JPH0758305B2 - Fault location method - Google Patents

Fault location method

Info

Publication number
JPH0758305B2
JPH0758305B2 JP61093070A JP9307086A JPH0758305B2 JP H0758305 B2 JPH0758305 B2 JP H0758305B2 JP 61093070 A JP61093070 A JP 61093070A JP 9307086 A JP9307086 A JP 9307086A JP H0758305 B2 JPH0758305 B2 JP H0758305B2
Authority
JP
Japan
Prior art keywords
phase
terminal
line
fault
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61093070A
Other languages
Japanese (ja)
Other versions
JPS62249078A (en
Inventor
昌也 尾崎
平二郎 高田
満雄 斉藤
茂 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Fuji Electric Co Ltd
Priority to JP61093070A priority Critical patent/JPH0758305B2/en
Publication of JPS62249078A publication Critical patent/JPS62249078A/en
Publication of JPH0758305B2 publication Critical patent/JPH0758305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は電力供給信頼度確保のために、送電線に発生し
た故障位置を送電線両端において検出された事故後の各
相の電圧量,電流量をもとに標定することで故障復旧の
迅速化を図った故障点標定方式に関する。
In order to secure the reliability of the power supply, the present invention locates the fault position on the transmission line based on the voltage amount and the current amount of each phase after the accident detected at both ends of the transmission line, thereby promptly recovering the fault. It relates to a fault location method that aims to improve the quality.

【従来技術とその問題点】 第5図に示すように2つの電気所A,Bが両端子にある系
統において故障が発生した場合、A端子またはB端子か
ら故障点Fまでの距離を知ることは、それに引き続く不
良箇所の修復作業等のために必要であり、不可欠なもの
である。このために、従来よりサージ受信方式、パルス
レーダ方式の他に特殊な装置を必要としないものとし
て、系統の故障時の電圧、電流を用いてインピーダンス
を計測し、故障点を求める方式がある。 今、故障時の状態として第6図に示すものを想定する
と、故障点Fにはアーク等による故障点抵抗RFが存在す
る。なお、以下の説明において電気量はすべてことわら
ない限りベクトル量を示している。第6図では故障点F
には両端子A,Bから流入する故障電流IA,IBが流れるこ
とになる。ここで、A端子における電圧,電流の関係を
式で表わせば、 VA=ZA・IA+RF(IA+IB) ……(1) となる。但し、ZAはA端子から故障点Fまでのインピー
ダンスを示している。この(1)式よりA端子からみた
故障時の系統インピーダンスZは、 となり、インピーダンスZAのほかに の項が入ってきて誤差を含むことになる。 が純抵抗分であれば故障点抵抗RFのリアクタンス分のみ
を分離することにより故障点Fまでの距離はリアクタン
スが距離に比例するところから計測できることになる
が、 にはIBが含まれるためB端子側のインピーダンス構成が
A端子側と異なれば抵抗分としての扱いはできなくなり
誤差を生じることになる。実際の場合にはIAとIBの位相
が一致することはまずあり得ず、誤差分の補正は困難で
ある。 上記(2)式の第2項のような誤差を生じない方式とし
て特開昭58-174863号公報が提案されている。この方式
は第5図に示すようにA端子,B端子に端末装置A1,B1を
設け、この端末装置A1,B1で測定した電圧量、電流量を
データとして中央装置Cに伝送し、中央装置Cにおいて
各端子からのデータを用いて所定の標定演算式によりベ
クトル演算にて故障点位置を標定するものである。しか
し、この方式は対称座標法により標定演算式を得ている
ため、各相が同一条件であることを前提としている。と
ころが、実際の伝送系統では各相が同一条件であること
はありえないため、実際の送電系統に適用する場合に高
い標定精度が要求されると不充分な場合がある。
2. Prior Art and its Problems When a failure occurs in a system in which two electric stations A and B are at both terminals as shown in FIG. 5, it is necessary to know the distance from the A or B terminal to the failure point F. Is necessary and indispensable for the subsequent repair work of the defective portion. For this reason, in addition to the surge reception system and the pulse radar system, there is a system that does not require a special device, and measures the impedance using voltage and current at the time of system failure to find the failure point. Assuming that the state shown in FIG. 6 at the time of failure, the failure point resistance R F due to an arc or the like exists at the failure point F. In the following description, all electric quantities are vector quantities unless otherwise stated. In FIG. 6, failure point F
The fault currents I A and I B that flow from both terminals A and B will flow to this pin. Here, if the relationship between the voltage and the current at the A terminal is expressed by an equation, V A = Z A · I A + R F (I A + I B ) ... (1) However, Z A indicates the impedance from the A terminal to the failure point F. From this equation (1), the system impedance Z at the time of a failure seen from the A terminal is In addition to impedance Z A The term of comes in and contains an error. If is a pure resistance component, by separating only the reactance component of the fault point resistance R F , the distance to the fault point F can be measured from the point where the reactance is proportional to the distance. Impedance feature of B terminal side because it contains I B is to cause handling can not be error as resistance component Different and terminal A to. In the actual case, it is unlikely that the phases of I A and I B will match, and it is difficult to correct the error. Japanese Unexamined Patent Publication No. 58-174863 has been proposed as a method that does not cause an error such as the second term in the equation (2). In this system, terminal devices A1 and B1 are provided at terminals A and B as shown in FIG. 5, and the voltage amount and current amount measured by the terminal devices A1 and B1 are transmitted to the central device C as data, In C, the position of the fault point is located by vector operation according to a predetermined orientation calculation formula using the data from each terminal. However, since this method obtains the orientation calculation formula by the symmetric coordinate method, it is premised that each phase has the same condition. However, in an actual transmission system, each phase cannot be in the same condition, and therefore when it is applied to an actual transmission system, high orientation accuracy may be insufficient in some cases.

【発明の目的】[Object of the Invention]

本発明は以上に鑑み、前述の(2)式における第2項の
ような誤差を生じない計測方式による故障点標定方式を
更に標定精度を上げ、かつ標定演算式のパラメータを変
えることで故障種別、故障相により標定演算式を変える
ことなく標定を行えるようにした故障点標定方式を提供
することを目的とする。
In view of the above, the present invention provides a fault point locating method based on a measurement method that does not cause an error such as the second term in the above equation (2) to further improve the locating accuracy and change the parameters of the locating calculation equation to determine the fault type. An object of the present invention is to provide a fault point locating method capable of locating without changing the locating calculation formula depending on the failure phase.

【発明の要点】[Points of the Invention]

本発明の要点は、2端子よりなる送電線系統において、
両端子に設置した端末装置により両端子の各相の電圧、
電流をサンプリングし、両端末装置のサンプリングデー
タを1ヵ所に収集して各データの同期をとったのち、各
相に対してそれぞれ、自端子で測定した自相電圧値から
他端子で測定した自相電圧値を差引き、さらに両端子間
の距離と他端子で測定した各相電流による自相の単位長
さ当たりの電圧降下分との積を加算した値を、自端子と
他端子で測定した各相電流値による自相の単位長さ当た
りの電圧降下分の和で除算することにより、各相毎に自
端子から故障点までの距離を算出するようにした点にあ
る。
The gist of the present invention is that in a transmission line system consisting of two terminals,
The voltage of each phase of both terminals by terminal equipment installed at both terminals,
After sampling the current, collecting the sampling data of both terminal devices in one place and synchronizing each data, for each phase, the self-phase voltage value measured at its own terminal was measured at the other terminal. Subtract the phase voltage value, and then add the product of the distance between both terminals and the voltage drop per unit length of the own phase due to each phase current measured at the other terminals and measure the value at the own terminal and the other terminal. The distance from the self-terminal to the fault point is calculated for each phase by dividing by the sum of the voltage drop per unit length of the self phase based on the current value of each phase.

【発明の実施例】Examples of the invention

第2図は第2端子系1回線における非対称三相回路の各
相の単位長さ当たりの等価回路を示しており、Zaa
Zbb,Zccは単位長さ当たりの各相自己インピーダンス、
Zab,Zbc,Zcaはab相間,bc相間,ca相間の単位長さ当た
りの回線内相互インピーダンスを示している。ここで、
A端子,B端子で計測されるa,b,c相に流れる電流をIa A
Ib A,Ic A,Ia B,Ib B,Ic Bとすると、各電流によるA端
子およびB端子から故障点までの各相の単位長さ当たり
の各電圧降下分はそれぞれ次のように表わすことができ
る。 ここで、a相1線地絡故障を想定し、故障点抵抗をRF
すると、その時の等価回路図は第1図に示すようにな
る。但し、A,B端子間の距離をLとし、故障点はA端子
よりαLの距離(但し0<α<1)としている。したが
って、故障点FとA,B端子までの距離αL,(1−α)L
はA,B端子から故障点Fまでの電圧降下分を単位長さ当
たりの電圧降下分によって除算することにより求めるこ
とができる。故障点Fにおけるa相電圧Va Fは故障点抵
抗RFによりVa F=RF(Ia A+Ia B)となるので、A端子を
測定点とすると、 Va A−αLVaa A=Va F=RF(Ia A+Ia B) ……(5) B端子を測定点とすると、 Va B−(1−α)LVaa B=Va F=RF(Ia A+Ia B) ……
(6) が成立する。 ここで、故障点抵抗RF=0の場合には(5),(6)式
の右辺が“0"となるので、A,B端子から故障点Fまでの
距離αL,(1−α)Lの標定演算式はそれぞれ次式のよ
うに表わすことができる。 これに対して故障点抵抗RFが存在するときには、この抵
抗RFは測定できないため、(5),(6)式を用いてRF
を消去することで,A,B端子から故障点Fまでの距離αL,
(1−α)Lの標定演算式を求めると、それぞれ次式の
ように表わすことができる。 (7)〜(10)式に用いられている各値は、A,B端子で
測定された電圧、電流値あるいはこれらから求めること
のできる値であるので、A,B端子で測定された電圧、電
流値を1カ所に集めて同期をとって使用することにより
故障点の標定を行なうことができる。 b相、c相の1線地絡故障の場合も同様にして標定演算
式を求めることができる。故障点抵抗RFが存在する場合
のb相1線地絡故障時のA,B端子から故障点Fまでの距
離αL,(1−α)Lの標定演算式は次式のように表わす
ことができる。 同様にして、故障点抵抗RFが存在する場合のc相1地絡
故障時のA,B端子から故障点Fまでの距離αL,(1−
α)Lの標定演算式は次式のように表わすことができ
る。 このように各標定式(9)〜(14)の形は同形であり、
パラメータを変えるだけで各相の故障点の標定を行なう
ことができる。 3相短絡時には(9),(11),(13)式の標定値およ
び(10),(12),(14)式の標定値がそれぞれ等しく
なる。また、2線短絡や2線地絡時には(9),(1
1),(13)式および(10),(12),(14)式のうち
の故障相の2相の標定値が等しくなる。1線地絡時は故
障相の標定式を用いれば良い。つまり、故障種別により
異なった標定式を用いる必要はなく故障相の標定式を用
いれば各種の故障が標定できる。3相短絡または2線地
絡の場合には故障相の平均値を用いることもできる。 以上の説明では2端子系1回線について述べたが、2端
子系平行2回線においても同様に取扱うことができる。 第3図は2端子系平行2回線における非対称三相回路の
a相に関する単位長さ当たりの等価回路図を示してい
る。図において、Zaa,Zbb,Zccは1L回線の単位長さ当
たりの各相自己インピーダンス、Zab,Zcaは1L回線のab
相間、ca相間の単位長さ当たりの相互インピーダンス、
Zaa′,Zab′,Zca′は1L回線のa相と2L回線の各相と
の回線間インピーダンスを示している。なお、ここでは
1L回線のa相故障について説明するため他の相の相互イ
ンピーダンス、回線間相互インピーダンスは省略されて
いる。 ここで、A,B端子で測定される1L回線,2L回線のa,b,c相
に流れる電流をそれぞれ、Ia A,Ib A,Ic A,Ia B,Ib B,I
c B,I2a A,I2b A,I2c A,I2a B,I2b B,I2c Bとすると各電
流によるA端子およびB端子から故障点Fまでの1L回線
a相の単位長さ当たりの電圧降下分VaaA,VaaBはそ
れぞれ次のように表わすことができる。 なお、他相についても同様に表わすことができる。 ここで、a相1線地絡故障を想定し、故障点抵抗をRF
すると、前述の2端子系1回線と同様にして、各標定演
算式は次のように表わすことができる。 まず、故障点抵抗RF=0のばあいには、A,B端子から故
障点Fまでの距離αL,(1−α)Lの標定演算式は
(7),(8)式と同様にして次式のように表わすこと
ができる。 また、故障点抵抗RFが存在する場合には、A,B端子から
故障点Fまでの距離αL,(1−α)Lの標定演算式は
(9),(10)式と同様にして次式のように表わすこと
ができる。 同様にしてもb相、c相についても、(15)式と同様に
して単位長さ当たりの電圧降下分を求めて(16)〜(1
9)式の電圧降下分VaaA,VaaBに置きかえて適用す
ることにより標定を行なうことがてきる。 また、1線地絡故障でなく2線短絡、地絡の場合も本発
明によれば各相の測定端子から故障点までの電圧降下を
考え、A端子からの電圧降下とB端子からの電圧降下が
故障点で等しくなることにより標定を行なっているた
め、各故障相毎の標定演算式を適用することにより標定
を行なうことができる。例えば第4図に示すようにa,b
相の2線短絡を考えると、a相についてはA端子からの
電圧降下とB端子からの電圧降下とが故障点Fで等しく
なるので(18),(19)式で標定を行なうことができ、
b相についても同様に標定することができる。このと
き、各標定演算式は同じ故障点を標定することになる。
3相短絡の場合にもa相,b相,c相毎に標定を行なうこと
によりそれぞれの標定演算式が同じ故障点を標定するこ
とになる。したがって、2線短絡、地絡、3相短絡の場
合は標定結果が複雑になるのでそれらを個々に表示する
こともできるし、平均をとることもできる。
FIG. 2 shows an equivalent circuit per unit length of each phase of the asymmetric three-phase circuit in the second terminal system one line, where Z aa ,
Z bb and Z cc are self-impedance of each phase per unit length,
Z ab , Z bc , and Z ca indicate the in-line mutual impedance per unit length between ab phases, bc phases, and ca phases. here,
The currents flowing in the a, b, and c phases measured at the A and B terminals are I a A ,
If I b A , I c A , I a B , I b B , and I c B , the voltage drop per unit length of each phase from the A and B terminals to the fault point by each current is as follows. Can be expressed as Here, assuming an a-phase one-line ground fault and assuming the fault point resistance to be R F , the equivalent circuit diagram at that time is as shown in FIG. However, the distance between the A and B terminals is L, and the failure point is a distance αL from the A terminal (where 0 <α <1). Therefore, the distance between the fault point F and the terminals A and B αL, (1-α) L
Can be obtained by dividing the voltage drop from the A and B terminals to the fault point F by the voltage drop per unit length. Since the a-phase voltage V a F at the failure point F becomes V a F = R F (I a A + I a B ) due to the resistance R F at the failure point, letting the A terminal be the measurement point, V a A −αLV aa A = V a F = R F (I a A + I a B ) …… (5) Letting the B terminal be the measurement point, V a B − (1-α) LV aa B = V a F = R F (I a A + I a B ) ……
(6) is established. Here, when the fault point resistance R F = 0, the right side of equations (5) and (6) is “0”, so the distance from the A and B terminals to the fault point F αL, (1-α) The orientation calculation formula of L can be expressed as the following formulas, respectively. When a fault point resistance R F is present against this, since the resistor R F is not be measured, (5), R F using the expression (6)
By eliminating, the distance αL from the A and B terminals to the fault point F,
When the orientation calculation formula of (1-α) L is obtained, each can be expressed as the following formulas. The values used in equations (7) to (10) are the voltages and currents measured at the A and B terminals, or the values that can be obtained from these, so the voltages measured at the A and B terminals The fault point can be located by collecting the current values at one place and using them in synchronization. In the case of b-phase and c-phase one-line ground faults, the orientation calculation formula can be similarly obtained. When there is a fault point resistance R F , in the case of a b-phase 1-wire ground fault, the location calculation formula for the distance αL, (1-α) L from the A and B terminals to the fault point F is expressed as You can Similarly, when there is a fault point resistance R F , the distance α L, (1-
The orientation calculation formula of α) L can be expressed as the following formula. In this way, the orientations of each orientation equation (9)-(14) are the same,
The fault point of each phase can be located only by changing the parameters. At the time of three-phase short circuit, the orientation values of Eqs. (9), (11) and (13) and the orientation values of Eqs. (10), (12) and (14) become equal. In the case of 2-wire short-circuit or 2-wire ground fault, (9), (1
In the equations (1), (13) and (10), (12), (14), the orientation values of the two fault phases are equal. When there is a one-line ground fault, the orientation formula of the fault phase may be used. That is, it is not necessary to use different orientation formulas depending on the fault type, and various faults can be located by using the fault phase orientation formula. In the case of a three-phase short circuit or a two-wire ground fault, it is possible to use the average value of the failed phases. In the above description, the two-terminal system one line has been described, but the two-terminal system parallel two lines can be handled in the same manner. FIG. 3 shows an equivalent circuit diagram per unit length regarding a phase of an asymmetric three-phase circuit in a two-terminal parallel two-line system. In the figure, Z aa , Z bb , and Z cc are the self-impedances of each phase per unit length of the 1L line, and Z ab and Z ca are the ab of the 1L line.
Mutual impedance per unit length between phases, ca phase,
Z aa ′, Z ab ′, and Z ca ′ represent line impedance between the a phase of the 1L line and each phase of the 2L line. In addition, here
In order to explain the a-phase failure of the 1L line, the mutual impedance of other phases and the mutual impedance between lines are omitted. Here, the currents flowing in the a, b, and c phases of the 1L line and the 2L line, which are measured at the A and B terminals, are I a A , I b A , I c A , I a B , I b B , and I, respectively.
c B , I 2a A , I 2b A , I 2c A , I 2a B , I 2b B , I 2c B , the unit length of the 1L line a phase from the A and B terminals to the fault point F due to each current. The voltage drop components V aaA and V aaB can be expressed as follows. The other phases can be similarly expressed. Here, assuming an a-phase 1-line ground fault and assuming the fault point resistance to be R F , each orientation calculation equation can be expressed as follows, in the same manner as in the above-mentioned two-terminal system one line. First, in the case of the fault point resistance R F = 0, the orientation calculation formula of the distance αL, (1-α) L from the A and B terminals to the fault point F is the same as the formulas (7) and (8). Can be expressed as When the fault point resistance R F exists, the orientation calculation formulas for the distances α L, (1-α) L from the A and B terminals to the fault point F are the same as the formulas (9) and (10). It can be expressed as Similarly, for the b-phase and the c-phase, the voltage drop per unit length is calculated in the same manner as in the equation (15), and (16) to (1)
Orientation can be performed by substituting the voltage drops V aaA and V aaB in Eq. 9) for application. Also, in the case of not a 1-wire ground fault but a 2-wire short circuit or a ground fault, according to the present invention, the voltage drop from the measurement terminal of each phase to the fault point is considered, and the voltage drop from the A terminal and the voltage from the B terminal. Since the orientation is performed when the drops are equal at the failure points, the orientation can be performed by applying the orientation calculation formula for each failure phase. For example, as shown in Fig. 4, a, b
Considering the two-wire short circuit of the phase, the voltage drop from the A terminal and the voltage drop from the B terminal are the same at the fault point F for the a phase. Therefore, the orientation can be determined by the equations (18) and (19). ,
The b-phase can be similarly oriented. At this time, each orientation calculation equation locates the same failure point.
Even in the case of a three-phase short circuit, orientation is performed for each of the a-phase, b-phase, and c-phase, so that each orientation calculation expression locates the same fault point. Therefore, in the case of a two-wire short circuit, a ground fault, and a three-phase short circuit, the orientation results are complicated, and they can be displayed individually or averaged.

【発明の効果】【The invention's effect】

本発明によれば、各相の測定端子から故障点までの電圧
降下を考え、各端子からの電圧降下が故障点で等しくな
ることを利用して標定演算を行なうようにし、かつ電圧
降下に系統の各相の自己インピーダンス、回線内相互イ
ンピーダンス、回線間相互インピーダンスを使用するよ
うに構成したことにより、従来のように誤差が生じるこ
とはなく、しかも標定演算式のパラメータを変えること
で故障種別、故障相により別の標定演算式を用いること
なく標定を行なうことができる。
According to the present invention, the voltage drop from the measurement terminal of each phase to the fault point is considered, the orientation calculation is performed by utilizing the fact that the voltage drop from each terminal is equal at the fault point, and the voltage drop system Since it is configured to use the self-impedance of each phase, the mutual impedance in the line, and the mutual impedance between the lines, there is no error as in the past, and the failure type by changing the parameters of the orientation calculation formula, Depending on the failure phase, orientation can be performed without using another orientation calculation formula.

【図面の簡単な説明】[Brief description of drawings]

第1図はa相1線地絡故障時の等価回路図、第2図は2
端子系1回線における非対称三相回路の各相の単位長さ
当たりの等価回路図、第3図は2端子系平行2回線にお
ける非対称三相回路の各相の単位長さ当たりの等価回路
図、第4図はa・b相の2線短絡故障の説明図、第5図
は2端子送電系統の構成図、第6図は2端子送電系統に
おける故障時の状態説明図である。 A1,B1……端末装置、C……中央装置、Zaa,Zbb,Zcc
…自己インピーダンス、Zab,Zbc,Zca……回線内相互
インピーダンス、Zaa′,Zab′,Zca′……回線間相互
インピーダンス、L……AB端子間距離。
1 is an equivalent circuit diagram in the case of a phase 1 wire ground fault, and FIG. 2 is 2
Equivalent circuit diagram per unit length of each phase of asymmetric three-phase circuit in one line of terminal system, FIG. 3 is an equivalent circuit diagram per unit length of each phase of asymmetric three-phase circuit in two-terminal system parallel two line, FIG. 4 is an explanatory diagram of an a / b phase two-wire short circuit fault, FIG. 5 is a configuration diagram of a two-terminal transmission system, and FIG. 6 is a state explanatory diagram at the time of a failure in the two-terminal transmission system. A1, B1 ... Terminal device, C ... Central device, Zaa , Zbb , Zcc ...
… Self impedance, Z ab , Z bc , Z ca …… In-line mutual impedance, Z aa ′, Z ab ′, Z ca ‘…… Line mutual impedance, L …… AB terminal distance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 満雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 成田 茂 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭52−40746(JP,A) 特開 昭53−116446(JP,A) 特開 昭58−168976(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Mitsuo Saito, No. 1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Fuji Electric Co., Ltd. No. 1 within Fuji Electric Co., Ltd. (56) Reference JP-A-52-40746 (JP, A) JP-A-53-116446 (JP, A) JP-A-58-168976 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2端子よりなる送電系統において、両端子
に設置した端末装置により両端子の各相の電圧、電流を
サンプリングし、両端末装置のサンプリングデータを1
ヵ所に収集して各データの同期をとったのち、各相に対
してそれぞれ、自端子で測定した自相電圧値から他端子
で測定した自相電圧値を差引き、さらに両端子間の距離
と他端子で測定した各相電流による自相の単位長さ当た
りの電圧降下分との積を加算した値を、自端子と他端子
で測定した各相電流値による自相の単位長さ当たりの電
圧降下分の和で除算することにより、各相毎に自端子か
ら故障点までの距離を算出することを特徴とする故障点
標定方式。
1. In a power transmission system having two terminals, terminal devices installed at both terminals sample the voltage and current of each phase of both terminals, and the sampling data of both terminal devices
After collecting the data at each location and synchronizing each data, subtract the self-phase voltage value measured at the other terminal from the self-phase voltage value measured at the self terminal for each phase, and then the distance between both terminals. And the voltage drop per unit length of the own phase due to each phase current measured at the other terminal, and then adding the product per unit length of the own phase according to each phase current value measured at the own terminal and the other terminal. A fault location method characterized by calculating the distance from its own terminal to the fault point for each phase by dividing by the sum of the voltage drop of.
【請求項2】特許請求の範囲第1項に記載の故障点標定
方式において、系統を1回線とし、単位長さ当たりの電
圧降下分の算出に、送電線の自己インピーダンスと回線
内相互インピーダンスを用いたことを特徴とする故障点
標定方式。
2. The fault locating method according to claim 1, wherein the system is one line and the voltage drop per unit length is calculated by calculating the self-impedance of the transmission line and the mutual impedance in the line. A fault location method characterized by being used.
【請求項3】特許請求の範囲第1項に記載の故障点標定
方式において、系統を平行2回線運用とし、単位長さ当
たりの電圧降下分の算出に送電線の自己インピーダンス
と回線内相互インピーダンスと回線間相互インピーダン
スとを用いたことを特徴とする故障点標定方式。
3. The fault locating method according to claim 1, wherein the system is operated in parallel with two lines and the voltage drop per unit length is calculated by calculating the self-impedance of the transmission line and the mutual impedance in the line. A fault location method characterized by using the line impedance and line mutual impedance.
JP61093070A 1986-04-22 1986-04-22 Fault location method Expired - Lifetime JPH0758305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093070A JPH0758305B2 (en) 1986-04-22 1986-04-22 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093070A JPH0758305B2 (en) 1986-04-22 1986-04-22 Fault location method

Publications (2)

Publication Number Publication Date
JPS62249078A JPS62249078A (en) 1987-10-30
JPH0758305B2 true JPH0758305B2 (en) 1995-06-21

Family

ID=14072253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093070A Expired - Lifetime JPH0758305B2 (en) 1986-04-22 1986-04-22 Fault location method

Country Status (1)

Country Link
JP (1) JPH0758305B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221268A (en) * 1987-03-10 1988-09-14 Chubu Electric Power Co Inc Fault point location system for parallel stringing line installation system
JPH0713652B2 (en) * 1987-04-02 1995-02-15 富士電機株式会社 Fault location method for parallel two-line transmission line
GB2222688B (en) * 1988-09-09 1992-12-23 Gen Electric Co Plc Equipment for and methods of locating the position of a fault on a power transmission line
CN103163427B (en) * 2013-03-07 2015-07-01 福建省电力有限公司 Method for realizing line single-phase earth fault single-terminal fault locating by using real part of voltage drop along line
CN104502801B (en) * 2014-12-22 2018-04-27 北京必可测科技股份有限公司 A kind of localization method and system of high voltage transmission line failure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240746A (en) * 1975-09-25 1977-03-29 Tokyo Electric Power Co Inc:The Failure point measuring method
JPS53116446A (en) * 1977-03-23 1978-10-11 Tokyo Electric Power Co Inc:The Fault point locator for power transmission line
JPS58168976A (en) * 1982-03-31 1983-10-05 Toshiba Corp Spotting system for fault point

Also Published As

Publication number Publication date
JPS62249078A (en) 1987-10-30

Similar Documents

Publication Publication Date Title
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
JPH0758305B2 (en) Fault location method
JPH0758308B2 (en) Fault location method for 3-terminal transmission system
JPH11344525A (en) Fault point plotting device
EP0155367B1 (en) Short-circuit distance relay
JPH0373825B2 (en)
JP2560994B2 (en) Short-circuit fault location method
JPH09166639A (en) Accident point locating system
JPH04319673A (en) Method for locating earth fault point
JPH0573183B2 (en)
JP2895994B2 (en) Fault location method for three-phase cable
JPH0660926B2 (en) Fault location method for multi-terminal transmission system
JPH10132890A (en) Method and device for locating failure point
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP3656966B2 (en) Fault location system
JP3013491B2 (en) Short-circuit fault location method
JPH069425B2 (en) Fault location method for protective relays
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JPH0374344B2 (en)
JPH07122649B2 (en) Fault location method based on section discrimination
JP2003009381A (en) Troue phase selector
JPH06347504A (en) Ground fault position locating apparatus
JP2002139538A (en) Base point terminal selection method for multiple-port fault point locating device
JPH0436668A (en) Fault point locating method for n-terminal parallel two-line transmission line
JP2678217B2 (en) Fault location method for power transmission system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term