JPH04140016A - Method and device for locating ground fault, and ground fault distance relay - Google Patents

Method and device for locating ground fault, and ground fault distance relay

Info

Publication number
JPH04140016A
JPH04140016A JP25999790A JP25999790A JPH04140016A JP H04140016 A JPH04140016 A JP H04140016A JP 25999790 A JP25999790 A JP 25999790A JP 25999790 A JP25999790 A JP 25999790A JP H04140016 A JPH04140016 A JP H04140016A
Authority
JP
Japan
Prior art keywords
fault
point
ground fault
voltage
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25999790A
Other languages
Japanese (ja)
Other versions
JP2863952B2 (en
Inventor
Kazuhiro Sano
佐野 和汪
Fumio Iwatani
岩谷 二三夫
Yutaka Takiguchi
滝口 裕
Kenji Murata
村田 賢次
Kyoji Ishizu
石津 京二
Kazuo Sonohara
園原 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP25999790A priority Critical patent/JP2863952B2/en
Publication of JPH04140016A publication Critical patent/JPH04140016A/en
Application granted granted Critical
Publication of JP2863952B2 publication Critical patent/JP2863952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve location accuracy by estimating an error relevant to the ground fault point resistance contained in a detected voltage based on at least one of detected voltage or current and known data pertaining to transmission system, correcting the operation of load side impedance based on thus estimated error thereby reducing the fault point location error caused by the fault resistance at the ground fault point. CONSTITUTION:A fault point locator 21 covers a transmission line 13 and provided with phase current signals and phase voltage signals. When a load side impedance is calculated, a correction term for eliminating the error component relevant to a fault point resistance RF is introduced. The fault point resistance RF is an unknown value and estimated based on voltage drop of faulty phase, the amount of zero-phase voltage or the amount of zero-phase current. According to the constitution, fault point location error due to the fault point resistance is suppressed and location accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、送電線の故障点標定方法及び装置に係り、特
に中性点抵抗接地系統における不完全地絡時の標定精度
の向上を図るに好適なものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fault point locating method and device for power transmission lines, and in particular aims to improve the locating accuracy in the event of an incomplete ground fault in a neutral point resistance grounding system. Concerning what is suitable for.

〔従来の技術〕[Conventional technology]

従来、故障点標定の高精度化対策として、特公昭56−
39431号公報に示されているように、事故時の電流
データと事故前の電流データの差分信号を用いる方法が
知られている。
Conventionally, as a measure to improve the accuracy of failure point location,
As shown in Japanese Patent No. 39431, a method is known that uses a difference signal between current data at the time of the accident and current data before the accident.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記公報の方法によれば、事故前後で潮流が変
化すること、また差をとっている時間内のデータしか得
られないことなどから、精度向上の面で改善すべき点が
ある。
However, according to the method disclosed in the above-mentioned publication, there are some points that need to be improved in terms of accuracy, such as the fact that the current changes before and after the accident, and that data can only be obtained within a time period in which the difference is taken.

また、地絡距離リレーにおいては、不完全地絡による事
故点抵抗の影響を考慮して、動作領域を広くとるように
していることから、負荷時の不要動作防止と相反する形
になっている。
In addition, in ground fault distance relays, the operating range is widened in consideration of the influence of fault point resistance due to incomplete ground faults, which contradicts the idea of preventing unnecessary operations under load. .

本発明の目的は、上記従来の問題点を解決すること、言
いかえれば、地絡故障点の故障抵抗に起因する故障点標
定誤差を小さく抑えて、標定精度を向上することができ
る故障点標定方法及び装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems. In other words, it is an object of the present invention to provide a fault point locating method that can suppress the fault point location error caused by the fault resistance of the ground fault fault point to a small value and improve the location accuracy. An object of the present invention is to provide a method and apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するため、地絡故障点よりも
電源側に定められた送電線の基準点における電圧と電流
を検出し、該検出電圧と検出電流に基づいて当該基準点
からみた送電線の負荷側インピーダンスを求め、請求め
られた負荷側インピーダンスを当該送電線の単位長当り
の既知線路インピーダンスで除算することにより、前記
基準点から地絡故障点までの距離を求めることを含んで
なる中性点抵抗接地系の地絡故障点標定方法において、
前記検出電圧と検出電流の少なくとも一方と当該送電系
統に係る既知データに基づいて、前記検出電圧に含まれ
る地絡故障点抵抗に関係する誤差を推定演算し、該推定
誤差により前記負荷側インピーダンスに係る演算を補正
することを特徴とする。
In order to achieve the above object, the present invention detects the voltage and current at a reference point of a power transmission line set on the power supply side than the ground fault fault point, and calculates the voltage and current as seen from the reference point based on the detected voltage and current. Determining the distance from the reference point to the ground fault point by determining the load-side impedance of the transmission line and dividing the claimed load-side impedance by the known line impedance per unit length of the transmission line. In the method for locating the ground fault point of a neutral point resistance grounding system,
Based on at least one of the detected voltage and the detected current and known data regarding the power transmission system, an error related to the ground fault point resistance included in the detected voltage is estimated and calculated, and the estimated error causes the load-side impedance to change. It is characterized by correcting such calculations.

〔作用〕[Effect]

このように構成されることから、不完全地絡等による故
障点抵抗が存在し、検出電圧等にその影響による故障点
電圧が含まれていても、これを推定して除去することが
できるので、故障点標定の精度を向上させることが可能
となる。
With this configuration, even if there is a fault point resistance due to incomplete ground fault, etc., and the fault point voltage due to the effect is included in the detected voltage, etc., this can be estimated and removed. , it becomes possible to improve the accuracy of failure point location.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図は、本発明を適用してなる送電系統の全体構成図
である。図示のように、電源11がら供給される電力は
変圧器12により変圧され、送電線13を介して負荷1
4に送電されている。変圧器12の2次系は中性点抵抗
接地系とされており、中性点は中性点接地抵抗RNを介
して接地されている。故障点標定装置21は送電線13
を標定対象としており、送電[13の電源側端に設けら
れた変流器22a、b、cと電圧変成器23a、b。
FIG. 1 is an overall configuration diagram of a power transmission system to which the present invention is applied. As shown in the figure, power supplied from a power source 11 is transformed by a transformer 12, and is passed through a power transmission line 13 to a load 1.
Power is being transmitted to 4. The secondary system of the transformer 12 is a neutral point resistance grounding system, and the neutral point is grounded via a neutral point grounding resistance RN. Fault point locating device 21 is connected to power transmission line 13
The current transformers 22a, b, c and voltage transformers 23a, b provided at the power supply side end of the power transmission [13] are targeted for orientation.

Cにより検出された各相の電流信号と相電圧信号が入力
されている。
Current signals and phase voltage signals of each phase detected by C are input.

いま、故障点標定装置21の設置点(以下、基準点とい
う)から地絡故障点Fまでの距離をQ(km)とし、故
障点抵抗をRF、負荷インピーダンスをZLとしたa相
地絡時の標定を例にとって説明する。また、以下3相交
流1回線モデルにより説明する。
Now, when the distance from the installation point of the fault point locating device 21 (hereinafter referred to as reference point) to the ground fault fault point F is Q (km), the fault point resistance is RF, and the load impedance is ZL, in the case of an a-phase ground fault. This will be explained using the orientation of . Further, the following explanation will be based on a three-phase AC single line model.

地絡故障点の標定に係る距wlQを計測するには、理論
上、次式(1)に示すように、基準点から故障点Fまで
の正相インピーダンス21Fを計測し、これを送電線1
3の線路の単位長当りの正相インピーダンスZ、u (
Ω/−)で除算して求めることができる。
In order to measure the distance wlQ related to the location of the ground fault fault point, theoretically, as shown in the following equation (1), the positive sequence impedance 21F from the reference point to the fault point F is measured, and this is connected to the transmission line 1.
The positive sequence impedance Z, u (
It can be calculated by dividing by Ω/-).

1U 正相インピーダンスZ□Uは送電線13の線路定数(分
布定数)の1つであり、1!線種別、その配列、寸法か
ら予め算出することができる。なお、Ωを求めるには(
1)式における正相インピーダンスZIFIZI己二代
えて、逆相インピーダンスZ 2 F tZ2u又は零
相インピーダンス20F、 Zouを用いることも可能
であり、またそれらを含めてなる総合の線路インピーダ
ンスZFと分布インピーダンスZuを用いることも可能
である。
1U Positive sequence impedance Z□U is one of the line constants (distribution constants) of the power transmission line 13, and is 1! It can be calculated in advance from the line type, its arrangement, and dimensions. In addition, to find Ω (
In place of the positive sequence impedance ZIFIZI in equation 1), it is also possible to use the negative sequence impedance Z 2 F tZ2u or the zero sequence impedance 20F, Zou, and the total line impedance ZF including them and the distributed impedance Zu It is also possible to use

21F、 Zluはそれぞれ抵抗分と誘導リアクタンス
分からなる複素数である。なお、容量リアクタンス分は
誘導リアクタンス分に比べ十分に小さいと仮定して無視
して説明する。したがって、各正相インピーダンス21
Fと71Uの虚数部に着目すると、(1)式の距離Qは
次式(2)でも求めることができる。但し、(2)式に
おいて〔)Imは虚数部を意味する。
21F and Zlu are complex numbers each consisting of a resistance component and an inductive reactance component. Note that the description will be made assuming that the capacitive reactance component is sufficiently smaller than the inductive reactance component, and will ignore it. Therefore, each positive sequence impedance 21
Focusing on the imaginary parts of F and 71U, the distance Q in equation (1) can also be determined by the following equation (2). However, in equation (2), [) Im means the imaginary part.

(2)式による距離測定は、一般の保護リレー方式にお
ける距離リレーのりアクタンス検出要素の動作に相当す
る。
Distance measurement using equation (2) corresponds to the operation of a distance relay actance detection element in a general protection relay system.

なお、故障点標定の精度を向上させるには、故障点Fま
での正相インピーダンスzlFのうち、特に誘導リアク
タンス分について正確に計測又は求めることが肝要であ
る。
In order to improve the accuracy of failure point location, it is important to accurately measure or obtain the inductive reactance portion of the positive-sequence impedance zlF up to the failure point F.

ここで、第1図の故障ケースについて、三相回路の対称
分等価回路を第2図に示し、故障点Fまでの正相インピ
ーダンスZXFを求める方法について説明する。従来の
地絡距離リレ一方式を応用したものでは、次式(3)〜
(5)に示す処理により、地絡距離リレーからみたイン
ピーダンスZ11を求めるようになっている。すなわち
、基準点にいけるa相の地絡故障時の相電圧Vaは次式
で表わせ、IFRFが故障点電圧である。
Here, for the failure case shown in FIG. 1, a symmetrical equivalent circuit of the three-phase circuit is shown in FIG. 2, and a method for determining the positive sequence impedance ZXF up to the failure point F will be described. In the case of applying the conventional one-way ground fault distance relay, the following equation (3) ~
By the process shown in (5), the impedance Z11 seen from the ground fault distance relay is determined. That is, the phase voltage Va at the time of a ground fault of the a phase that can go to the reference point is expressed by the following equation, where IFRF is the fault point voltage.

Va=I、Z、F+l2Z2F+I。Zot−+IFR
Fここで、 と仮定すると、 (3)式は、 Va= (1a+ (Ko−1) Io) Z、F+ IFRF となり、 したがって、 I a 十(Ko  1 ) I。
Va=I, Z, F+l2Z2F+I. Zot-+IFR
FHere, assuming that, Equation (3) becomes: Va= (1a+ (Ko-1) Io) Z, F+ IFRF, and therefore I a + (Ko 1 ) I.

となる。becomes.

ここで、 上式中の記号の意味を下記に示す。here, The meanings of the symbols in the above formula are shown below.

■□ 二基準焦の正相電圧 ■2 : 逆相電圧 ■。 = 零相電圧 ■□ : 正相電流 工2 : 逆相電流 ■。 = 零相電流 Z、F:故障点までの正相インピーダンス22F:故障
点までの逆相インピーダンスZoF:       零
相インピーダンスZRY:地絡距離リレ一方式のみるイ
ンピーダンス1F =故障点電流=(■1+■2+1゜
)=3工。
■□ Positive sequence voltage of two reference focal points■2: Negative sequence voltage■. = Zero-sequence voltage■□: Positive-sequence current engineer 2: Negative-sequence current■. = Zero-sequence current Z, F: Positive-sequence impedance up to the fault point 22F: Negative-sequence impedance up to the fault point ZoF: Zero-sequence impedance ZRY: Impedance seen by one type of ground fault distance relay 1F = Fault point current = (■1+■ 2 + 1°) = 3 engineering.

va:故障相の基準点の検出電圧==(V1+V2+V
。)上記(5)式の右辺第2項が故障点抵抗RFによる
影響値であり、求めたい正相インピーダンスZ、Fに対
して誤差となる。特に正相、逆相電流I0.I2と零相
電流工。との間に位相差があるときは、故障点抵抗RF
がリアクタンス成分として影響するので問題がある。つ
まり、(2)式では、リアクタンス成分のみに着目して
いるから、RFが純抵抗であれば左程問題がないが、リ
アクタンスとして作用すると誤差要因となる。
va: Detection voltage at reference point of faulty phase ==(V1+V2+V
. ) The second term on the right side of the above equation (5) is the influence value due to the fault point resistance RF, and becomes an error with respect to the desired positive sequence impedances Z and F. In particular, the positive-sequence and negative-sequence currents I0. I2 and zero-phase current work. If there is a phase difference between the fault point resistance RF
This is a problem because it affects the reactance component. In other words, since equation (2) focuses only on the reactance component, there is no problem if the RF is a pure resistance, but if it acts as a reactance it becomes an error factor.

次に、本発明の故障点標定方法について説明する。本発
明は、(5)式における故障点抵抗RFに関係する誤差
分を消去する補正項を次式(6)に示すように導入して
いる。すなわち、基準点からみた負荷側の線路インピー
ダンスをZFLとすると次式となる。
Next, the fault point locating method of the present invention will be explained. The present invention introduces a correction term as shown in the following equation (6) to eliminate the error related to the fault point resistance RF in equation (5). That is, if the line impedance on the load side viewed from the reference point is ZFL, the following equation is obtained.

Va 3I。Va 3I.

=ZIF                ・・・ (
6)この(6)式が本発明による標定の基本式で、第1
項が基準点からみた負荷側インピーダンスであり、第2
項が補正項である。しかし、この補正項のうちIo、I
a、Koは検出等により既知であるが、故障点抵抗RF
が未知数であるため、これを推定しなければならない。
=ZIF... (
6) This equation (6) is the basic equation for orientation according to the present invention, and the first
term is the load-side impedance seen from the reference point, and the second
term is a correction term. However, out of this correction term, Io, I
a, Ko are known through detection etc., but the fault point resistance RF
Since is an unknown quantity, it must be estimated.

次に、このRFを推定する方法の実施例について説明す
る。
Next, an example of a method for estimating this RF will be described.

礼じ1jffi上 故障相電圧の低下から故障点抵抗RFを推定できる。Reiji 1jffi top The fault point resistance RF can be estimated from the drop in fault phase voltage.

すなわち、第1図のa相地絡時の簡易等価回路は第3図
に示すようになる。同図においてVasはa相の電源電
圧であり、この電圧は健全時の基準点におけるa相検出
電圧Vaで近似可能である。
That is, the simple equivalent circuit at the time of the a-phase ground fault in FIG. 1 is as shown in FIG. 3. In the figure, Vas is the a-phase power supply voltage, and this voltage can be approximated by the a-phase detection voltage Va at the reference point in a healthy state.

ここで、送電線の線路インピーダンスは中性点抵抗RN
や故障点抵抗RFに比べて十分に小さい(通常、前者は
40Ω/bであるのに対し、RN又はRFは100Ω〜
数百Ωである)ので無視すると、第3図から次式(7)
〜(9)が成り立つ。
Here, the line impedance of the transmission line is the neutral point resistance RN
and fault point resistance RF (normally, the former is 40 Ω/b, whereas RN or RF is 100 Ω/b
(several hundred Ω), so if ignored, the following equation (7) can be obtained from Figure 3.
~(9) holds true.

Va s=3 I o (RN+RF)   −(7)
Va  =Vas−3IORN   −(8)Va  
=3 I ORF       −(9)ここで、(9
)式を3Ioについて整理し、これを(8)式に代入し
てIo酸成分除去し、さらにRFについて解くと、次式
(10)が得られる。
Va s=3 I o (RN+RF) −(7)
Va = Vas-3IORN-(8) Va
=3 I ORF − (9) where (9
) is rearranged for 3Io, substituted into equation (8) to remove the Io acid component, and further solved for RF to obtain the following equation (10).

Vas−Va なお、中性点抵抗RNは既知である。Vas-Va Note that the neutral point resistance RN is known.

(10)式を、Vasを基準ベクトルとして検出相電圧
Vaの絶対値IVa1について近似すると次式(11)
となる。
When formula (10) is approximated for the absolute value IVa1 of the detected phase voltage Va using Vas as a reference vector, the following formula (11) is obtained.
becomes.

上で求めたRFを(6)式に代入して次式(12)によ
り、補正後のZFLが求まる。
By substituting the RF obtained above into the equation (6), the corrected ZFL is obtained by the following equation (12).

Ia十(Ko−1)I。Ia ten (Ko-1) I.

I a+ (Ko−1) I 。I a+ (Ko-1) I.

Vas−Va #Z工F                 ・・・(
12)このようにして、故障点までのインピーダンス2
1Fを求めることによって、(2)式で示した標定路1
ρが求まる。
Vas-Va #Z Engineering F...(
12) In this way, the impedance 2 up to the failure point
By determining 1F, the target road 1 shown in equation (2) is
Find ρ.

また、健全時のa相電圧Vasに代えて、b相とてもよ
く、a相の故障直前の相電圧を用いる方法でもよい。こ
の場合、健全相の電圧、あるいはa相の故障直前の電圧
信号をVasとして用いる方法は、系統の運転電圧変動
に対応した入力信号レベルとなるので最も望ましい。
Furthermore, instead of the a-phase voltage Vas when it is healthy, the phase voltage of the b-phase which is very good and immediately before the failure of the a-phase may be used. In this case, the most desirable method is to use the voltage of the healthy phase or the voltage signal immediately before the failure of the a phase as Vas, since the input signal level corresponds to the operating voltage fluctuations of the system.

1じL]LI 零相電圧Voの発生量から故障点抵抗RFを推定するこ
とができる。すなわち、第3図において、完全地絡時(
RF=○)における零相電圧をVosとすると、 Vos=−Vas=3IosRN ・−(13)の関係
にある。一方、不完全地絡時(RF≠O)の基準点にお
ける零相電圧Voと故障電流3I。
1 L] LI The fault point resistance RF can be estimated from the amount of zero-sequence voltage Vo generated. In other words, in Fig. 3, when there is a complete ground fault (
If the zero-sequence voltage at RF=○) is Vos, then there is a relationship as follows: Vos=-Vas=3IosRN.-(13). On the other hand, zero-sequence voltage Vo and fault current 3I at the reference point during incomplete ground fault (RF≠O).

は、それぞれ式(14)と(15)により表わされる。are expressed by equations (14) and (15), respectively.

Vo=−Va  s−3l 0RF =   Vos−3IORF ・・・(14) 式(14)と(15)をRFについて解くと、次式(1
6)が得られる。
Vo=-Vas-3l 0RF = Vos-3IORF (14) When equations (14) and (15) are solved for RF, the following equation (1
6) is obtained.

ここで、VosとVoの位相差を無視すると、RFは次
式(17)で近似できる。
Here, if the phase difference between Vos and Vo is ignored, RF can be approximated by the following equation (17).

ただし、Vosは完全地絡時に発生する零相電圧レベル
であり、健全相の線間電圧、あるいは故障直前の相電圧
から求めることもできる。
However, Vos is a zero-sequence voltage level that occurs at the time of a complete ground fault, and can also be determined from the line voltage of a healthy phase or the phase voltage immediately before a failure.

これにより求めたRFを(6)式に代入し、次式(18
)式のように所望の故障点までの線路インピーダンスZ
IFを求めることができる。
Substituting the RF obtained from this into equation (6), the following equation (18
) Line impedance Z up to the desired failure point as shown in the equation
You can find the IF.

Va Ia+(Ko−1)I。Va Ia+(Ko-1)I.

Ia+  (Ko−1)Io    l V。Ia + (Ko-1) Io l V.

岬ZIF                ・・・・・
・ (18)雅二玉LjL−ジ 零相電流Ioの発生量から故障点抵抗RFを求めること
ができる。
Cape ZIF...
- (18) Fault point resistance RF can be determined from the amount of generated zero-sequence current Io.

すなわち、完全地絡時の零相電流をIosとすると、両
式(7)にRF=Oを代入して3Ioについて解くと、
次式(19)となる。
That is, if the zero-sequence current at the time of a complete ground fault is Ios, then by substituting RF=O into both equations (7) and solving for 3Io, we get
The following equation (19) is obtained.

N 一方、不完全地絡のときは1式(7)から、RN+ R
F であるから、式(19)と(20)から、RFについて
解 くと、 となり、Iosを基準として■0の絶対値により近似す
ると、故障点抵抗RFは次式(22)により求まる。
N On the other hand, in the case of incomplete ground fault, from Equation 1 (7), RN + R
F. Therefore, from equations (19) and (20), solving for RF gives the following equation, and by approximating by the absolute value of ■0 with Ios as the reference, the fault point resistance RF can be found by the following equation (22).

これにより求めたRFから、第2図で示したように、故
障点電圧VFは次式(23)で表わせる。
From the RF thus obtained, the fault point voltage VF can be expressed by the following equation (23), as shown in FIG.

VF=3IORF          ・・−・ (2
3)これにより求めたVFを両式(6)に代入して、線
路インピーダンスZFLが次式(24)により求まる。
VF=3IORF...-(2
3) By substituting the VF thus obtained into both equations (6), the line impedance ZFL is found using the following equation (24).

Va 3I。Va 3I.

Ia+(Ko−1)I。Ia+(Ko-1)I.

Ia+(Ko−1)I。Ia+(Ko-1)I.

第4図は第1図の故障点標定装W21の具体的な実施例
の構成図である。本実施例はデジタル演算処理により、
上述した標定処理を実施するもので、第5図にその処理
フローを示す。第4図に示すように、故障点標定装置2
1は補助変成器31、フィルタ32、量子化回路33、
信号処理ユニット34、整定値ユニット35を含んで構
成される。
FIG. 4 is a block diagram of a specific embodiment of the failure point locating device W21 shown in FIG. This example uses digital calculation processing to
The above-mentioned orientation processing is carried out, and the processing flow is shown in FIG. As shown in Fig. 4, the failure point locating device 2
1 is an auxiliary transformer 31, a filter 32, a quantization circuit 33,
It is configured to include a signal processing unit 34 and a setting value unit 35.

補助変成器31は、入力信号に対応した数の補助変成器
を含んで構成され、基準点に設けられた変流器22と変
成器23により検呂された送電線13の各相の相電圧と
線電流を入力とし、それらのデータを標定処理に適した
レベルの信号に変換するとともに、外部との1mを行な
う機能を有する。フィルタ32は、入力信号に対応した
数のフィルタを含んで構成され、各入力信号ごとに不必
要な高調波成分を除去する機能を有する。量子化回路3
3はフィルタ処理された各入力信号を同一時刻にかつ周
期的にサンプルボールドし、これを順次量子化した後デ
ジタル信号に変換して信号処理ユニット34に出力する
機能を有する。整定値ユニット35は故障点標定処理に
必要なデータを信号処理ユニット34に与えるものであ
り、例えば標定対象の送電線によって定まってくる定格
電圧Vas、中性点接地抵抗RNその他の整定値が予め
整定される。
The auxiliary transformer 31 includes a number of auxiliary transformers corresponding to the input signal, and converts the phase voltage of each phase of the power transmission line 13 tested by the current transformer 22 and transformer 23 provided at the reference point. It has the function of inputting line current and converting the data into signals at a level suitable for location processing, as well as communicating within 1 m from the outside. The filter 32 includes a number of filters corresponding to the number of input signals, and has a function of removing unnecessary harmonic components for each input signal. Quantization circuit 3
3 has a function of periodically sampling and bolding each filtered input signal at the same time, sequentially quantizing this, converting it into a digital signal, and outputting it to the signal processing unit 34. The setting value unit 35 provides the signal processing unit 34 with data necessary for failure point locating processing. For example, the rated voltage Vas, neutral point grounding resistance RN, and other setting values determined by the power transmission line to be located are set in advance. It is settled.

信号処理ユニット34は与えられる整定値と入力データ
に基づき、第5図の処理フローに従って標定処理を行な
う。その処理結果である故障点距離Qを含む故障点標定
値は、通信回線36等を介して保守所などに伝送したり
、タイプライタなどの記録装置に出力する。
The signal processing unit 34 performs orientation processing according to the processing flow shown in FIG. 5 based on the given setting values and input data. The processing result, the fault point location value including the fault point distance Q, is transmitted to a maintenance center or the like via the communication line 36 or the like, or output to a recording device such as a typewriter.

ここで、信号処理ユニット34における処理を第5図を
参照して説明する。
Here, the processing in the signal processing unit 34 will be explained with reference to FIG.

ステップ101は必要なデータを入力するステップであ
る。入力情報としては複素数情報をもつ3相各相a、b
、Cの相電圧信号Va、Vb。
Step 101 is a step for inputting necessary data. The input information is three phases a and b each having complex number information.
, C phase voltage signals Va, Vb.

Vc各相の線電流信号Ia+Ib+Ic、線路定数zI
υTZOu、中性点接地抵抗値RN、相電圧の定格値V
asなどが含まれる。
Vc line current signal of each phase Ia + Ib + Ic, line constant zI
υTZOu, neutral point grounding resistance value RN, phase voltage rated value V
This includes as, etc.

ステップ102は、次式(22)に示す零相インピーダ
ンスの補償項を演算するステップである。この演算は複
素数演算になるので、実数部と虚数部に分けて個別に求
めてもよい。
Step 102 is a step of calculating a zero-sequence impedance compensation term shown in the following equation (22). Since this operation is a complex number operation, the real part and the imaginary part may be calculated separately.

Z)IJ ステップ103では、次式(23)により零相電流Io
を求める。
Z) IJ In step 103, the zero-sequence current Io is determined by the following equation (23).
seek.

1 o =−(I a+I b+I c)   ”−・
(23)ステップ104では、故障相であるa相の相電
圧絶対値1Valを求める。ステップ105は、故障点
抵抗RFの推定値を演算するステップであり、例えば前
記(11)式で示した例に従って求める。
1 o =-(I a + I b + I c) ”-・
(23) In step 104, the phase voltage absolute value 1Val of the a phase, which is the failed phase, is determined. Step 105 is a step of calculating the estimated value of the fault point resistance RF, for example, according to the example shown in equation (11) above.

ステップ106では、上記ステップで求めたRF等によ
り、前記(12)式で示した演算を行ない、故障点まで
の線路インピーダンスZIFを求める。
In step 106, the calculation shown in equation (12) above is performed using the RF etc. obtained in the above step, and the line impedance ZIF up to the failure point is obtained.

ステップ107は標定孔11Nを求める距離換算部であ
り、前記(2)式に従って演算する。ステップ108で
は求めた標定孔lliρを含む標定データを外部に出力
する。
Step 107 is a distance conversion unit that calculates the orientation hole 11N, and calculates it according to the above equation (2). In step 108, the orientation data including the determined orientation hole lliρ is output to the outside.

上述したように、本実施例によれば、基準点における検
出データと既知データに基づいて故障点抵抗を推定し、
これにより故障点抵抗による誤差を補正するようにして
いることから、故障点抵抗による影響を受けにくい高精
度の地絡故障点標定が可能であるという効果がある。
As described above, according to this embodiment, the fault point resistance is estimated based on the detected data and known data at the reference point,
This corrects the error caused by the fault point resistance, so it is possible to locate the ground fault point with high precision, which is less susceptible to the influence of the fault point resistance.

因に、故障点抵抗RFによる影響の度合いは標定対象系
統の負荷インピーダンスzL、中性点接地抵抗値RNの
値との関係によっても異なるが、例えば、RFI RN
I ZLがほぼ同程度で、100〜200Ω程度と考え
、送電線亘長を10km程度と仮定する。この場合線路
の正相誘導リアクタンス分は、亘長10kmで約3〜5
Ω程度である。
Incidentally, the degree of influence of the fault point resistance RF varies depending on the relationship with the load impedance zL of the system to be located and the neutral point grounding resistance value RN.
It is assumed that IZL is approximately the same, about 100 to 200Ω, and that the transmission line length is about 10 km. In this case, the positive phase inductive reactance of the line is approximately 3 to 5 for a length of 10 km.
It is about Ω.

したがって、(5)式に示した故障点抵抗RFに係る項
で、RFの数%が誘導リアクタンス分として作用したと
しても、標定孔@Qは真値の2倍にも誤って認識するこ
とになるが、本実施例によればその誤差を小さく抑える
ことが可能である。
Therefore, in the term related to the fault point resistance RF shown in equation (5), even if a few percent of RF acts as an inductive reactance, the orientation hole @Q will be incorrectly recognized as twice its true value. However, according to this embodiment, it is possible to suppress the error to a small value.

特に、不完全地絡(故障点抵抗有り)でも高精度の標定
か要望される場合に効果が大である。
This is particularly effective when highly accurate orientation is required even in the case of an incomplete ground fault (with resistance at the fault point).

また、上記実施例による補正によれば、故障点抵抗と並
列に接続される負荷あるいは電源線への分流影響による
誤差も合わせて補正されるという効果がある。
Further, the correction according to the above embodiment has the effect that errors due to the influence of shunting on the load or power supply line connected in parallel with the fault point resistor are also corrected.

なお、以上の説明ではa相地絡時を例にとって説明した
が、他相す、cの地絡についても、相同順であり、同様
に標定できる。
In addition, although the above explanation took the case of an a-phase ground fault as an example, ground faults of other phases and c can also be located in the same order and can be located in the same manner.

また、上記実施例では、地絡故障点の標定方法又は装置
について示したが、上記実施例をそのまま地絡距離リレ
ーの距離標定部に適用すれば、特に不完全地絡時の標定
精度が向上された地絡距離リレーを実現できる。
Furthermore, in the above embodiment, a method or device for locating a ground fault fault point has been shown, but if the above embodiment is applied as is to the distance locating part of a ground fault distance relay, the locating accuracy will be improved especially in the case of an incomplete ground fault. A ground fault distance relay can be realized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、基準点における
電圧・電流データおよび既知データに基づいて、故障点
における故障点抵抗による誤差を推定し、この推定値に
より故障点までの線路インピーダンス演算を補正するよ
うにしていることから、故障点抵抗に起因する故障点標
定誤差を小さく抑えて標定精度を向上することができる
As explained above, according to the present invention, the error caused by the fault point resistance at the fault point is estimated based on the voltage/current data and known data at the reference point, and the line impedance calculation up to the fault point is performed using this estimated value. Since the correction is performed, it is possible to suppress the failure point location error caused by the failure point resistance to a small value and improve the location accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用対象の送電線系統を含めて表わし
た一実施例の全体構成図、第2図はa相地絡故障時の対
称分等価回路図、第3図は推定法を説明するための簡易
等価回路図、第4図は第1図実施例の故障点標定装置の
詳細構成図、第5図は第4図の信号処理ユニットにおけ
る処理手順を示すフローチャートである。 13・・・送電線、14・・・負荷、21・・・故障点
標定装置、22・・・変流器、23・・電圧変成器、3
4・信号処理ユニット、35・・・整定値ユニット。
Fig. 1 is an overall configuration diagram of an embodiment including the transmission line system to which the present invention is applied, Fig. 2 is a symmetrical equivalent circuit diagram at the time of a-phase ground fault, and Fig. 3 shows the estimation method. 4 is a detailed configuration diagram of the failure point locating device of the embodiment shown in FIG. 1, and FIG. 5 is a flowchart showing the processing procedure in the signal processing unit of FIG. 4. 13...Power transmission line, 14...Load, 21...Fault point locating device, 22...Current transformer, 23...Voltage transformer, 3
4. Signal processing unit, 35... Setting value unit.

Claims (1)

【特許請求の範囲】 1、地絡故障点よりも電源側に定められた送電線の基準
点における電圧と電流を検出し、該検出電圧と検出電流
に基づいて当該基準点からみた送電線の負荷側インピー
ダンスを求め、該求められた負荷側インピーダンスを当
該送電線の単位長当りの既知線路インピーダンスで除算
することにより、前記基準点から地絡故障点までの距離
を求めることを含んでなる中性点抵抗接地系の地絡故障
点標定方法において、前記検出電圧と検出電流の少なく
とも一方と当該送電系統に係る既知データに基づいて、
前記検出電圧に含まれる地絡故障点抵抗に関係する誤差
を推定演算し、該推定誤差により前記負荷側インピーダ
ンスに係る演算を補正することを特徴とする地絡故障点
標定方法。 2、前記地絡故障点抵抗に関係する誤差の推定を、故障
相の基準点における電圧の低下率に基づいて故障点抵抗
を推定して行なうことを特徴とする請求項1記載の地絡
故障点標定方法。 3、前記地絡故障点抵抗に関係する誤差の推定を、零相
電圧の発生量から故障点抵抗を推定して行なうことを特
徴とする請求項1記載の地絡故障点標定方法。 4、前記地絡故障点抵抗に関係する誤差の推定を、零相
電流の発生量から故障点抵抗を推定して行なうことを特
徴とする請求項1記載の地絡故障点標定方法。 5、地絡故障点よりも電源側に定められた送電線の基準
点における電圧と電流を検出する検出手段と、該検出電
圧と検出電流に基づいて当該基準点からみた送電線の負
荷側インピーダンスを求める負荷側インピーダンス演算
手段と、該求められた負荷側インピーダンスを当該送電
線の単位長当りの既知線路インピーダンスで除算して、
前記基準点から地絡故障点までの距離を求める距離演算
手段と、を含んでなる中性点抵抗接地系の地絡故障点標
定装置において、前記検出電圧と検出電流の少なくとも
一方と当該送電系統に係る既知データに基づいて、前記
検出電圧に含まれる地絡故障点抵抗に関係する誤差を推
定演算する誤差推定演算手段を設け、該手段により求め
られた推定誤差により前記負荷側インピーダンスに係る
演算を補正することを特徴とする地絡故障点標定装置。 6、前記誤差推定演算手段が、基準点における故障相の
検出電圧を健全時の電圧に対する電圧低下分で除算し、
該演算結果に中性点抵抗を乗算した値を故障点抵抗とし
て推定し、該推定値に基づいて前記誤差を推定演算する
構成を含んでなることを特徴とする請求項5記載の地絡
故障点標定装置。 7、前記誤差推定演算手段が、完全地絡時の零相電圧と
故障時の零相電圧との差を故障時の零相電圧で除算し、
該演算結果に中性点抵抗を乗算した値を故障点抵抗とし
て推定し、該推定値に基づいて前記誤差を推定演算する
構成を含んでなることを特徴とする請求項5記載の地絡
故障点標定装置。 8、前記誤差推定演算手段が、完全地絡時の零相電流と
故障時の零相電流との差を故障時の零相電流で除算し、
該演算結果に中性点抵抗を乗算した値を故障点抵抗とし
て推定し、該推定値に基づいて前記誤差を推定演算する
構成を含んでなることを特徴とする請求項5記載の地絡
故障点標定装置。 9、請求項5、6、7、8項いずれかに記載の地絡故障
点標定装置を有してなる地絡距離リレー。
[Claims] 1. Detect the voltage and current at a reference point of the power transmission line that is set on the power source side than the ground fault fault point, and calculate the voltage and current of the power transmission line as seen from the reference point based on the detected voltage and current. The load-side impedance is determined, and the distance from the reference point to the ground fault point is determined by dividing the determined load-side impedance by the known line impedance per unit length of the transmission line. In the method for locating a ground fault fault point in a resistive point resistance grounding system, based on at least one of the detected voltage and the detected current and known data regarding the power transmission system,
A method for locating a ground fault fault point, characterized in that an error related to the ground fault fault point resistance included in the detected voltage is estimated and calculated, and the calculation related to the load-side impedance is corrected using the estimated error. 2. The ground fault fault according to claim 1, wherein the error related to the ground fault fault point resistance is estimated by estimating the fault point resistance based on a voltage drop rate at a reference point of the fault phase. Point orientation method. 3. The ground fault fault point locating method according to claim 1, wherein the error related to the ground fault fault point resistance is estimated by estimating the fault point resistance from the amount of generated zero-sequence voltage. 4. The ground fault fault point locating method according to claim 1, wherein the error related to the ground fault fault point resistance is estimated by estimating the fault point resistance from the amount of generated zero-sequence current. 5. Detection means for detecting the voltage and current at a reference point of the power transmission line set on the power supply side than the ground fault fault point, and the load-side impedance of the power transmission line as seen from the reference point based on the detected voltage and current. load-side impedance calculation means for calculating the load-side impedance, and dividing the calculated load-side impedance by the known line impedance per unit length of the transmission line,
Distance calculation means for calculating the distance from the reference point to the ground fault fault point, in a ground fault fault locating device for a neutral point resistance grounding system, comprising at least one of the detected voltage and the detected current and the power transmission system An error estimation calculation means is provided for estimating and calculating an error related to the ground fault point resistance included in the detected voltage based on known data regarding the load side impedance. A ground fault fault point locating device characterized by correcting. 6. The error estimation calculation means divides the detected voltage of the faulty phase at the reference point by the voltage drop with respect to the normal voltage;
6. The ground fault fault according to claim 5, further comprising a configuration in which a value obtained by multiplying the calculation result by a neutral point resistance is estimated as the fault point resistance, and the error is estimated and calculated based on the estimated value. Point locating device. 7. The error estimation calculation means divides the difference between the zero-sequence voltage at the time of a complete ground fault and the zero-sequence voltage at the time of the failure by the zero-sequence voltage at the time of the failure,
6. The ground fault fault according to claim 5, further comprising a configuration in which a value obtained by multiplying the calculation result by a neutral point resistance is estimated as the fault point resistance, and the error is estimated and calculated based on the estimated value. Point locating device. 8. The error estimation calculation means divides the difference between the zero-sequence current at the time of a complete ground fault and the zero-sequence current at the time of the failure by the zero-sequence current at the time of the failure,
6. The ground fault fault according to claim 5, further comprising a configuration in which a value obtained by multiplying the calculation result by a neutral point resistance is estimated as the fault point resistance, and the error is estimated and calculated based on the estimated value. Point locating device. 9. A ground fault distance relay comprising the ground fault point locating device according to any one of claims 5, 6, 7, and 8.
JP25999790A 1990-09-28 1990-09-28 Ground fault fault location method and device, ground fault distance relay Expired - Fee Related JP2863952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25999790A JP2863952B2 (en) 1990-09-28 1990-09-28 Ground fault fault location method and device, ground fault distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25999790A JP2863952B2 (en) 1990-09-28 1990-09-28 Ground fault fault location method and device, ground fault distance relay

Publications (2)

Publication Number Publication Date
JPH04140016A true JPH04140016A (en) 1992-05-14
JP2863952B2 JP2863952B2 (en) 1999-03-03

Family

ID=17341862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25999790A Expired - Fee Related JP2863952B2 (en) 1990-09-28 1990-09-28 Ground fault fault location method and device, ground fault distance relay

Country Status (1)

Country Link
JP (1) JP2863952B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176032A (en) * 2013-03-06 2013-06-26 福建省电力有限公司 Voltage measuring method for single-phase ground fault point of extra-high-voltage alternating-current transmission line
JP2020178433A (en) * 2019-04-17 2020-10-29 三菱電機株式会社 Distance relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176032A (en) * 2013-03-06 2013-06-26 福建省电力有限公司 Voltage measuring method for single-phase ground fault point of extra-high-voltage alternating-current transmission line
CN103176032B (en) * 2013-03-06 2015-07-08 福建省电力有限公司 Voltage measuring method for single-phase ground fault point of extra-high-voltage alternating-current transmission line
JP2020178433A (en) * 2019-04-17 2020-10-29 三菱電機株式会社 Distance relay

Also Published As

Publication number Publication date
JP2863952B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US11346878B2 (en) Fault location during pole-open condition
RU2540851C2 (en) Method for selection of short-circuited phase and determination of short circuit type
GB1590665A (en) Protective relay circuit for interphase faults
EP3639336B1 (en) Method for detecting fault in power transmission line and protection system using the same
JP2904748B2 (en) Ground fault protection device
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JP4406143B2 (en) Protective relay device for DC transmission system
EP3639337B1 (en) Method and control system for fault direction detection
JP3792893B2 (en) Busbar protection relay device
CN112578310A (en) Detection method for single-phase grounding line selection tripping function
JP3191527B2 (en) One-phase disconnection continuous monitoring method
JPH08265957A (en) Matrix operation type system protector
JP3292884B2 (en) Ground fault distance detecting method, ground fault distance detecting device, and ground fault distance relay
JP2581061B2 (en) Power system protection device
JP2715090B2 (en) Fault location device
JP2721166B2 (en) Ground fault distance relay method
JP2777266B2 (en) Ratio differential relay
JP2588414B2 (en) Power system accident judgment method
JP2565912B2 (en) Current differential relay
de Villiers et al. MEASURING AND MODELING OF BALANCED AND UNBALANCED SINGLE-CIRCUIT LINES
JPS63124970A (en) Digital fault locator
JPS61106028A (en) System stabilizer
JPS638690B2 (en)
JPS591985B2 (en) Fault point location method for power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees