主相を構成するR中の5TIII L!はできる
だCプ少ないほうが好ましく、例えば、Smは、1原子
%以下、ざらに好ましくは0.5原子%以下である。
In addition, 5TIII L! in R that constitutes the main phase! It is preferable to have as little C as possible; for example, Sm is at most 1 atomic %, more preferably at most 0.5 atomic %.

また、温度特性の向上のためには、R混合系として、m
、 Pr、または、これらに0.005原子%〜5原子
%、好ましくは0.2原子%〜3原子%のN。
In addition, in order to improve the temperature characteristics, as an R mixed system, m
, Pr, or N in an amount of 0.005 atom % to 5 atom %, preferably 0.2 atom % to 3 atom %.

Ho、Tb等の組み合せが望ましい。A combination of Ho, Tb, etc. is desirable.

さらに、特性、コスト、資源的観点から、Rとしては、
陶、Prが、全Rの50%以上、ざらには80%以上で
あることが好ましい。
Furthermore, from the viewpoint of characteristics, cost, and resources, R:
It is preferable that Ceramic and Pr account for 50% or more of the total R, preferably 80% or more.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久磁石材料用原料粉末における、
必須元素でめって、10原子%未満では、結晶構造がα
−鉄と同一構造の立方晶組織が析出するため、高磁気特
性、特に高保磁力が得られず、30[子%を越えると、
Rリッチな非磁性相が多くなり、残留磁束密度(Sr)
が低下して、すぐれた特性の永久磁石が得られない。よ
って、希土類元−素は、10原子%〜30原子%の範囲
とする。
R is in the new raw material powder for the above-mentioned permanent magnet material,
Rarely for essential elements, in less than 10 atomic %, the crystal structure is α
- Since a cubic crystal structure with the same structure as iron is precipitated, high magnetic properties, especially high coercive force, cannot be obtained, and if it exceeds 30%,
The R-rich nonmagnetic phase increases, and the residual magnetic flux density (Sr)
decreases, making it impossible to obtain a permanent magnet with excellent characteristics. Therefore, the rare earth element is in the range of 10 atomic % to 30 atomic %.

Bは、この発明による永久磁石材料用原料粉末にお1ブ
る、必須元素であって、2原子%未満では、菱面体MA
造が1相となり、高い保磁力(iHC)は得られず、2
8原子%を越えると、Bリッチな非磁性相が多くなり、
残留磁束密度(Sr)が低下するため、すぐれた永久磁
石が得られない。よって、Bは、2原子%〜28原子%
の範囲とする。
B is an essential element that is present in the raw material powder for permanent magnet materials according to the present invention, and when it is less than 2 atomic %, the rhombohedral MA
structure becomes one phase, high coercive force (iHC) cannot be obtained, and 2
When it exceeds 8 at%, B-rich nonmagnetic phase increases,
Since the residual magnetic flux density (Sr) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is 2 atom% to 28 atom%
The range shall be .

Feは、新規な上記系永久磁石材、1′+l川原料粉末
において、必須元素でおり、65原子%未満では残留磁
束密度(Br)が低下し、80原子%を越えると、高い
保磁力が1qられないので、Feは65原子%〜80原
子%の含有とする。
Fe is an essential element in the above-mentioned new permanent magnet material, 1'+l raw material powder, and if it is less than 65 at%, the residual magnetic flux density (Br) will decrease, and if it exceeds 80 at%, it will have a high coercive force. 1q, Fe is contained in an amount of 65 to 80 atom %.

また、この発明による永久磁石材お1用原′11粉末に
おいて、Feの一部をらて置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、6置換量がFaの20%を   ゛越える
と、逆に磁気特性が劣化するため、好ましくない。巳の
原子比率がFeとCoの合計凹で5%・〜15%の場合
は、(Br)は置換しない場合に比較して増加するため
、高磁束密度を得るためには好ましい。
In addition, replacing a portion of Fe in the raw powder for permanent magnet material 1 according to the present invention can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet. If the amount of 6-substitution exceeds 20% of Fa, the magnetic properties will deteriorate, which is not preferable. When the atomic ratio of Sn is 5% to 15% for the total concavity of Fe and Co, (Br) increases compared to the case where it is not substituted, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石材料は、R,B。Further, the permanent magnet material according to the present invention includes R, B.

F8の他、工業的生産上不可避的不純物の存在を許容で
きるが、Bの一部を4.0原子%以下のC12,0原子
%以下のP、2、O原子%以下のS、  2.0原子%
以下のCuのうち少なくとも1種、合計量で2.0原子
%以下で置換することにより、永久磁石の製造性改善、
低価格化が可能である。
In addition to F8, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B is C12 of up to 4.0 atom %, P of up to 0 atom %, S of up to 0 atom %, S, 2. 0 atomic%
Improving the manufacturability of permanent magnets by replacing at least one of the following Cu in a total amount of 2.0 atomic % or less,
It is possible to lower the price.

また、下記添加元素のうち少なくとも1種は、RB −
Fe系永久磁石材お1に対してその保磁力、減磁曲線の
角型性を改善あるいは製造性の改善、低価格化に効果が
あるため添加することができる。
Furthermore, at least one of the following additional elements is RB −
It can be added to the Fe-based permanent magnet material 1 because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing cost.

5.0原子%以下のA1.3.0原子%以下の1115
.5原子%以下のV、4.5原子%以下のcr、5.0
原子%以下のNn、5.0原子%以下のBi、9、O原
子%以下のNb、7.0原子%以下の丁a、5.2原子
%以下の)to、  5.0原子%以下の臀。
A1 of 5.0 atom% or less; 1115 of 3.0 atom% or less
.. 5 at% or less V, 4.5 at% or less cr, 5.0
Nn below 5.0 atomic %, Bi below 9,0 atomic %, Nb below 7.0 atomic %, to, below 5.2 atomic %, to below 5.0 atomic % buttocks.

1.0原子%以下のsb、3.5原子%以下のGe、1
.5原子%以下のS眠 3.3原子%以下のZr、B、
O原子%以下のNi、5.0原子%以下の5i11.1
原子%以下のZn、3.3原子%以下のHf、のうち少
なくとも1種を添加含有、但し、2種以上8有する場合
は、その最大含有子は当該添加元素のうち最大値を有す
るものの原子%以下の含有ざUることにより、永久磁石
の高保磁力化が可能になる。なお、添加母の上限は、磁
石材わ1の(Btl)maxを208GOe以上とする
には、(Br)が少なくとも9kG以上必要となるため
、該条件を満す範囲とした。
1.0 at% or less sb, 3.5 at% or less Ge, 1
.. S content of 5 atomic% or less, Zr, B of 3.3 atomic% or less,
Ni of O atomic % or less, 5i11.1 of 5.0 atomic % or less
Addition of at least one of Zn of atomic% or less and Hf of 3.3 atomic% or less.However, if 2 or more types 8 are present, the maximum content is the atom of the element having the maximum value among the added elements. % or less, it becomes possible to increase the coercive force of the permanent magnet. Note that the upper limit of the additive base was determined to be a range that satisfies this condition, since (Br) is required to be at least 9 kG or more in order to make the (Btl) max of the magnet material 1 208 GOe or more.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main phase of the crystalline phase is a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石材お1は、ia揚場中レス成
型することにより磁気的異方性磁石が得られ、また、無
磁界中でプレス成型することにより、磁気的等方性磁石
を得ることができる。
In addition, the permanent magnet material 1 of the present invention can be press-molded in an ia lift field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet. be able to.

この発明による永久磁石材料は、保磁力i IIc≧1
 koa、残留磁束密度Br> 4 kG、を示し、最
大エネルギー積(Btl )maxは、208GOa以
上を示し、好ましい組成範囲では、最大値は258GO
a以上に達する。
The permanent magnet material according to the present invention has a coercive force i IIc≧1
koa, residual magnetic flux density Br > 4 kG, and the maximum energy product (Btl) max is 208 GOa or more, and in a preferred composition range, the maximum value is 258 GOa.
Reach more than a.

また、この発明の永久磁石材料用原料粉末のRの主成分
がその50%以上を陶及び円を主とする軽希土類金属が
占める場合で、R12原子%〜15原子%、B6原子%
〜9原子%、F878原子%〜80原子%、の組成範囲
のとき、(8旧maX 358GOe以上のすぐれた磁
気特性を示し、特に軽希土類金属がMの場合には、その
最大値が458GOa以上に達する。
In addition, in the case where the main component of R in the raw material powder for permanent magnet materials of this invention is light rare earth metals mainly composed of ceramic and yen, R12 at % to 15 at % and B6 at %
When the composition range is ~9 at%, F878 at% ~ 80 at%, (8 old ma reach.

実施例 実施例1 出発原おlとして、純度99.9%の電解鉄、フェロボ
ロン合金、純度99.7%以上の陶及びNを使用し、こ
れらを配合復高周波溶解し、その後水冷銅鋳型に鋳造し
、14.5Nd 7B 0.5Dy78Feなる組成の
鋳塊を得た。
Examples Example 1 Electrolytic iron with a purity of 99.9%, ferroboron alloy, ceramics with a purity of 99.7% or more, and N are used as starting materials, and these are mixed and high-frequency melted, and then placed in a water-cooled copper mold. Casting was performed to obtain an ingot having a composition of 14.5Nd 7B 0.5Dy78Fe.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度’3.0u
mの微粉末を得た。
Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill to obtain an average particle size of '3.0u.
A fine powder of m was obtained.

この微粉末を磁界中プレス装置にて、10 koaの磁
界中で配向し、1.5t、Jの圧力で加圧成形して、1
00mmX 60mmX 50mm寸法の成型体となし
た。
This fine powder was oriented in a magnetic field of 10 koa using a magnetic field press machine, and then pressure-molded at a pressure of 1.5 t, J.
A molded body with dimensions of 00 mm x 60 mm x 50 mm was made.

得られた加圧体を、整粒機により、粉末粒径0.4mm
〜0.6mm“どなるよう破砕整粒した。
The obtained pressurized body was sized to a powder particle size of 0.4 mm using a sieving machine.
It was crushed and sized to a size of ~0.6 mm.

上記の整粒粉を、15n+mX 20mmX 20mm
寸法のダイス内に装入したのち、上下パンチにてダイス
内空間に密閉し、40000eの交流磁界を、5秒間印
加して、該整粒粉を解砕した。
The above sized powder is 15n+mX 20mmX 20mm
After charging the powder into a die of the same size, the inner space of the die was sealed with upper and lower punches, and an alternating current magnetic field of 40,000 e was applied for 5 seconds to crush the sized powder.

この解砕粉末を同一の金型に装入し、12 koaの磁
界中で配向し、磁界に水平方向に、2 tJの圧力で成
形して、15mmX20mmX 12m1T1寸法の成
型体となした。
This crushed powder was charged into the same mold, oriented in a magnetic field of 12 koa, and molded with a pressure of 2 tJ in a direction parallel to the magnetic field to form a molded body with dimensions of 15 mm x 20 mm x 12 m 1 T1.

得られた成形体を、1080℃、1.5時間、Ar雰囲
気中、の条件で焼結し、さらに、Ar雰囲気中で、80
0°C,1時間と630’C,1,5時間の2段時効処
理した。
The obtained molded body was sintered at 1080°C for 1.5 hours in an Ar atmosphere, and then sintered at 80°C in an Ar atmosphere.
Two-stage aging treatment was performed at 0°C for 1 hour and at 630'C for 1.5 hours.

得られた永久磁石材料の磁石特性を測定し、その結果を
プレス能率と共に第1表に示ず。
The magnetic properties of the obtained permanent magnet material were measured, and the results are shown in Table 1 along with the press efficiency.

なお、第1表の比較例は、前述したvii場中湯中体を
特定粒度に整粒した粉を原料粉末とし、これをそのまま
ダイス内に入れ、磁界中成形し、焼結後時効処理を施し
た永久磁石材料であり、他の製造条件は本発明例と同一
でおる。
In addition, in the comparative example shown in Table 1, the powder obtained by sizing the above-mentioned in-place hot melt to a specific particle size was used as the raw material powder, which was put into a die as it was, compacted in a magnetic field, and subjected to aging treatment after sintering. The other manufacturing conditions were the same as in the examples of the present invention.

第1表Table 1

Claims (1)

【特許請求の範囲】 R(RはNd、Pr、Dy、Ho、Tbのうち少なくと
も1種あるいはさらに、La、Ce、Sm、Cd、Er
、Eu、Tm、Yb、Lu、Yのうち少なくとも1種か
らなる)10原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%、 を主成分とする粉砕微粉末を磁場中にて加圧し、加圧体
を粉末粒径0.1〜3mmに破砕整粒後、密封容器内に
上記整粒粉を収容し、交流磁界中で解砕した後、 該解砕粉を所要形状寸法に磁場中成形し、 その後焼結して永久磁石を得ることを特徴とする永久磁
石材料の製造方法。
[Claims] R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or furthermore, La, Ce, Sm, Cd, Er
, Eu, Tm, Yb, Lu, Y) 10 atomic % to 30 atomic %, B2 atomic % to 28 atomic %, and Fe65 atomic % to 80 atomic %. is pressurized in a magnetic field, the pressurized body is crushed and sized to a powder particle size of 0.1 to 3 mm, the sized powder is placed in a sealed container, and the crushed powder is crushed in an alternating magnetic field. A method for producing a permanent magnet material, which comprises forming powder into a required shape and size in a magnetic field, and then sintering it to obtain a permanent magnet.
JP61064459A 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material Expired - Lifetime JPH076025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064459A JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064459A JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Publications (2)

Publication Number Publication Date
JPS62222019A true JPS62222019A (en) 1987-09-30
JPH076025B2 JPH076025B2 (en) 1995-01-25

Family

ID=13258840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064459A Expired - Lifetime JPH076025B2 (en) 1986-03-22 1986-03-22 Method of manufacturing permanent magnet material

Country Status (1)

Country Link
JP (1) JPH076025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor

Also Published As

Publication number Publication date
JPH076025B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US9734947B2 (en) Rare earth sintered magnet and making method
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPS6181606A (en) Preparation of rare earth magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JPS6181603A (en) Preparation of rare earth magnet
JP2003049234A (en) Method for producing sintered compact for rare earth magnet
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS62222019A (en) Production of permanent magnet material
JPS6181604A (en) Preparation of rare earth magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPS62177149A (en) Production of permanent magnet material
JPS62227061A (en) Manufacture of permanent magnet material
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0745412A (en) R-fe-b permanent magnet material
JPS61252604A (en) Manufacture of rare earth magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2024512185A (en) Double shell layer neodymium iron boron magnet and its manufacturing method
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS63249302A (en) Manufacture of r-fe-b system magnet alloy powder
JPH01146308A (en) Manufacture of rare-earth magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term